Chapter 5 Network Layer: The Control Plane

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we' d like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

C All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Network Layer: Control Plane 5-1

Chapter 5: network layer control plane

chapter goals: understand principles behind network control plane

- traditional routing algorithms
- SDN controlllers
- Internet Control Message Protocol
- network management

and their instantiation, implementation in the Internet:

 OSPF, BGP, OpenFlow, ODL and ONOS controllers, ICMP, SNMP

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

Network-layer functions

Recall: two network-layer functions:

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to destination

data plane

control plane

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)

Per-router control plane

Individual routing algorithm components *in each and every router* interact with each other in control plane to compute forwarding tables

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

Routing protocol goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

- path: sequence of routers packets will traverse in going from given initial source host to given final destination host
- "good": least "cost", "fastest", "least congested"
- routing: a "top-10" networking challenge!

Graph abstraction of the network

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs

c(x,x') = cost of link (x,x') e.g., c(w,z) = 5

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

key question: what is the least-cost path between u and z ? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms

decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

A link-state routing algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives *forwarding table* for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's algorithm

1 Initialization:

- 2 N' = {u}
- 3 for all nodes v
- 4 if v adjacent to u

```
5 then D(v) = c(u,v)
```

```
6 else D(v) = \infty
```

7

8 **Loop**

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N' :
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */
- 15 until all nodes in N'

Dijkstra's algorithm: example

		D(v)	D(w)	$D(\mathbf{x})$	D(y)	D(z)
Step	5 N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	<u>3,u</u>	5,u	8	∞
1	UW	6,w		<u>5,u</u>) 11,w	∞
2	UWX	6,w			11,W	14,X
3	UWXV				10,	14,X
4	uwxvy					12,
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux 🔶	2 ,u	4,x		2,x	∞
2	UXV-	<u>2,u</u>	З,у			4,y
3	uxyv 🗸					4,y
4	uxyvw 🔶					4,y
5	uxyvwz ←					

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:

resulting forwarding table in u:

destination	link		
V	(u,v)		
Х	(u,x)		
У	(u,x)		
W	(u,x)		
Z	(u,x)		

Dijkstra's algorithm, discussion

algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: O(n²)
- more efficient implementations possible: O(nlogn)

oscillations possible:

e.g., support link cost equals amount of carried traffic:

Network Layer: Control Plane 5-18

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP