
Application Layer 2-1

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

•  SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-2

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

§  file divided into 256Kb chunks
§  peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer 2-3

§  peer joining torrent:
•  has no chunks, but will

accumulate them over time
from other peers

•  registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

§  while downloading, peer uploads chunks to other peers
§  peer may change peers with whom it exchanges chunks
§  churn: peers may come and go
§  once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

Application Layer 2-4

BitTorrent: requesting, sending file chunks

requesting chunks:
§  at any given time, different

peers have different subsets
of file chunks

§  periodically, Alice asks each
peer for list of chunks that
they have

§  Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
§  Alice sends chunks to those four

peers currently sending her
chunks at highest rate

•  other peers are choked by Alice
(do not receive chunks from her)

•  re-evaluate top 4 every10 secs
§  every 30 secs: randomly select

another peer, starts sending
chunks

•  “optimistically unchoke” this peer
•  newly chosen peer may join top 4

Application Layer 2-5

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

Application Layer 2-6

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

•  SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.7 socket programming

with UDP and TCP

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

Application Layer 2-7

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Socket programming

Two socket types for two transport services:
•  UDP: unreliable datagram
•  TCP: reliable, byte stream-oriented

Application Layer 2-8

Application Example:
1.  client reads a line of characters (data) from its

keyboard and sends data to server
2.  server receives the data and converts characters

to uppercase
3.  server sends modified data to client
4.  client receives modified data and displays line on

its screen

Socket programming with UDP

UDP: no “connection” between client & server
§  no handshaking before sending data
§  sender explicitly attaches IP destination address and

port # to each packet
§  receiver extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
§  UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Application Layer 2-9

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
 clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-10

server (running on serverIP) client

Application Layer 2-11

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(AF_INET,
 SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),

 (serverName, serverPort))

modifiedMessage, serverAddress =
 clientSocket.recvfrom(2048)
print modifiedMessage.decode()
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Application Layer 2-12

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:
 message, clientAddress = serverSocket.recvfrom(2048)
 modifiedMessage = message.decode().upper()
 serverSocket.sendto(modifiedMessage.encode(),
 clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Socket programming with TCP
client must contact server
§  server process must first be

running
§  server must have created

socket (door) that
welcomes client’s contact

client contacts server by:
§  Creating TCP socket,

specifying IP address, port
number of server process

§  when client creates socket:
client TCP establishes
connection to server TCP

§  when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
•  allows server to talk with

multiple clients
•  source port numbers used

to distinguish clients
(more in Chap 3)

Application Layer 2-13

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Client/server socket interaction: TCP

Application Layer 2-14

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocket read request from

connectionSocket
write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket
close
clientSocket

Application Layer 2-15

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Application Layer 2-16

Example app: TCP server

 from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while True:
 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024).decode()
 capitalizedSentence = sentence.upper()
 connectionSocket.send(capitalizedSentence.
 encode())
 connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Chapter 2: summary

§  application architectures
•  client-server
•  P2P

§  application service
requirements:
•  reliability, bandwidth, delay

§  Internet transport service
model

•  connection-oriented,
reliable: TCP

•  unreliable, datagrams: UDP

our study of network apps now complete!

Application Layer 2-17

§  specific protocols:
•  HTTP
•  SMTP, POP, IMAP
•  DNS
•  P2P: BitTorrent

§  video streaming, CDNs
§  socket programming:
 TCP, UDP sockets

§  typical request/reply
message exchange:

•  client requests info or
service

•  server responds with
data, status code

§  message formats:
•  headers: fields giving

info about data
•  data: info(payload)

being communicated

Application Layer 2-18

important themes:
§  control vs. messages

•  in-band, out-of-band
§  centralized vs. decentralized
§  stateless vs. stateful
§  reliable vs. unreliable message

transfer
§ “complexity at network

edge”

Chapter 2: summary
most importantly: learned about protocols!

