
Application Layer 2-1

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail
• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-2

Chapter 2: application layer

our goals:
§ conceptual,

implementation aspects
of network application
protocols
• transport-layer

service models
• client-server

paradigm
• peer-to-peer

paradigm
• content distribution

networks

§ learn about protocols by
examining popular
application-level
protocols
• HTTP
• FTP
• SMTP / POP3 / IMAP
• DNS

§ creating network
applications
• socket API

Application Layer 2-3

Some network apps

§ e-mail
§ web
§ text messaging
§ remote login
§ P2P file sharing
§ multi-user network

games
§ streaming stored

video (YouTube, Hulu,
Netflix)

§ voice over IP (e.g.,
Skype)

§ real-time video
conferencing

§ social networking
§ search
§ …
§ …

Application Layer 2-4

Creating a network app

write programs that:
§ run on (different) end systems
§ communicate over network
§ e.g., web server software

communicates with browser
software

no need to write software
for network-core devices

§ network-core devices do not
run user applications

§ applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application Layer 2-5

Application architectures

possible structure of applications:
§ client-server
§ peer-to-peer (P2P)

Application Layer 2-6

Client-server architecture

server:
§ always-on host
§ permanent IP address
§ data centers for scaling

clients:
§ communicate with server
§ may be intermittently

connected
§ may have dynamic IP

addresses
§ do not communicate directly

with each other

client/server

Application Layer 2-7

P2P architecture
§ no always-on server
§ arbitrary end systems

directly communicate
§ peers request service from

other peers, provide service
in return to other peers
• self scalability – new

peers bring new service
capacity, as well as new
service demands

§ peers are intermittently
connected and change IP
addresses
• complex management

peer-peer

Application Layer 2-8

Processes communicating

process: program running
within a host

§ within same host, two
processes communicate
using inter-process
communication (defined by
OS)

§ processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

§ aside: applications with P2P
architectures have client
processes & server
processes

clients, servers

Application Layer 2-9

Sockets
§ process sends/receives messages to/from its socket
§ socket analogous to door

• sending process shoves message out door
• sending process relies on transport infrastructure on

other side of door to deliver message to socket at
receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Application Layer 2-10

Addressing processes

§ to receive messages,
process must have identifier

§ host device has unique 32-
bit IP address

§ Q: does IP address of host
on which process runs
suffice for identifying the
process?

§ identifier includes both IP
address and port numbers
associated with process on
host.

§ example port numbers:
• HTTP server: 80
• mail server: 25

§ to send HTTP message to
gaia.cs.umass.edu web
server:
• IP address: 128.119.245.12
• port number: 80

§ more shortly…

§ A: no, many processes
can be running on same
host

Application Layer 2-11

App-layer protocol defines
§ types of messages

exchanged,
• e.g., request, response

§ message syntax:
• what fields in messages

& how fields are
delineated

§ message semantics
• meaning of information

in fields
§ rules for when and how

processes send & respond
to messages

open protocols:
§ defined in RFCs
§ allows for interoperability
§ e.g., HTTP, SMTP
proprietary protocols:
§ e.g., Skype

Application Layer 2-12

What transport service does an app need?

data integrity
§ some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

§ other apps (e.g., audio) can
tolerate some loss

timing
§ some apps (e.g., Internet

telephony, interactive
games) require low delay
to be �effective�

throughput
§ some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
�effective�

§ other apps (�elastic apps�)
make use of whatever
throughput they get

security
§ encryption, data integrity,

…

Application Layer 2-13

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100�s
msec

yes, few secs
yes, 100�s
msec
yes and no

Application Layer 2-14

Internet transport protocols services

TCP service:
§ reliable transport between

sending and receiving
process

§ flow control: sender won�t
overwhelm receiver

§ congestion control: throttle
sender when network
overloaded

§ does not provide: timing,
minimum throughput
guarantee, security

§ connection-oriented: setup
required between client and
server processes

UDP service:
§ unreliable data transfer

between sending and
receiving process

§ does not provide: reliability,
flow control, congestion
control, timing,
throughput guarantee,
security, or connection
setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-15

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Application Layer 2-16

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail
• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-17

Web and HTTP

First, a review…
§ web page consists of objects
§ object can be HTML file, JPEG image, Java applet,

audio file,…
§ web page consists of base HTML-file which

includes several referenced objects
§ each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-18

HTTP overview

HTTP: hypertext
transfer protocol

§ Web�s application layer
protocol

§ client/server model
• client: browser that

requests, receives,
(using HTTP protocol)
and �displays�Web
objects

• server:Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

Application Layer 2-19

HTTP overview (continued)

uses TCP:
§ client initiates TCP

connection (creates socket)
to server, port 80

§ server accepts TCP
connection from client

§ HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

§ TCP connection closed

HTTP is �stateless�
§ server maintains no

information about
past client requests

protocols that maintain
�state� are complex!

§ past history (state) must be
maintained

§ if server/client crashes, their
views of �state� may be
inconsistent, must be
reconciled

aside

Application Layer 2-20

HTTP connections

non-persistent HTTP
§ at most one object

sent over TCP
connection
• connection then

closed
§ downloading multiple

objects required
multiple connections

persistent HTTP
§ multiple objects can

be sent over single
TCP connection
between client, server

Application Layer 2-21

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
�accepts� connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer 2-22

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer 2-23

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:
§ one RTT to initiate TCP

connection
§ one RTT for HTTP request

and first few bytes of HTTP
response to return

§ file transmission time
§ non-persistent HTTP

response time =
2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

