Chapter I: roadmap

- I.I what is the Internet?
- I.2 network edge
 - end systems, access networks, links
- I.3 network core

packet switching, circuit switching, network structure
I.4 delay, loss, throughput in networks
I.5 protocol layers, service models
I.6 networks under attack: security
I.7 history

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Organization of air travel

a series of steps

Layering of airline functionality

ticket (purchase)		ticket (complain)	ticket
baggage (check)		baggage (claim	baggage
gates (load)		gates (unload)	gate
runway (takeoff)		runway (land)	takeoff/landing
			•
airplane routing	airplane routing airplane routing	airplane routing	airplane routing
		l	1

departure airport intermediate air-traffic control centers

arrival airport

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- Iayering considered harmful?

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- Ink: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application	
transport	
network	
link	
physical	

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, *if needed*, must be implemented in application
 - needed?

Chapter I: roadmap

- I.I what is the Internet?
- I.2 network edge
 - end systems, access networks, links
- I.3 network core

packet switching, circuit switching, network structure
I.4 delay, loss, throughput in networks
I.5 protocol layers, service models
I.6 networks under attack: security
I.7 history

Network security

- field of network security:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network" ^(C)
 - Internet protocol designers playing "catch-up"
 - security considerations in all layers!

Bad guys: put malware into hosts via Internet

- malware can get in host from:
 - virus: self-replicating infection by receiving/executing object (e.g., e-mail attachment)
 - *worm*: self-replicating infection by passively receiving object that gets itself executed
- spyware malware can record keystrokes, web sites visited, upload info to collection site
- infected host can be enrolled in botnet, used for spam. DDoS attacks

Bad guys: attack server, network infrastructure

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

I. select target

- 2. break into hosts around the network (see botnet)
- 3. send packets to target from compromised hosts

Bad guys can sniff packets

packet "sniffing":

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

 wireshark software used for end-of-chapter labs is a (free) packet-sniffer

Bad guys can use fake addresses

IP spoofing: send packet with false source address

... lots more on security (throughout, Chapter 8)

Chapter I: roadmap

- I.I what is the Internet?
- I.2 network edge
 - end systems, access networks, links
- I.3 network core

packet switching, circuit switching, network structure
I.4 delay, loss, throughput in networks
I.5 protocol layers, service models
I.6 networks under attack: security
I.7 history

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- I964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- 1972:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- I976: Ethernet at Xerox PARC
- late70' s: proprietary architectures: DECnet, SNA, XNA
- late 70' s: switching fixed length packets (ATM precursor)
- I 979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

Internet history

1980-1990: new protocols, a proliferation of networks

- I 983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- I 985: ftp protocol defined
- 1988: TCP congestion control

- new national networks: CSnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

Internet history

1990, 2000 's: commercialization, the Web, new apps

- early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960' s]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

late 1990's – 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

Internet history

2005-present

- ~5B devices attached to Internet (2016)
 - smartphones and tablets
- aggressive deployment of broadband access
- increasing ubiquity of high-speed wireless access
- emergence of online social networks:
 - Facebook: ~ one billion users
- service providers (Google, Microsoft) create their own networks
 - bypass Internet, providing "instantaneous" access to search, video content, email, etc.
- e-commerce, universities, enterprises running their services in "cloud" (e.g., Amazon EC2)

Introduction: summary

covered a "ton" of material!

- Internet overview
- what's a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- security
- history

you now have:

- context, overview, "feel" of networking
- more depth, detail to follow!

Chapter I Additional Slides

