
Democratic Resolution of Resource Conflicts Between
SDN Control Programs

Alvin AuYoung†, Yadi Ma†, Sujata Banerjee†, Jeongkeun Lee†,
Puneet Sharma†, Yoshio Turner†, Chen Liang‡, Jeffrey C. Mogul*

†HP Labs, Palo Alto, ‡Duke University, *Google, Inc.
†{FirstName.LastName}@hp.com, ‡cliang@cs.duke.edu, *mogul@google.com

ABSTRACT

Resource conflicts are inevitable on any shared infrastructure. In

Software-Defined Networks (SDNs), different controller modules

with diverse objectives may be installed on the SDN controller.

Each module independently generates resource requests that may

conflict with the objectives of a different module. For example, a

controller module for maintaining high availability may want re-

source allocations that require too much core network bandwidth

and thus conflict with another module that aims to minimize core

bandwidth usage. In such a situation, it is imperative to identify

and install resource allocations that achieve network wide global

objectives that may not be known to individual modules, e.g., high

availability with acceptable bandwidth usage. This problem has re-

ceived only limited attention, with most prior work focused on de-

tecting, avoiding, and resolving rule-level conflicts in the context

of OpenFlow.

In this paper, we present an automatic resolution mechanism

based on a family of voting procedures, and apply it to resolve re-

source conflicts among SDN and cloud controller programs. We

observe that the choice of appropriate resolution mechanism de-

pends on two properties of the deployed modules: their precision

and parity. Based on these properties, a network operator can apply

a range of resolution techniques. We present two such techniques.

Overall, our system promotes modularity and does not require

each controller module to divulge its objectives or algorithms to

other modules. We demonstrate the improvement in allocation qual-

ity over various alternative resolution methods, such as static pri-

orities or equal weight, round-robin decisions. Finally, we provide

a qualitative comparison of this work to recent methods based on

utility or currency.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network Management; C.2.1 [Network

Architecture and Design]:

Keywords

Network state; software-defined networking; datacenter network;

SDN resource conflicts

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

CoNEXT’14, December 2–5, 2014, Sydney, Australia.

ACM 978-1-4503-3279-8/14/12.

http://dx.doi.org/10.1145/2674005.2674992.

1. INTRODUCTION
A Software-Defined Network (SDN) provides a network oper-

ator with significant flexibility in programming the network. By

exposing a simple control plane API, a variety of features can be

quickly modified or introduced to the network by implementing

software control programs, or modules in a logically centralized

SDN controller. It has been argued that such flexibility is vital to

support any network with rich and evolving requirements [7].

However, this flexibility is a double-edged sword. While intro-

ducing new functionality may no longer be a bottleneck to enhanc-

ing the network, we argue that maintaining desirable or predictable

performance will instead become the main impediment. Today,

many controllers are built in a monolithic manner with tight in-

tegration between software components implementing various net-

work functions. As controller complexity grows, it is imperative to

enable modular composition of SDN controller modules, where in-

dividual self-contained modules can be safely plugged into a single

SDN controller. Modular composition would foster an ecosystem

where independent software vendors can develop controller mod-

ules, and a network operator can pick and choose a set of best-in-

class modules to manage the network.

With multiple controller modules, each with a different objec-

tive, the onus will fall on the network operator to ensure that these

modules operate to meet their local objectives without disrupting

global network objectives. Consider the following simple exam-

ple of two independent controller modules. The first module aims

to maintain high service availability and thus generates resource

requests to reserve extra link bandwidth in the network. Concur-

rently, a second controller module aims to minimize use of scarce

and costly core bandwidth, and thus generates conflicting resource

requests to shift load, or free bandwidth on some of the same links.

With only two modules, a network operator might successfully

resolve conflicts using simple static policies, such as prioritizing

one module over another. However, the number of potential de-

pendencies between modules grows exponentially with the number

of modules and becomes untenable for a single person to manage

by hand. Moreover, if modules are implemented by third parties,

it may be impossible for the operator to understand module objec-

tives or behavior. Finally, static priority cannot represent a network

operator’s possible goal of achieving a compromise resource allo-

cation that partially meets the objectives of multiple modules with

conflicting requests.

Assuming a network operator has a rough idea of global invari-

ants and desired network behavior, she still needs a mechanism

to resolve conflicts in a way that maximizes the value of the net-

work. We argue that resource allocations should be Pareto efficient:

any change (to a Pareto-efficient allocation) that would increase the

benefit to one module would decrease the benefit to another mod-

391

ule. Moreover, the ability to adequately consider these alternative

allocations should depend not on the expertise of the network op-

erator but rather be assisted by the modules themselves, which can

be refined (i.e., implemented) independently.

The primary challenge to resolve these conflicts efficiently is

accurately inferring each module’s objective function [22], while

still maintaining modularity, or loose coupling between the mod-

ules and the system [27].

We argue that there is a family of appropriate resolution mecha-

nisms, and the choice of which mechanism to use depends on two

module characteristics: evaluation precision and parity. Precision

refers to how accurately a module is able to evaluate (in a relative

manner) alternative allocation options. Parity refers to how easy

it is to normalize the objective functions of the modules, which

is useful in order to compare their relative allocation preferences

when resolving a conflict.

Consider two state-of-the-art approaches that sit at opposite ends

of the spectrum in balancing this trade-off. In Corybantic [22],

the focus is on providing the best “value” to the network by maxi-

mizing a global objective function among modules. This approach

requires both precision and parity; each module must implement

fine-grained objective functions to evaluate potential allocations,

and these functions must be of consistent granularity across mod-

ules.

Statesman [27], in contrast, requires little precision or parity be-

tween modules. Modules may request resources on their own time

scale, and conflicts are resolved without regard to any objective

functions or system performance. Instead, a state manager simply

resolves (or “merges”) any conflicts such that no global invariants

are violated. Despite its simplicity, this approach places the onus

on the network operator to manually create the appropriate rules or

priorities to resolve conflicts. This deployment scenario may not

be appropriate for network operators of small businesses or enter-

prises, who lack direct visibility and control over the implementa-

tion of each module.

Compared to explicit rule-conflict detection, we argue for a higher-

level abstraction for conflict resolution among modules. This de-

sign is particularly necessary for SDN deployments where modules

are implemented by third parties, or re-factored often, and are thus

otherwise difficult to collectively tune by hand.

In this paper, we present Athens, a revision of the original Cory-

bantic design, but one that sits as a compromise between the Cory-

bantic and Statesman approaches. Similar to both designs, mod-

ules in Athens propose different network states. Its key difference

is the family of voting mechanisms used as an abstraction to deter-

mine the resulting network state. Athens explores the possibility

of using a voting-inspired mechanism to provide general, non-rule-

based conflict resolution.

Depending on the degree of precision and parity in deployed

modules, network operators have more discretion over how con-

flicts are resolved, and can use a family of mechanisms to automat-

ically resolve these conflicts. At a minimum, modules in Athens

only need to compare the relative value of any two proposed net-

work states, and the network operator can employ a base ordinal

voting method. However, this simple ordinal procedure can be en-

hanced to use cardinal values or weights to increase the precision

of the trade-offs made by Athens, if modules can precisely express

a relative magnitude valuation of allocation alternatives.

From our early experience with developing controller modules

– applied to both SDN and cloud control programs, we observe

that there are many practical limitations to providing parity among

modules, and that any general framework for combining diverse

modules must support flexibility in module parity and precision.

In this paper, we make the following contributions:

• We first develop a framework with the notions of parity and

precision to frame the problem and classify existing approaches.

We present our system design of Athens with voting based

resolution.

• We implement two examples of voting procedures and four

modules and evaluate their performance quantitatively using

a data trace from a production workload. Our results demon-

strate that the Athens framework is guaranteed to select a

Pareto efficient allocation among known candidates, and in

several cases leads to a Pareto superior allocation over sim-

pler techniques that do not consider preferences.

2. BACKGROUND
In this section, we describe the target deployment scenario for

Athens: a shared network infrastructure, comprising of SDN (e.g.,

HP VAN SDN Controller, NOX/POX, Floodlight, OpenDaylight)

and cloud (e.g., OpenStack, CloudStack) controllers.

2.1 Basic framework
The Athens framework, similar to Corybantic, consists of control

programs and resource controllers. Without Athens, the control

programs would run – with little or no coordination – on top of

the resource controllers. The two resource classes we consider are

networking resources and compute (i.e., cloud) resources.

SDN controllers. An SDN controller configures a set of net-

working resources, namely a set of SDN-enabled switches. These

switches implement a standard programmatic interface, e.g., Open-

Flow [20]. The SDN controller (e.g., [5, 12, 17]) sends commands

conforming to this API to control the forwarding behavior of the

network. For example, the SDN controller may send commands

to a subset of switches that install local OpenFlow rules for packet

filtering or performance isolation between different flows. An SDN

“control program” decides which commands to send to the switches

via an SDN controller. Typically these control programs operate in

a tight control loop: reading the state of the network, and reacting

(i.e., writing state) upon observing some condition [15, 28]. As

described in both Corybantic [22] and Statesman [27], there may

exist many such control programs operating simultaneously, with

varying complexity. Coordinating these control programs are at the

heart of the Athens design.

Compute controllers. In our vision, control programs are not

limited to network control but can control other resources as well.

For example, a control program might want to instantiate and mi-

grate Virtual Machines (VMs). Frameworks for controlling these

“cloud” resources include OpenStack [25] and CloudStack [2]. In

fact, the OpenStack network controller is already integrated with

the Project OpenDaylight [17] SDN controller.

Like both Corybantic and Statesman, Athens implements a meta-

controller, which interposes between the control modules and re-

source controllers in order to resolve resource conflicts. We illus-

trate these conceptual components in Figure 1, and describe them

next.

2.2 Basic operation
Athens, Corybantic and Statesman all follow the model of allow-

ing control programs (blue boxes in Figure 1) to propose changes

(red lines) to the underlying infrastructure (blue boxes on bottom),

via existing SDN or cloud controllers (green boxes) and providing

a means to resolve these requests into an implementable network

state.

392

Figure 1: Basic Athens architecture, which is very similar to the

original Corybantic design [22]

Proposing network states. Consider the example of a program

that wants to create two VMs with a minimum bandwidth guarantee

between them. It may use the Cloud and SDN controllers to iden-

tify one or more racks with available capacity to host these VMs,

and an appropriate layer-2 forwarding path (with sufficient band-

width) between them, respectively. It can then propose a network

state in which it has instantiated VMs on each rack, and reserve

the desired bandwidth on a path between them. We discuss more

concrete examples of network state proposals and control modules

in Section 3.

Sequence of operations. Athens runs in a logical while(true)

loop. Upon any external events, such as a public tenant request

(i.e., green arrow in Figure 1), it will run a sequence of operations:

(1) collect proposals, (2) evaluate proposals, (3) choose a “win-

ning” proposal, (4) implement the winning proposal. We outline

these steps here and describe them in more detail in the indicated

sections.

When collecting proposals, Athens will send a copy of the cur-

rent network state to each controller module (blue boxes). Each

controller module synchronously sends a set of proposed changes.

For example, if there is a new tenant request, the module may pro-

pose an allocation or placement of the resources in that request (see

Figure 2 for an example of proposals).

After collecting these proposals, Athens has each module eval-

uate all proposals. The choice of particular evaluation method in

the original Corybantic design resulted in a numeric value for each

module. Athens introduces a family of such evaluation methods

(Section 3.6) for each module to implement. Proposals can also be

filtered if they violate a global constraint defined by the network

operator or module (Section 3.4). To support these two operations,

all modules must therefore implement the Athens API (red lines)

of propose(), and evaluate() or compare(). This API is how each

module provides “feedback” to the Athens meta-controller about its

opaque preferences. The specifics of these operations are detailed

in Section 3.

Based on the evaluation feedback, Athens runs a conflict reso-

lution method (can be chosen by the network operator; see Sec-

tion 3.6) to decide on a winning proposal, and then implements this

proposal. This loop continues indefinitely, sleeping until the next

event.

We observe that this “forced” coordination between modules and

Athens may incur unnecessary overhead. This may be a problem

if modules operate at different time scales. In our current imple-

mentation, however, we rely on synchronous state updates, where

Athens maintains a snapshot of the global state, and pushes this

state to modules in each round. In our evaluation, we use an in-

coming tenant request to trigger an iteration of the Athens control

loop.

3. Athens MODEL
The key distinguishing features of Athens are in how modules

are written, and how conflicting resource requests from these mod-

ules are resolved. Note that we use the three terms – controller

program, controller module, and module – interchangeably.

3.1 Programming a module
An Athens module only needs to implement two of the three

methods in the Athens API (Section 3.3). First, it needs to pro-

pose network states that meet the resource needs of a user request

(e.g., a tenant requesting a set of VMs) in a way that satisfies the

module’s objectives (e.g., meet high availability goals by appropri-

ately placing VMs). Proposals are simply changes to the current

network state, such as creating a VM or cluster, moving an existing

VM, making a bandwidth reservation, or otherwise modifying state

(switch links, OpenFlow table entries).

Second, an Athens module needs to implement a method to eval-

uate proposals from other modules. For this method, the module

has a choice between implementing a simple coarse-grained com-

parison, or a more fine-grained rating method. The comparison

method, compare(proposal1, proposal2), takes two arbitrary pro-

posals as input, and expresses a preference for one of the states,

or indifference between the two. The more fine-grained method,

evaluate(proposal), returns a numeric value for a given network

state proposal. A module need only implement one of these two

methods; if it implements evaluate(proposal), Athens can infer its

compare(proposal1,proposal2) preference.

We show pseudocode for the implementation of these methods

in Section 3.3.

Example: Fault-Tolerance Module (FTM). Consider the Fault-

Tolerance module described by Corybantic [22]. This module

wants to maximize the average service availability of its tenants’

VM instances by minimizing the impact of any single rack or server

failure on the VM instances. Specifically, it uses a metric called

“worst-case survivability” (WCS) [6]. Its implementation of the

compare() method would return a preference for the network state

with the higher WCS, or a “no preference” if the WCS for each state

is identical. Its evaluate() method could return a numeric value pro-

portional to the resulting WCS of the state. When proposing a net-

work state, this module has multiple options for how to place VMs

in isolated fault domains to increase each tenant’s WCS.

Example: Core-Bandwidth Module (CBM). Revisiting the ex-

ample from Section 1, we consider a module that tries to conserve

link bandwidth in the core of the network. This module was il-

lustrated by Corybantic [22] as one that conflicts with FTM. Its

compare() method would prefer network states that use less core

bandwidth. Its evaluate() could return a numeric value inversely

proportional to the average core bandwidth usage associated with a

network state. When proposing a network state, CBM tries to place

VMs in the same physical rack or aggregation switch to avoid using

core bandwidth.

Example: Guaranteed-Bandwidth Module (GBM). As a more

sophisticated example, consider a Guaranteed Bandwidth Module

that tries to reserve inter-VM network bandwidth for each tenant’s

393

set of VMs. The choice of this module was inspired from require-

ments of real-world control programs, and is meant also to embody

recent research in tenant bandwidth reservations [4, 16]. The goal

of these methods is to place as many tenant requests as possible for

VM clusters with bandwidth guarantees. Thus, GBM prefers allo-

cations that are likely to fit more such requests by consuming less

network bandwidth. When proposing a network state, GBM uses

the same implementation suggestion by Ballani et al. [4], which

places each request (described in the Hose bandwidth model) in

the smallest (lowest) network subtree. Its compare() method would

prefer network states that use less average link bandwidth. Its eval-

uate() method could return a value inversely proportional to the

average link bandwidth usage of a network state.

Example: Switch Resource Module (SRM). Finally, consider

a module that manages switch resources, such as entries in a flow

table. Unlike other modules, this Switch Resource Module (SRM)

does not need to generate new proposals. Instead, it evaluates pro-

posals from other modules: ensuring no switch is overloaded by

expressing fixed-size flow table limits as a constraint, while also

expressing a preference for proposals that use fewer flow table en-

tries. For our prototype SRM, we assume that it is given adequate

information about flow table usage in each proposal (i.e., we as-

sume all-to-all VM communication patterns for each tenant, and

that flow paths are assigned within a proposal). We do not consider

flow aggregation. SRM’s implementation of compare() method

would prefer network states that use smaller number of flow ta-

ble entries. To evaluate() a network state, it could return a value

that is inversely proportional to the total number of entries used in

switches if the network state is admitted.

3.2 Example proposals by modules
Figure 2 shows examples of proposals generated by two mod-

ules. For illustrative purposes, the examples assume a three level

tree topology with four racks; each rack has four physical machines

with two VM slots per machine. Each rack thus has a capacity of

eight VM slots. We also assume each link has enough bandwidth

to satisfy two incoming tenant requests: R1 <5, 100 Mbps> and R2

<10, 200 Mbps>. In other words, R1 requires a cluster of 5 VMs

connected by virtual links (hoses) of bandwidth 100 Mbps, while

R2 requires a cluster of 10 VMs connected by hoses of bandwidth

200 Mbps.

(a) Example FTM proposal (b) Example GBM proposal

Figure 2: Proposed network states by FTM and GBM for ten-

ant requests R1: <5, 100 Mbps> and R2: <10, 200 Mbps>, re-

spectively. Red slots are occupied by R1 and green slots by R2.

Numbers beside a link show reserved bandwidth on the corre-

sponding link for each request

Figure 2(a) shows the network state proposed by FTM for re-

quests R1 and R2. Since FTM aims to preserve per-tenant fault-

tolerance, it spreads each tenant’s VMs across fault domains, shown

as red rectangles (VMs of R1) and green rectangles (VMs of R2)

in Figure 2(a).

Figure 2(b) shows the network state proposed by GBM for the

two requests. Since GBM tries to place VMs of each request in the

smallest subtree in the topology, it places VMs of R1 in the subtree

of switch S4, and VMs of R2 in the subtree of switch S3.

For GBM, VM placement impacts the reserved bandwidth on

each link. In Figure 2, the number beside a link shows reserved

bandwidth on that link for each request. Each link divides a tenant

tree into two components, and bandwidth needed on this link for

the tenant is determined by multiplying the per-VM bandwidth re-

quired by the tenant and the number of VMs on the smaller of the

two components [4]. For example, in Figure 2(a), the link between

S2 and S4 divides R1’s VMs into 2 components, with 2 and 3 VMs

respectively. Therefore, the bandwidth required by R1 on this link

equals min(2, 3) × 100Mbps = 200Mbps. Similarly, the band-

width required by R2 on this link equals min(2, 8)× 200Mbps =
400Mbps.

3.3 Implementing the Athens API
Currently, each module only needs to implement two of three

methods:

• P propose(requests): return a proposal P representing net-

work state.

• int compare(P1, P2): compare proposals P1, P2, and indicate

which proposal it prefers, or “no preference”.

• float evaluate(P): evaluate a proposal P, and return a value

representing a rating.

Using FTM as an example, we illustrate pseudocode for these

methods. Algorithm 1 shows a code snippet of the propose method.

This method changes the current topology by placing VMs of a

tenant’s request in isolated racks (fault domains) to increase the

tenant’s WCS.

Algorithm 1: Pseudocode for FTM.propose()

1 def propose(requests):

2 newTopology = getCurrentTopology();

3 for r in requests:

4 numVMs = r.numVMs;

5 numOpenSlots =

newTopology.getNumOpenSlots();

6 if numOpenSlots < numVMs:

7 return getCurrentTopology();

8 openRacks = newTopology.getOpenRacks();

9 openRackIndex = 0;

10 length = openRacks.length;

11 for vm in r.getVMs():

12 rackIndex = openRackIndex % length;

13 openRacks [rackIndex].addVM(vm);

14 openRackIndex += 1;

15 return newTopology;

Algorithms 2 and 3 show the implementation of the evaluate

method for FTM and SRM, respectively. The FTM evaluate method

simply returns the average worse-case survivability (WCS) of all

tenants if the proposal is accepted. Thus, it favors proposals that

result in higher WCS values. The SRM evaluate method simply

calculates the aggregated flow entry count that the switches would

394

have used if a proposal is accepted1. It returns constraintViolation

if the resulting flow entry count in any switch would exceed the

physical limit. Otherwise, it returns a value inversely proportional

to the number of entries, meaning it favors proposals that use fewer

flow entries. In both cases, we could implement an accompanying

compare method by simply comparing the return value or the eval-

uate method in each proposal, and returning a preference for the

proposal with the higher evaluated value.

To be clear, implementing compare using evaluate is simply an

implementation shortcut used in our evaluation to compare eval-

uation methods. As described before, the assumption is that in a

deployment scenario without complete module precision, it is more

straightforward in practice to implement a compare method relative

to an evaluate method. And if an evaluate method is implemented,

there is no need to provide a corresponding compare method. This

implementation shortcut has limited use, but perhaps can also be

useful for providing “backwards compatibility” for using an ordinal

comparison instead of a fine-grained evaluate method, even when

an evaluate method is provided.

Algorithm 2: Pseudocode for FTM.evaluate(proposal)

1 def evaluate(proposal):

2 numTenants = 0;

3 totalWCS = 0;

4 for t in proposal.getTenants():

5 numTenants += 1;

6 wcs = t.getWCS();

7 totalWCS += wcs;

8 return totalWCS/ numTenants.

Algorithm 3: Pseudocode for SRM.evaluate(proposal)

1 def evaluate(proposal):

2 for s in switches:

3 numEntries = s.countFlowEntries(proposal);

4 if numEntries > maxNumEntries:

5 return constraintViolation;

6 totalFlowEntries += numEntries;

7 return 1/totalFlowEntries.

3.4 Expressing constraints
Global network invariants can be expressed globally or per-module.

Each module can be configured with the appropriate invariant by

the network operator at deployment time. Currently, Athens as-

sumes that constraints are inviolable. For example, given the mod-

ules described above, the network operator may require that all

non-trivial allocations meet a minimum WCS of 0.6. FTM can

be configured with this WCS requirement, and FTM can filter out

any proposed states violating this constraint. For example, the state

proposed by GBM in Figure 2(b) will be rejected since it has WCS

of 0.1 (detailed calculation in Section 5.1).

3.5 Design assumptions
As in [22], we assume a cooperative environment where mod-

ules are neither malicious nor greedy. Protecting against the latter

1A straightforward extension could weigh entries at different
switches based on importance, but we do not consider this scenario
in our evaluation.

would require a minimum notion of incentive compatibility. A re-

cent explanation of these properties applied to a shared resource

infrastructure is provided by Ghodsi et al. [11]. It may be possi-

ble to extend our model to leverage their “strategy-proof” alloca-

tion mechanism, but we would need to use SDN and Cloud con-

trollers that could satisfy partial allocations. This is because their

model relies on being able to allocate, say, a fraction of CPU cycles

or a portion of shared memory, whereas our controllers deal with

coarse-grained bandwidth reservations, fixed-sized VM slots, etc.

Given these assumptions, a particular weakness of our deploy-

ment model is that we rely on each module to not overzealously

“veto” another module’s proposals. Strategically speaking, a greedy

or malicious module can simply claim that every proposal originat-

ing from other modules violates a constraint, thus increasing the

likelihood of receiving the proposal it wants. In this scenario –

which may occur unintentionally due to program errors – we place

the onus on the network operator to observe the behavior of the sys-

tem; a high fraction of vetoes from a consistent subset of modules

may warrant investigation.

3.6 Conflict resolution
Athens resolves conflicts by choosing a single proposal for net-

work state, with the goal being to deliver the most value. The

practical challenges that we address are that value may be difficult

to measure accurately (precision) and consistently across modules

(parity).

Our discussion assumes that a single proposal is chosen among

conflicting proposals.2

3.6.1 Design space

We argue that a network operator must consider two characteris-

tics of the deployed modules: precision and parity.

Precision for a module means that it can accurately discern its

space of allocation alternatives. For example, FTM can translate

different levels of WCS: if evaluate(P1) == 2·evaluate(P2), then

the allocation represented by proposal P1 has twice as much sur-

vivability as P2. That is, a module can provide a cardinal rank that

accurately reflects the magnitude of one option over another. A

lack of precision occurs when preferences are not tied to metrics;

for example, if a module must trade off multiple resource types

([15]) or its decisions are binary (e.g., firewall rules). Even when

preferences are tied to metrics, the metrics may not accurately ex-

press the actual value of alternative proposals. For example, CBM

would prefer a proposal that requires 15% of the core bandwidth

over another proposal that requires 18%, but their actual value to

the users are unlikely to be strictly proportional to the bandwidth

percentages and accurately assessing the actual values for different

users could be impossible.

Parity across modules means that their preferences are inherently

on equal footing. In other words, their relative rankings of propos-

als are known or can be easily normalized across modules. An ex-

ample of this scenario is if all modules can express precise rankings

(values) in a common currency [22]. Lack of parity can occur for

several reasons. Corybantic [22] proposed using dollars as a com-

mon unit to capture the (economic) values or costs of proposals.

However, in our experience, we found it challenging or impractical

to relate a module’s preferences to a dollar amount, such as unused

bandwidth or load balancing.

2Here, a conflict does not mean violating a constraint. Techniques
exist for both detecting resource conflicts or otherwise merging
non-conflicting states. The Athens framework accommodates these
techniques, but we do not implement them; we induce conflicts for
the purposes of exposition.

395

On the other hand, if the network operator knows only that fault

tolerance is generally preferred to saving power, ranking (com-

pare()) may be more appropriate to use instead of ratings/values

(evaluate()) and the operator can optionally assign (voting) weights

to each module.

Given these two definitions, a network operator has to consider

three deployment scenarios, depending on the precision or parity of

available modules.

Scenario 1: all modules have both precision and parity. In

this setting, the operator can plausibly use the Corybantic method-

ology of using the value of evaluate(P) summed across all modules

to determine a winner. In this case, the evaluate(P) method from

each module returns a value representing currency, and the global

maximization objective is formulated in these dollar units in aggre-

gate.

Scenario 2: all modules have precision, but no parity3

This scenario means that each module can express the relative

trade-off of each proposal accurately, but manual intervention must

be used to normalize each module. In this case a cardinal voting

mechanism can be used to determine a winner. Using this method,

an operator also has the option of setting a different number of votes

(akin to weighted voting) for each module to express the relative

importance of that module’s objective.

Scenario 3: not all modules have precision. In this scenario,

we cannot rely on a module to evaluate the magnitude of difference,

but can instead evaluate a preference between proposals. In this

case, we expect modules to implement a compare(P1,P2) method

to provide a partial ordering over preferences. A collection of these

local preference orderings can be used to establish a global ordering

using an ordinal voting procedure.

3.6.2 Algorithms

Next, we describe algorithms for each scenario.

Scenario 1: Maximizing a global objective function. This al-

gorithm is described in the original Corybantic design [22]. It se-

lects the proposal that yields the largest sum of evaluation(proposal)

over all modules.

Scenario 2: Maximizing a set of voter ratings. Illustrated in

Algorithm 4, this particular cardinal voting mechanism implements

a cumulative voting scheme, where every module (voter) can dis-

tribute its fixed votes to candidate proposals. Athens invokes a

module’s evaluate(P) method to get its votes.

Algorithm 4: Scenario 2: Cumulative voting mechanism

1 def CumulativeVote(candidateProposals):

2 for m in Athens.modules:

3 mTotalVotes = 0;

4 for p in candidateProposals:

5 votes[m][p] = m.evaluate(p);

6 mTotalVotes += votes[m][p];

7 for p in candidateProposals:

8 votes[m][p] = votes[m][p] / mTotalVotes;

9 for p in candidateProposals:

10 for m in Athens.modules:

11 finalVotes[p] += votes[m][p];

12 return p with the maximum finalVotes[p].

Scenario 3: Maximizing the mutual majority. We illustrate

a simplified version of the algorithm used by the Athens ordinal

3We are investigating relaxing the requirement for unanimity, and
instead accepting a majority of precise modules.

voting mechanism in Algorithm 5. This algorithm implements a

Condorcet mechanism [19]. The rationale behind choosing this par-

ticular mechanism is discussed in Section 3.6.3. One interpretation

of the Condorcet mechanism is that it determines a winner as the

candidate that would have won the largest fraction of votes in a set

of all-pairs elections, conducted by invoking compare(P1,P2) for

each candidate state pair, for each module. Ties are not counted as

victories. Thus, this algorithm has complexity O(|m||p|2), where

m is the set of modules, and p is the set of proposals. This mecha-

nism has several desirable properties for our deployment, including

Pareto efficiency and Monotonicity [19].

Algorithm 5: Scenario 3: Concept of Condorcet voting proce-

dure

1 def CondorcetVote(candidateProposals):

2 for pi in candidateProposals:

3 wins[i] = 0;

4 for pi in candidateProposals:

5 for pj in candidateProposals:

6 if i 6= j:

7 for m in Athens.modules:

8 cmp = m.compare(pi,pj);

9 if cmp < 0:

10 wins[i] += 1;

11 elif cmp > 0:

12 wins[j] += 1;

13 return pi with the maximum wins[i].

3.6.3 Other considerations

Choice of voting mechanisms. All voting mechanisms have

well-known limitations, formalized most directly by Arrow’s im-

possibility theorem [19]. In Athens, we prioritize the follow-

ing three theoretical criteria: Pareto efficiency, Monotonicity and

Unrestricted domain. We find these properties particularly useful

for adjudicating preferences among SDN control modules. The

first property guarantees that among all available (i.e., generated

by modules) proposals, our mechanism will never fail to select an

obvious winner. In other words, if every module prefers proposal

A over another proposal B, then B will never be selected over A.

By providing Monotonicity, we guarantee that if any module

modifies its local ordering by ranking a proposal higher, that ac-

tion alone will never decrease the proposal’s position in the global

ranking. This property is important in our setting if a module’s in-

dividual choice of ranking can be refined due to new information or

other external changes in global state. Finally, the property of Un-

restricted domain indicates an ordering that considers all modules’

preferences in a deterministic way. One way to view this property

is a way to restrict allocations chosen based on the preferences of

only a single module, or a random – and thus non-deterministic –

mechanism. Adopting this property in Athens eases the burden on

a network operator to understand that roughly, a particular set of

inputs (modules and their logic for generating proposals) will lead

deterministically to a particular set of outputs (winning states).

For our ordinal voting procedure, we considered three classic op-

tions: an instant run-off, Condorcet method, or Borda count [19].

We chose the Condorcet mechanism because it satisfies the three

criteria mentioned above. For alternative settings, a network op-

erator can freely choose among other mechanisms that satisfy her

objectives.

Readers are encouraged to refer to Voting Theory literature [19]

for a more thorough treatment of this topic.

396

Inferring cardinality from ordinal preferences. In Scenario 2,

we may be able to relax the condition that all modules need to be

precise. If a majority of modules express cardinal preferences, it

may be more effective to infer cardinal rankings from the minor-

ity expressing ordinal rankings, and use a resolution mechanism

that can leverage the cardinal rankings from the majority precise

modules. As we will see in the experiments, the cardinal method

significantly improves the quality of allocations. One way to im-

plement this approach is to extrapolate ordinal rankings as a linear

cardinal ranking; investigating both the interpolation method and

the fraction of precise modules needed is future work.

Establishing a bootstrap. A limitation of a voting procedure is

the possibility there is no winner. A simple example is a game like

Rock-Paper-Scissors, where the collective preferences across vot-

ers is circular. We break such ties by allowing the network operator

to assign a priority to each module a priori, and select outcomes

among ties based on the higher-priority module’s preference.

3.7 Refining or generating multiple proposals
One avenue requiring further exploration is an idea of refining

proposals, as discussed in Corybantic [22]. Unless a module gener-

ates an adequate set of proposals, many mutually beneficial alloca-

tions are potentially unexamined. Thus a secondary design goal of

Athens is to encourage module developers to express alternatives in

a way that will permit reasonable conflict resolution. To maximize

satisfactory conflict resolution, each module could generate a set of

new proposals (counter-proposals) after it has had a chance to ex-

amine the proposals generated by the other modules. Our current

implementation adopts a simpler approach for initial exploration

of this idea– each module generates a certain number of proposals

randomly from the available search space.

We observe that the ability to generate or refine a proposal is

logically equivalent to the notion of partial proposals in Statesman

[27]. Even if a proposal for network state is rejected, a module can

resubmit – or perhaps even submit in parallel – alternative forms of

a proposal with varying degrees of partial allocations that it finds

acceptable. We defer rigorous comparison of these techniques to

future work.

4. Athens SYSTEM IMPLEMENTATION
The Athens framework consists of several software components:

the control modules, the Athens meta-controller, a SDN controller

and a network emulator. In this section, we present each compo-

nent’s implementation and interaction with other components.

4.1 Implementation framework
The Athens software components are illustrated in Figure 3. In

our evaluation (Section 5), a traffic generator injects requests (e.g.,

tenant VM cluster size, bandwidth requirement, etc.) to the control

modules. This injected request is an instance of the “external event”

alluded to in Section 2 (“Sequence of operations”), which triggers

Athens to iterate its control loop.

We now describe each software component in more detail.

4.2 Control modules
The control modules exemplify SDN control programs one would

deploy on top of existing SDN controllers like Floodlight or Open-

Daylight. These modules might be written by multiple parties and

need only adhere to the Athens API to operate in the framework.

A module must implement either compare() or evaluate() (Sec-

tion 3.3). At minimum, it must implement compare() for use by the

basic ordinal voting mechanism. If evaluate() if implemented, the

result of compare() can be inferred.

Figure 3: Athens implementation framework

We implement in Python prototypes of the four control programs

described in Section 3.1. For each control program we implement

all three methods: propose, evaluate and compare.

The controller modules communicate with an SDN controller us-

ing a REST API to get the current network topology. The modules

also communicate with the Athens meta-controller using its API.

As discussed in Section 3, we assume that modules are not mali-

cious, and thus have not yet implemented any safeguards to prevent

them from bypassing the Athens meta-controller without permis-

sion.

4.3 Athens meta-controller
The meta-controller is at the core of the Athens logic. Its primary

roles are (1) to gather suggested modifications to the network (“pro-

posals”) from each module and (2) choose and implement winning

proposals based on the mechanism chosen by the network operator.

The Athens meta-controller is implemented as a software layer

that might be described as middleware between a standard SDN

controller and SDN control programs. This means that the meta-

controller needs to re-export the SDN controller’s northbound API

to these programs.

The meta-controller is intended to be used with multiple off-the-

shelf SDN controllers without modification. We have implemented

support for both Floodlight and the HP VAN SDN controller. It is

currently implemented in Python.

Currently, the meta-controller can communicate directly with

an actual Server/VM controller or Mininet – a network emulator

platform [21] – to implement a network state. We have enhanced

Mininet to emulate VM placement, as we describe in Section 4.5.

4.4 SDN controller
The main requirement to interface with SDN controllers is the

ability to maintain a common notion of network topology and state.

Our current implementation queries the network topology from Flood-

light (or the specific controller) using REST APIs, and re-materializes

this topology as a Python networkx object in the Athens class. A

copy of this class object is shared with each module during each

proposal or comparison phase. Athens is not limited to a spe-

cific SDN controller. Currently available SDN controllers, like

OpenDaylight, HP VAN SDN controller, and Floodlight, provide

397

REST APIs to get network topology information, add/delete flows

in switches, etc.

4.5 Network emulation
We can emulate a 3-level tree network topology using the Mininet

emulation platform. Mininet creates a virtual OpenFlow network -

controller, switches, hosts, and links - on either a single real or

virtual machine. The interface between an SDN Controller and

Mininet uses OpenFlow.

In order to emulate VM creation and migration, we implement

several enhancements to Mininet. Since the out-of-box software

does not have a concept of virtual machines, we use Mininet hosts

to represent VMs. We also introduce new functions to Mininet so

that the Athens meta-controller can modify network state when im-

plementing a proposal. For example, it can thus directly change

the network topology, or add/delete/move VMs on racks. Finally,

we added a software wrapper to allow the meta-controller (or, in

the future, sufficiently privileged control modules) to access these

functions via REST APIs.

We also implemented Athens in a real testbed with two OpenFlow-

enabled switches and a number of servers attached to them. We use

KVM to manage VMs in the testbed and enhanced the interface be-

tween Athens and the underlying physical network to make it work

with KVM.

5. EVALUATION
We evaluate Athens in deployment scenarios 2 and 3 (Section 3.6.1)

using cumulative and ordinal voting mechanisms, respectively. We

investigate the effectiveness of these voting mechanisms against al-

ternative allocation approaches. We run our simulations against

a production workload trace and provide various metrics to inter-

pret the results. Finally, we investigate the impact of Athens mod-

ules generating multiple proposals and discuss an example of using

global constraints to assist a network operator to guarantee that cer-

tain global properties are preserved.

5.1 Workload
Our workload is based on a trace of tenant resource allocations

in a production data center. The trace contains information about

the arrival times of these allocations, the various sizes of the vir-

tual machine clusters, and the aggregate bandwidth usage by the

cluster. Though we do not have information about duration of each

allocation, we deduce the departure time of each allocation from

the traffic matrix of the clusters. From these trace data, we model

a set of incoming client requests. Each request is considered to be

independent, and consists of (1) a set or cluster of homogeneous

virtual machines (VMs), and (2) a desired intra-cluster bandwidth

quantity between VMs.

We assume that each tenant’s bandwidth estimate is the same as

its actual usage. While we acknowledge that this is likely to be

an unrealistic assumption in practice, we do not believe this as-

sumption changes the high-order result from our experiments. We

summarize the workload statistics in Table 1.

Total number of tenant requests: 221

Total number of VMs in all requests: 1767

Max number of VMs in a request: 82

Avg number of VMs in requests: 7.99

Table 1: Workload summary statistics

To further understand the trace, we define a set of tenants as T ,

with each tenant t ∈ T having a cluster of Ct virtual machines

and Bt bandwidth demand between VMs. We define aggregated

bandwidth, BWagg of all tenants, T , to be:

BWagg =
∑

t∈T

Ct ×Bt

To get a high-level sense of the production workload, Figure 4

plots the number of live virtual machines and the aggregated band-

width of all live tenants at any time in the system. As we can see,

there is a sharp jump at the beginning of the trace as a large amount

of tenant requests arrive, then it stays roughly stable despite some

ups and downs as tenants’ requests come and go.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70
N

o
rm

al
iz

ed
 n

u
m

b
er

 (
%

)
Time (day)

Aggregated BW
Num of VMs

Figure 4: Normalized tenant request in workload trace

Network topology and resource capacity. Our experiments

emulate a network with a single-rooted, three-level tree topology:

specifically, a 1-8-16 tree with 128 top-of-rack (ToR) switches.

Rack capacity is 16, which is chosen such that this topology can ac-

commodate up to 2,048 VMs: large enough to allocate all the VMs

in the trace. Unless explicitly noted, we used a network topology

and capacity configuration for our experiments such that we had

enough bandwidth on all links to accommodate all the bandwidth

requests. We chose this somewhat simple scenario to try and sep-

arate the difference in allocation quality from the quality of online

placement heuristics. In other words, this ensures a more straight-

forward comparison such that every allocation exhibits the same

admitted load. We also ran the experiments with various topology

and capacity constraints on links to simulate scenarios where band-

width was and was not a bottleneck. However, the results were

similar enough to omit for brevity.

Metrics. Each control module has its own objective function.

For our initial experiments, we plot each of the various metrics

separately. While this complicates the task of interpreting the re-

sults, this is a necessary exercise also incurred by a network oper-

ator absent a global objective function like Corybantic. The aim is

to demonstrate that Athens can arrive at something close, without

requiring a network operator to define such a complex, or sensitive

function.

• Aggregate core bandwidth. We define core links as the

links from the root of the network topology to the second-

level nodes [6]. This metric is the sum of bandwidth used by

core links. For the example shown in Figure 2, there are two

core links: S1-S2 and S1-S3, and aggregated core bandwidth

of FTM and GBM is 2400 Mbps and 0 Mbps, respectively.

398

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

A
g
g
re

g
at

ed
 c

o
re

 b
an

d
w

id
th

 (
%

)

Time (day)

FGC
GCF

Athens-random
Athens-ordinal

Athens-range

(a) Aggregate core bandwidth (lower is better)

 0

 20

 40

 60

 80

 100

M
ea

n
 l

in
k
 b

an
d
w

id
th

 (
%

)

M
ea

n

Time (day)

(b) Mean link bandwidth (lower is better)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

W
C

S
 (

%
)

Time (day)

(c) Worst case survivability (higher is better)

Figure 5: Comparing alternative conflict resolution schemes;

numbers shown are normalized against maximum value in each

metric

• Mean link bandwidth. This metric is a proxy for the objec-

tive of GBM. This metric is the mean bandwidth used among

all the links.

• Worst-case survivability (WCS). This metric is the objec-

tive of FTM. In our workload, WCS for a single tenant is de-

fined as the fraction of VMs that survive from a single, worst-

case, ToR switch failure. This value ranges from [0, 1). If all

VMs are on a single host, or under the same ToR switch,

this value is 0. If there are two VMs, each on a separate

fault domain (i.e., different racks), then this value is 0.5.

This metric returns the mean WCS across all tenants. As

shown in Figure 2(a), WCS of R1 and R2 is 0.6 and 0.7 re-

spectively. Therefore, FTM’s mean WCS of the tenants is

(0.6 + 0.7)/2 = 0.65. Similarly, GBM’s mean WCS is

(0 + 0.2)/2 = 0.1, as shown in Figure 2(b).

Comparing the trade-offs between metrics. To aid with as-

sessing the quality of allocations made by Athens, we devise a “dis-

tance” metric as one way to compare the trade-offs made among

the modules’ individual objectives. This metric calculates the Eu-

clidean4 distance of a mechanism’s allocation from an optimistic

ideal solution. This ideal solution – likely unattainable – would be

to have each metric achieve its best solution – the highest WCS

with the least core bandwidth consumed and the lowest mean link

utilization. We normalize each of these three metrics between 0

and 1 with respect to the maximum values obtained on that metric,

and the distance metric is normalized to the maximum distance in

this 3-D unit cube space. The lower the distance from the ideal op-

erating point, the higher the quality of the allocation. We stress that

absent a well-defined global objective function, this is only one of

many methods with which to capture the trade-off between three

metrics.

Alternative conflict resolution mechanisms. We explain each

of the resource conflict resolution methods compared in our exper-

iments.

• Static Priority. Using this method, one of the modules (FTM,

CBM, GBM) is given the highest priority, followed by the

other two modules. Proposals from the highest priority mod-

ule are accepted unless constraints are violated, in which case

proposals from lower priority modules are considered. The

plots will indicate the order of modules’ priority, e.g., “FGC”

means we use static priority, with FTM given the highest pri-

ority, followed by GBM and CBM. Similarly, “GCF” means

GBM is given highest priority, followed by CBM and FTM.

Since results of “CGF” are similar to those from “GCF”, we

omit them for brevity.

• Athens-random. In this scheme, Athens selects a random

proposal among those that do not violate any constraints,

e.g., bandwidth guarantee. This essentially gives all modules

equal weight and the modules have equal probability to win.

This method is used as a baseline since it uses no information

aside from constraints.

• Athens-ordinal. Among the proposals that do not violate

any constraints, Athens selects the proposal that wins the

Condorcet voting process, which is described by Algorithm 5

corresponding to Scenario 3 (Section 3.6.1).

• Athens-cumulative. Corresponding to Scenario 2 (Section

3.6.1), Athens selects the proposal that wins a cumulative-

based voting process (Algorithm 4).

Global constraints. In Athens, network operators may define

high-level objectives as constraints to express global system re-

quirements, and also to prevent any module from abusing the sys-

tem. This expression is similar in spirit to the invariants described

by Statesman [27]. In Athens, examples of global constraints

include size of flow table (i.e., maximum number of flow table en-

tries), to make sure that any proposal that overflows a flow table

is rejected; minimum WCS, to make sure that any proposal that

causes WCS to be below this constraint is rejected by the selec-

tion mechanism; and bandwidth guarantee, to make sure that any

proposal that violates a tenant’s requested bandwidth guarantee is

rejected. We examine the use of the flow table size constraint in

Section 5.3.

4We also investigated using Manhattan distance, but report only
Euclidean in this paper as the results are similar.

399

5.2 Understanding baseline evaluation results
In this section, we compare the allocation of Athens with alter-

native resolution mechanisms.

Figure 5 plots the three metrics of interest (y-axis) against re-

quest arrival time (x-axis). For aggregate core bandwidth, we nor-

malize aggregate core bandwidth of each method by the maximum

aggregate core bandwidth. Similarly, we plot mean link bandwidth

usage of each method normalized by the maximum link bandwidth

usage of FTM.

Before we discuss the details of each graph, we summarize the

high-level trends from the graphs:

• The individual modules work as expected and in line with

their goals, at the expense of the goals of other modules: pri-

oritizing GBM and CBM (by way of GCF) uses little band-

width but provide allocations with less than 10% worst-case

survivability (WCS); prioritizing FTM (by way of FGC) pro-

vides WCS greater than 80% survivability, but at the cost of

20 times more core bandwidth and mean link bandwidth us-

age than GCF.

• While Athens-cumulative and random achieve a fairly even

bandwidth / fault-tolerance balance, Athens-cumulative does

this more efficiently, and, in fact, results in a superior alloca-

tion across all metrics.

Next, we look into each metric in greater detail.

Aggregate core bandwidth. Figures 5(a) plots the aggregate

core bandwidth of each mechanism we evaluated. As expected,

GCF has the lowest core link bandwidth usage, while FGC has

the highest. GCF is most effective in conserving core bandwidth,

which is 0 in this case. Athens-ordinal is more effective in con-

serving bandwidth usage than providing high fault tolerance be-

cause a majority of the modules seek to conserve bandwidth. The

allocation outcomes are similar to that of GCF, because there are

two bandwidth-conserving modules (GBM and CBM) and also a

resource-conserving module (SRM); proposals from the majority

preference are more likely to win.

The performance of Athens-random lies between that of FGC

and GCF in the first part of the trace and jumps above FGC in the

second part of the trace. This is a function of the presence of tenants

with large bandwidth demands (Figure 4).

Bandwidth usage of Athens-cumulative is also close to that of

GCF, while it provides reasonably good fault tolerance. This in-

crease in WCS is a result of considering potential allocations in

which both CBM and GBM would not save significant bandwidth

for a particular cluster placement (resulting in fewer relative votes

for proposals from those modules), while FTM uses most of its

votes to express the correspondingly (and relatively) significant gain

in WCS.

Mean link bandwidth. Figures 5(b) plots the mean link band-

width of all the mechanisms we evaluated. Similar to core band-

width usage, on average, GCF and Athens-ordinal consume the

least amount of link capacity, close to 0% of what FGC consumes.

Athens-random consumes about 20-60% of what FTM consumes.

Athens-ordinal is close to GCF/Athens-cumulative. The difference

among these three schemes is small, and almost negligible.

Worst case survivability. Figures 5(c) plots mean worse case

survivability (WCS) among all requests. FGC has largest WCS,

larger than 80%. As mentioned above, performance of Athens-

ordinal is close to GCF, and the resulting WCS is around 4%. To

save link bandwidth or flow table entries, GBM, CBM and SRM

tend to put VMs on same rack or close-by racks, so GCF exhibits

low WCS: close to 0 in this case. Athens-cumulative achieves no-

tably higher WCS of approximately 40-50%.

Euclidean distance from ideal. The first row of each group

in Table 2 lists the average WCS, core link bandwidth, mean link

bandwidth, and distance from the idealized allocation described in

Section 5.1. As we can see, both of the priority-based approaches

arrive at allocations that are closer to the ideal than a random ap-

proach. Moreover, using either the ordinal or cardinal (cumulative)

mechanism arrive at an allocation even closer to the ideal.

 0

 500

 1000

 1500

 2000

 2500

 3000

FGC GCF Random Ordinal Cumulative
 0

 50

 100

 150

 200

M
ax

 f
lo

w
 t

ab
le

 e
n
tr

ie
s

u
se

d

M
ea

n
 f

lo
w

 t
ab

le
 e

n
tr

ie
s

u
se

d

Max
Mean

Figure 6: Max and mean number of used flow table entries

(flow table size constraint set to 3000 entries)

5.3 Using constraints
In our experiments, we arbitrarily set a constraint of 3000 en-

tries per switch flow table. In our experiments, we found that this

resulted in approximately 1% of all proposals being rejected due

to (flow table) constraint violation. Figure 6 illustrates the maxi-

mum and mean number of flow table entries used in each scheme.

The maximum values shown in each column is the largest num-

ber of flow table entries used in any switch by the specific scheme,

while the mean value is the mean number of flow table entries used

among all the switches in the system. FGC and Random consume

the largest number of flow table entries while GCF and Cumulative

consume the least. We see the same trend for the mean number of

flow table entries consumed by each scheme.

5.4 Precise evaluation and more proposals
We repeat a subset of the previous experiments by also evalu-

ating the benefit of the case where modules can generate multiple

proposals.

Mechanism Mean WCS Core Link BW* Mean Link BW* Dist

Static Priority FGC 0.84 0.95 1.00 0.80

Static Priority GCF 0.02 0.00 0.00 0.57

Random 0.41 1.00 0.90 0.85

Random-1 0.42 0.17 0.69 0.53

Random-2 0.48 0.31 0.74 0.55

Random-4 0.43 0.40 0.76 0.60

Ordinal 0.04 0.00 0.03 0.55

Ordinal-1 0.04 0.00 0.01 0.55

Ordinal-2 0.02 0.00 0.00 0.57

Ordinal-4 0.04 0.00 0.01 0.55

Cumulative 0.40 0.00 0.02 0.35

Cumulative-1 0.40 0.00 0.02 0.35

Cumulative-2 0.40 0.00 0.02 0.35

Cumulative-4 0.38 0.00 0.02 0.36

Table 2: Increasing the number of proposals for each voting

mechanism; *columns are normalized to maximum usage.

Modules can express cardinal (i.e., numeric) preferences using

the evaluate(P) method in lieu of the simpler compare(P1,P2) method.

400

The former provides more fine-grained rating of each proposal, but

is still a relative comparison. In other words, we do not assume par-

ity, and one module’s numeric range can differ from another’s. The

cumulative voting mechanism implicitly normalizes the ranges.

Each row in Table 2 compares various resolution mechanisms

across our metrics (columns) from the full trace run (Table 1). Each

mechanism leads to a different way to resolve conflicts over the

placement of each tenant cluster. Each entry in the table corre-

sponds to the mean over the duration of the run. The last column

has the normalized Euclidean distance metric (from Section 5.1)

that we use as a simplistic proxy to assess the quality of resource

allocations chosen using each mechanism.

Five rows summarize results from previous sections. The rest

are labeled Mechanism-k to represent using the specified mecha-

nism, but each module makes k additional proposals to increase

its likelihood of winning a good allocation. For example, FTM can

propose a range of VM placements with slightly different WCS val-

ues to explore placement of a different fraction of a tenant’s request

within one fault domain (its ideal setting is thus a single VM per

fault domain).

For Random-k, the outcomes seem to stabilize for k > 1; the win-

ning proposal is still selected at random but from a larger set. For

Ordinal-k, the outcomes also seem to stabilize for k > 1. The mean

WCS and distance metric are generally the same, but additional

proposals provide the opportunity for a small, but 3× decrease in

normalized mean link bandwidth usage.

For Cumulative-k, we see that Athens more quickly arrives at

a more “balanced” compromise, without necessarily needing addi-

tional proposals. Regardless of k, the low distance values that the

Cumulative-k mechanisms incur compared to the other schemes is

due to the fact that the mechanism treats all modules’ preferences

equally. We believe that the minimal impact of increasing k is a

function of the workload trace.

Discussion. If a network operator decides to “prioritize” some

Athens modules over others, it could do so by providing more votes

to that module. Assigning weights in this way seems a natural ab-

straction for network operators to think about, and using weights

with a voting mechanism as opposed to a static priority system

yields more opportunities for fruitful trade-offs. Indeed, Table 2

shows that the Cumulative mechanism is Pareto superior to ran-

dom allocation, and the Ordinal method performs better than both

the CBM and GBM priority mechanisms with respect to the first

two (column) metrics, with only a slight degradation in the third

metric.

Increasing the number of proposals has slightly less impact on

the cumulative voting mechanism for this workload. This result is

not wholly surprising as, in this case, the range values can be ex-

trapolated from a few proposal values. We hypothesize that if mod-

ules happen to exhibit a less “straightforward” mapping of range

values (i.e., a linear preference function would be easy to interpo-

late; one with steps or otherwise piece-wise would be difficult to

infer), more proposals would help uncover this irregularity.

5.5 Comparison with Corybantic
In this section, we compare Athens and Corybantic using a sce-

nario similar to the one presented in the original Corybantic work

[22]. In this two-module scenario, the relative global utility be-

tween providing tenant fault tolerance and preserving core network

bandwidth is computed using a parameter α ∈ [0, 1]. α and (1−α)

are used as weights for the utility function of FTM and CBM, re-

spectively, to derive an implicit global utility function.

As described in the Corybantic work, the purpose behind using

different weights to characterize the underlying utility function is

Mechanism
Normalized Mean Utility for various α

0.1 0.2 0.4 0.5 0.6 0.8 0.9

Corybantic 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Athens-

cumulative-

weighted
1.0

∗ 1.0 1.0 1.0 1.0
∗ 1.0 1.0

∗

Athens-

ordinal
0.162 0.221 0.351 0.423 0.501 0.677 0.776

Random 0.185 0.231 0.332 0.389 0.449 0.586 0.664

Table 3: Benefits of Resolving only two conflicting modules by

increasing search space; α is as defined in the Corybantic paper

[22]. α = 0.1 means FTM has a weight of 0.1 and CBM has a

weight of 0.9, or 1−α. *Indicates rounded up to 1, when using

3 significant digits.

that the relative utility of fault tolerance and preserving core band-

width can vary for different environments, and perhaps at different

times for a single environment. More information about the motiva-

tion behind this model are described in [22]. As with the Euclidean

distance function used in earlier experiments, this weighted utility

function is simply a proxy for a global network objective.

As mentioned in Section 3.6, a network operator can similarly

use these weights with the Athens-cumulative voting procedure by

assigning a total voting budget for each module in accordance with

these weights. We also compare against a random allocation, which

does not use these weights, to provide a baseline comparison point.

Table 3 compares the utility delivered by allocations for vari-

ous values of α. Since we expect Corybantic to provide an up-

per bound, we normalize the values in Table 3 to the mean utility

achieved by Corybantic across allocation rounds.

Athens-cumulative-weighted makes nearly identical allocation

decisions as Corybantic. For α ∈ {0.1, 0.7, 0.9}, Athens-cumulative

makes different allocation decisions on only one, two or three out

of over 200 proposal decisions, respectively.

While these results are consistent for this particular production

trace, it is possible to imagine other (or particularly degenerative)

workload that would make these differences more pronounced.

Perhaps unsurprisingly, Athens-ordinal and Random perform no-

tably worse, as they do not take module weights into account. Athens-

ordinal, in particular, is sensitive to skewed weights (i.e., low α),

and it performs worse than random for these low α values. This

is perhaps, unsurprising, since each pairwise comparison is much

more likely to be incorrect when it is oblivious to weights.

6. RELATED WORK
The problem of detecting, avoiding, and resolving rule-level con-

flicts has received significant attention, most specifically from Fre-

netic [9, 10] and Pyretic [23]. As opposed to this work, we fo-

cus on resolving resource-level conflicts between modules. Mer-

lin [26] and PANE [8] also aim to provide higher-level (relative

to OpenFlow) API to coordinate behavior between SDN programs,

but these approaches require a network operator to manually re-

solve module-level conflicts, and thus do not address how to auto-

matically resolve them.

Complementary to our work is the goal of verifying the cor-

rectness of an SDN program. Specifically, the goal of ensuring

(network-wide) invariants has received a great attention recently [1,

24, 3, 13, 14]. These papers propose either 1) foundationally strong

languages to write SDN programs that can be verified by existing

verification logic or tools [1, 24, 3], or 2) systems that verify the

correctness/invariants of a given network real-time by analyzing

flow rules and the network topology [13, 14]. While none of these

papers addresses the problem of detecting and resolving conflicts

401

between different SDN programs, we envision that the coordinator

or each control module in Athens can leverage these mechanisms,

for example, to determine which proposals violate constraints.

The systems most related to Athens are Corybantic [22], which

provided the initial design of the system, and Statesman [27]. In

Athens, we have extended Corybantic with a more complete im-

plementation, and a guided approach to resolve resource conflicts

beyond the single, ideal scenario of global utility functions. States-

man solves a similar problem, but we see Athens as a complemen-

tary system, providing a family of resolution mechanisms to aid

a system like Statesman to dynamically resolve conflicts between

module programs for better system performance. Besides offer-

ing a different level of abstraction for conflict resolution, another

difference between Athens and Statesman is that Athens explores

compromise solutions while Statesman will try and merge states

from multiple modules or else pick one module’s solution.

Finally, network economists have explored related issues (e.g.,

[18]) but have focused on obtaining accurate prices, not on software

modularity.

7. CONCLUSION
In this paper, we build upon ideas from previous systems [22, 27]

for composing modular SDN control programs to provide a frame-

work to automatically resolve resource conflicts between modules.

The goal of Athens is to ease the impending challenge facing net-

work operators of data-centers (e.g., hosting SDNs, cloud infras-

tructures) to coordinate and dynamically manage resource conflicts

between a diverse suite of controller modules. We introduce no-

tions of module parity and precision, and provide a framework

within which we can classify existing approaches. As opposed to

prior designs, Athens resolves conflicts by leveraging well known

voting mechanisms and is able to relax requirements of parity and

precision from modules, while achieving efficient resource alloca-

tions across a variety of metrics.

8. REFERENCES

[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic

Foundations for Networks. In ACM POPL, 2014.

[2] Apache CloudStack: Open Source Cloud Computing.

http://cloudstack.apache.org/.

[3] T. Ball, N. Bjorner, A. Gember, S. Itzhaky, A. Karbyshev,

M. Sagiv, M. Schapira, and A. Valadarsky. VeriCon: Towards

Verifying Controller Programs in Software-Defined

Network. In ACM PLDI, 2014.

[4] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.

Towards predictable datacenter networks. In Proc.

SIGCOMM, 2011.

[5] Project Floodlight.

http://www.projectfloodlight.org/floodlight/.

[6] P. Bodík, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz,

and I. Stoica. Surviving failures in bandwidth-constrained

datacenters. In Proc. SIGCOMM, 2012.

[7] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian.

Fabric: A Restrospective on Evolving SDN. In HotSDN,

2012.

[8] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and

S. Krishnamurthi. Participatory Networking: An API for

Application Control of SDNs. In Proc. SIGCOMM, 2013.

[9] N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L.

Meola, and D. Walker. Frenetic: A High-Level Language for

OpenFlow Networks. In Proc. PRESTO, 2010.

[10] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,

J. Rexford, A. Story, and D. Walker. Frenetic: A Network

Programming Language. In Proc. ICFP, 2011.

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica. Dominant resource fairness: Fair

allocation of multiple resource types. In USENIX NSDI,

2011.

[12] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: Towards an Operating

System for Networks. In SIGCOMM CCR, July 2008.

[13] P. Kazemian, M. Chang, H. Zeng, G. Varghese,

N. McKeown, and S. Whyte. Real Time Network Policy

Checking using Header Space Analysis. In USENIX NSDI,

2013.

[14] A. Khurshid, X. Zou, W. Zhou, M. Caesar, , and P. B.

Godfrey. VeriFlow: Verifying Network-Wide Invariants in

Real Time. In USENIX NSDI, 2013.

[15] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J.

Lee, and P. Yalagandula. Automated and Scalable QoS

Control for Network Convergence. In Proc. INM/WREN,

Apr. 2010.

[16] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang,

and P. Sharma. Application-Driven Bandwidth Guarantees in

Datacenters. In SIGCOMM, 2014.

[17] Project OpenDaylight.

http://www.opendaylight.org/.

[18] B. Lubin, A. Juda, R. Cavallo, S. Lahaie, J. Shneidman, and

D. C. Parkes. ICE: An Expressive Iterative Combinatorial

Exchange. J. Artificial Intelligence Research, 33:33–77,

2008.

[19] A. Mas-Colell, M. D. Whinston, and J. R. Green.

Microeconomic Theory. Oxford University Press, 1995.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner.

OpenFlow: Enabling Innovation in Campus Networks.

SIGCOMM CCR, 38(2):69–74, 2008.

[21] Mininet. http://www.mininet.org/.

[22] J. C. Mogul, A. AuYoung, S. Banerjee, J. Lee, J. Mudigonda,

L. Popa, P. Sharma, and Y. Turner. Corybantic: Toward

Modular Composition of SDN Control Programs. In

HotNets-XII, 2013.

[23] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.

Composing Software-Defined Networks. In USENIX NSDI,

2013.

[24] T. Nelson, A. D. Ferguson, M. J. Scheer, and

S. Krishnamurthi. Tierless Programming and Reasoning for

Software-Defined Networks. In USENIX NSDI, 2014.

[25] O. Sefraoui, M. Aissaoui, and M. Eleuldj. Article:

Openstack: Toward an open-source solution for cloud

computing. International Journal of Computer Applications,

55(3):38–42, October 2012.

[26] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster.

Managing the network with Merlin. In HotNets, page 24,

2013.

[27] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and

A. Arefin. A Network-State Management Service. In

SIGCOMM, 2014.

[28] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable

Flow-Based Networking with DIFANE. In Proc. SIGCOMM,

2010.

402

http://cloudstack.apache.org/
http://www.projectfloodlight.org/floodlight/
http://www.opendaylight.org/
http://www.mininet.org/

	Introduction
	Background
	Basic framework
	Basic operation

	Athens Model
	Programming a module
	Example proposals by modules
	Implementing the Athens API
	Expressing constraints
	Design assumptions
	Conflict resolution
	Design space
	Algorithms
	Other considerations

	Refining or generating multiple proposals

	Athens System Implementation
	Implementation framework
	Control modules
	Athens meta-controller
	SDN controller
	Network emulation

	Evaluation
	Workload
	Understanding baseline evaluation results
	Using constraints
	Precise evaluation and more proposals
	Comparison with Corybantic

	Related work
	Conclusion
	References

