Corybantic and Athens: conflict resolution by voting

5590: software defined networking

anduo wang, Temple University T 17:30-20:00

Corybantic

Jeffrey C. Mogul., et al. "Corybantic: Towards the Modular Composition of SDN Control Programs"

SDN promises vigorous innovation

the problem of independent controller modules

- -manage different aspects of the network
- competing for resources

Corybantic approach

- modular composition
- coordinate between the modules to maximize the overall value
 - each module optimizes its local objective functions

Corybantic approach

- SDN relies on reliable, scalable, and efficient controller software
 - -arbitrarily complex, central controller
- modularity
 - to build, maintain, extend
- challenge inter-module interface
 - -as narrow as possible
 - expose sufficient information about local objectives and policies

goal: controllers collaborate through Corybantic

- maximize system-wide objectives

Pyretic

- better ways of getting the network to do ...

Corybantic

- deciding what to do

Corybantic approach

modules express local objectives

- using a single currency
- sidestep hard problems
 - converts a multi-objective problem into a single-objective one
 - -use heuristic, iterations to improve allocation decision
- aims at adapting to new demands
 - -NOT to converge to an optimal solution

Corybantic overview

I. modules propose change in a common currency

- express module objective as virtual subset topology
 - a graph of resources including links and switches

Corybantic overview

2. each module evaluates
every current proposal
distributing computation
proposal generator does not need to understand values of other modules

Corybantic overview

3. coordinator picks the best proposal
4. the modules instantiate the chosen proposal

open questions

make good proposals

- small?
- -# of proposals, variance
- -# of interactions

select best proposal — optimality vs. oscillation

- -occasional jump (genetic algorithm)
- convex objective function

Athens

Alvin AuYoung., et al. "Democratic Resolution of Resource Conflicts Between SDN Control Programs"

resource conflicts

fault-tolerant module (FTM)

- objective
 - maximize the average service availability of tenant's VM instances
- proposal
 - place VMs in isolated fault domains

guaranteed-bandwidth module (GBM)

- objective
 - reserve inter-VM network bandwidth for each tenant's set of VMs
- proposal
 - place as many tenant requests as possible for VM clusters
 - e.g., place each requirement on the smallest network subtree

more on monolithic solutions

simple static policies — prioritizing one module over another *insufficient*

- potential dependency grows exponentially with the number of modules
- untenable for one person by hand

more on alternative composition

Pyretic

- -resolving rule-level conflicts in the context of OpenFlow Merlin/Pane
 - -manual resolution (by operator) for module-level conflicts

statesman

- -loosely coupled
- BUT, resolving conflicts without regard to any objective functions / system performance

Athens (revision of Corybantic)

voting mechanism as the abstraction to determine the result of conflict resolution

 voting depends on two module characteristics: precision, parity

precision

how accurately a module is able to compare alternative proposals

parity

 how easy it is to normalize the objective functions across modules

Figure 2: Proposed network states by FTM and GBM for tenant requests R1: <5, 100 Mbps> and R2: <10, 200 Mbps>, respectively. Red slots are occupied by R1 and green slots by R2. Numbers beside a link show reserved bandwidth on the corresponding link for each request

FTM

spreads each tenant's request across full domains
 GBM

-places VMs in the smallest (lowest) subtree

(a) Example FTM proposal

(b) Example GBM proposal

parity across modules

- (implies) their preferences are inherently on equal footing
- -i.e., relative ranking are known or can be easily normalized

parity in Corybantic

-modules express objectives in a single currency (e.g., dollar) **practice**

-very hard to relate a module's preference to a dollar amount

(a) Example FTM proposal

(b) Example GBM proposal

precision (evaluation)

- FTM

- evaluate(P1) == 2*evaluate(P2)
- -PI (allocation) offers twice as much survivability as P2