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SDN promises vigorous innovation

the problem of independent controller modules
-manage different aspects of the network
-competing for resources

Corybantic approach
-modular composition
-coordinate between the modules to maximize the overall 

value
- each module optimizes its local objective functions
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Corybantic approach
SDN relies on reliable, scalable, and efficient 
controller software
-arbitrarily complex, central controller

modularity
-to build, maintain, extend

challenge — inter-module interface
-as narrow as possible
-expose sufficient information about local objectives and 

policies

goal: controllers collaborate through Corybantic
-maximize system-wide objectives
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Corybantic vs Pyretic

Pyretic
-better ways of getting the network to do …

Corybantic
-deciding what to do
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(b) Example proposal and value flows in Corybantic.

Figure 1: Context for Corybantic.

to the goals of all modules. (Because “virtual subset topol-
ogy” is unwieldy, generally in this paper we use “topology”
to imply that term.)

3.2 An iterative approach

Do we first look for a topology that meets the customer
demands, or do we first find a placement of demand that as-
sumes a specific topology? Exploring all of the possible op-
tions seems like it would result in an infeasibly-large search
space. To avoid this chicken-or-egg problem, Corybantic
uses a multi-phase iterative approach.

The Corybantic coordinator proceeds in periodic rounds.
In each round, the coordinator and its modules execute four
phases:

• Phase 1 – some modules propose topology changes: A
proposal is a change in the reservation state or activity
(on/off) of a resource in the topology. Each module may
make one or more proposals to modify the topology. A
“topology” change may involve turning servers, switches,
or links on or off, adding a switch table entry, or moving
VMs.These proposals should be “small” deltas from the
current state, not huge changes.

Making good proposals is the key challenge for Cory-
bantic. We discuss this key challenge in Sec. 4.1.

• Phase 2 – each module evaluates every current pro-

posal generated in phase 1, assigning a value to it (top of
Fig. 1(b)). The value considers the benefits that the module
gains from a proposal, the costs imposed on the module,
including the cost of making changes (e.g., moving a VM)
and any “costs” created by unfairness. For example, a QoS
controller would express value as the revenue collected by
the flows it can support within the proposal. Some modules
might give a negative value to a proposal.

By distributing the task of proposal evaluation to all of
the modules in the system, we modularize the computa-

tion of the values that derive from various points of view.
For example, the power module only needs to consider the
electricity-related costs and benefits of turning off a switch,
while the QoS-related benefits (which might be negative)
are measured entirely within other modules.

Also, by separating the proposal-generation phase from
the proposal-evaluation phase, we relieve the proposal gen-
erators from having to understand the value models of
other modules.

Fig. 1(b) illustrates how values flow in Corybantic. For
concreteness, we assume that all values are expressed in
terms of dollars (or some other real-world currency), to re-
flect the grounding of these values in the real-world money
flowing into and out of the provider.

• Phase 3 – the coordinator picks the best proposal: An
overall coordinator function assigns a global value to each
proposal, for example, a sum over the phase-2 values and
picks the best proposal (if any have positive values).

• Phase 4 – the modules instantiate the chosen proposal:
Once the coordinator has chosen a proposal, any module
that is affected by that proposal is directed to instantiate
it. This might mean changing a topology element, moving
a VM, or perhaps just informing a user that its VMs now
have more or less access to spare capacity, so that the user’s
application can adapt.

The goal of this iterative loop is to constantly adapt to new
customer demands, not to focus on convergence to a fixed
point.

3.3 Alternative approaches

Casting the search for improved value as an iteration
avoids having to impose an a priori ordering on the mod-
ules; any fixed ordering would over-determine the pruning
of the search space, and inhibits modularity. Instead, we
express “priority” not as an explicit property of a module,
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Corybantic approach
modules express local objectives
-using a single currency

sidestep hard problems
-converts a multi-objective problem into a single-objective 

one
-use heuristic, iterations to improve allocation decision

aims at adapting to new demands
-NOT to converge to an optimal solution
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Corybantic overview
1. modules propose 
change in a common 
currency
-express module objective as 

virtual subset topology
-a graph of resources including 

links and switches
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to the goals of all modules. (Because “virtual subset topol-
ogy” is unwieldy, generally in this paper we use “topology”
to imply that term.)

3.2 An iterative approach

Do we first look for a topology that meets the customer
demands, or do we first find a placement of demand that as-
sumes a specific topology? Exploring all of the possible op-
tions seems like it would result in an infeasibly-large search
space. To avoid this chicken-or-egg problem, Corybantic
uses a multi-phase iterative approach.

The Corybantic coordinator proceeds in periodic rounds.
In each round, the coordinator and its modules execute four
phases:

• Phase 1 – some modules propose topology changes: A
proposal is a change in the reservation state or activity
(on/off) of a resource in the topology. Each module may
make one or more proposals to modify the topology. A
“topology” change may involve turning servers, switches,
or links on or off, adding a switch table entry, or moving
VMs.These proposals should be “small” deltas from the
current state, not huge changes.

Making good proposals is the key challenge for Cory-
bantic. We discuss this key challenge in Sec. 4.1.

• Phase 2 – each module evaluates every current pro-

posal generated in phase 1, assigning a value to it (top of
Fig. 1(b)). The value considers the benefits that the module
gains from a proposal, the costs imposed on the module,
including the cost of making changes (e.g., moving a VM)
and any “costs” created by unfairness. For example, a QoS
controller would express value as the revenue collected by
the flows it can support within the proposal. Some modules
might give a negative value to a proposal.

By distributing the task of proposal evaluation to all of
the modules in the system, we modularize the computa-

tion of the values that derive from various points of view.
For example, the power module only needs to consider the
electricity-related costs and benefits of turning off a switch,
while the QoS-related benefits (which might be negative)
are measured entirely within other modules.

Also, by separating the proposal-generation phase from
the proposal-evaluation phase, we relieve the proposal gen-
erators from having to understand the value models of
other modules.

Fig. 1(b) illustrates how values flow in Corybantic. For
concreteness, we assume that all values are expressed in
terms of dollars (or some other real-world currency), to re-
flect the grounding of these values in the real-world money
flowing into and out of the provider.

• Phase 3 – the coordinator picks the best proposal: An
overall coordinator function assigns a global value to each
proposal, for example, a sum over the phase-2 values and
picks the best proposal (if any have positive values).

• Phase 4 – the modules instantiate the chosen proposal:
Once the coordinator has chosen a proposal, any module
that is affected by that proposal is directed to instantiate
it. This might mean changing a topology element, moving
a VM, or perhaps just informing a user that its VMs now
have more or less access to spare capacity, so that the user’s
application can adapt.

The goal of this iterative loop is to constantly adapt to new
customer demands, not to focus on convergence to a fixed
point.

3.3 Alternative approaches

Casting the search for improved value as an iteration
avoids having to impose an a priori ordering on the mod-
ules; any fixed ordering would over-determine the pruning
of the search space, and inhibits modularity. Instead, we
express “priority” not as an explicit property of a module,
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Corybantic overview
2. each module evaluates 
every current proposal
-distributing computation
-proposal generator does 

not need to understand 
values of other modules
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to the goals of all modules. (Because “virtual subset topol-
ogy” is unwieldy, generally in this paper we use “topology”
to imply that term.)

3.2 An iterative approach

Do we first look for a topology that meets the customer
demands, or do we first find a placement of demand that as-
sumes a specific topology? Exploring all of the possible op-
tions seems like it would result in an infeasibly-large search
space. To avoid this chicken-or-egg problem, Corybantic
uses a multi-phase iterative approach.

The Corybantic coordinator proceeds in periodic rounds.
In each round, the coordinator and its modules execute four
phases:

• Phase 1 – some modules propose topology changes: A
proposal is a change in the reservation state or activity
(on/off) of a resource in the topology. Each module may
make one or more proposals to modify the topology. A
“topology” change may involve turning servers, switches,
or links on or off, adding a switch table entry, or moving
VMs.These proposals should be “small” deltas from the
current state, not huge changes.

Making good proposals is the key challenge for Cory-
bantic. We discuss this key challenge in Sec. 4.1.

• Phase 2 – each module evaluates every current pro-

posal generated in phase 1, assigning a value to it (top of
Fig. 1(b)). The value considers the benefits that the module
gains from a proposal, the costs imposed on the module,
including the cost of making changes (e.g., moving a VM)
and any “costs” created by unfairness. For example, a QoS
controller would express value as the revenue collected by
the flows it can support within the proposal. Some modules
might give a negative value to a proposal.

By distributing the task of proposal evaluation to all of
the modules in the system, we modularize the computa-

tion of the values that derive from various points of view.
For example, the power module only needs to consider the
electricity-related costs and benefits of turning off a switch,
while the QoS-related benefits (which might be negative)
are measured entirely within other modules.

Also, by separating the proposal-generation phase from
the proposal-evaluation phase, we relieve the proposal gen-
erators from having to understand the value models of
other modules.

Fig. 1(b) illustrates how values flow in Corybantic. For
concreteness, we assume that all values are expressed in
terms of dollars (or some other real-world currency), to re-
flect the grounding of these values in the real-world money
flowing into and out of the provider.

• Phase 3 – the coordinator picks the best proposal: An
overall coordinator function assigns a global value to each
proposal, for example, a sum over the phase-2 values and
picks the best proposal (if any have positive values).

• Phase 4 – the modules instantiate the chosen proposal:
Once the coordinator has chosen a proposal, any module
that is affected by that proposal is directed to instantiate
it. This might mean changing a topology element, moving
a VM, or perhaps just informing a user that its VMs now
have more or less access to spare capacity, so that the user’s
application can adapt.

The goal of this iterative loop is to constantly adapt to new
customer demands, not to focus on convergence to a fixed
point.

3.3 Alternative approaches

Casting the search for improved value as an iteration
avoids having to impose an a priori ordering on the mod-
ules; any fixed ordering would over-determine the pruning
of the search space, and inhibits modularity. Instead, we
express “priority” not as an explicit property of a module,
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Corybantic overview
3. coordinator picks the 
best proposal
4. the modules 
instantiate the chosen 
proposal
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to the goals of all modules. (Because “virtual subset topol-
ogy” is unwieldy, generally in this paper we use “topology”
to imply that term.)

3.2 An iterative approach

Do we first look for a topology that meets the customer
demands, or do we first find a placement of demand that as-
sumes a specific topology? Exploring all of the possible op-
tions seems like it would result in an infeasibly-large search
space. To avoid this chicken-or-egg problem, Corybantic
uses a multi-phase iterative approach.

The Corybantic coordinator proceeds in periodic rounds.
In each round, the coordinator and its modules execute four
phases:

• Phase 1 – some modules propose topology changes: A
proposal is a change in the reservation state or activity
(on/off) of a resource in the topology. Each module may
make one or more proposals to modify the topology. A
“topology” change may involve turning servers, switches,
or links on or off, adding a switch table entry, or moving
VMs.These proposals should be “small” deltas from the
current state, not huge changes.

Making good proposals is the key challenge for Cory-
bantic. We discuss this key challenge in Sec. 4.1.

• Phase 2 – each module evaluates every current pro-

posal generated in phase 1, assigning a value to it (top of
Fig. 1(b)). The value considers the benefits that the module
gains from a proposal, the costs imposed on the module,
including the cost of making changes (e.g., moving a VM)
and any “costs” created by unfairness. For example, a QoS
controller would express value as the revenue collected by
the flows it can support within the proposal. Some modules
might give a negative value to a proposal.

By distributing the task of proposal evaluation to all of
the modules in the system, we modularize the computa-

tion of the values that derive from various points of view.
For example, the power module only needs to consider the
electricity-related costs and benefits of turning off a switch,
while the QoS-related benefits (which might be negative)
are measured entirely within other modules.

Also, by separating the proposal-generation phase from
the proposal-evaluation phase, we relieve the proposal gen-
erators from having to understand the value models of
other modules.

Fig. 1(b) illustrates how values flow in Corybantic. For
concreteness, we assume that all values are expressed in
terms of dollars (or some other real-world currency), to re-
flect the grounding of these values in the real-world money
flowing into and out of the provider.

• Phase 3 – the coordinator picks the best proposal: An
overall coordinator function assigns a global value to each
proposal, for example, a sum over the phase-2 values and
picks the best proposal (if any have positive values).

• Phase 4 – the modules instantiate the chosen proposal:
Once the coordinator has chosen a proposal, any module
that is affected by that proposal is directed to instantiate
it. This might mean changing a topology element, moving
a VM, or perhaps just informing a user that its VMs now
have more or less access to spare capacity, so that the user’s
application can adapt.

The goal of this iterative loop is to constantly adapt to new
customer demands, not to focus on convergence to a fixed
point.

3.3 Alternative approaches

Casting the search for improved value as an iteration
avoids having to impose an a priori ordering on the mod-
ules; any fixed ordering would over-determine the pruning
of the search space, and inhibits modularity. Instead, we
express “priority” not as an explicit property of a module,
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open questions
make good proposals
-small?
-# of proposals, variance
-# of interactions

select best proposal — optimality vs. oscillation
-occasional jump (genetic algorithm)
-convex objective function

10



Athens

11Alvin AuYoung., et al. “Democratic Resolution of Resource Conflicts Between SDN Control Programs”



resource conflicts
fault-tolerant module (FTM)
-objective 
- maximize the average service availability of tenant’s VM instances
-proposal
- place VMs in isolated fault domains

guaranteed-bandwidth module (GBM)
-objective
- reserve inter-VM network bandwidth for each tenant’s set of VMs
-proposal
- place as many tenant requests as possible for VM clusters
- e.g., place each requirement on the smallest network subtree
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more on monolithic solutions 
simple static policies — prioritizing one module 
over another insufficient
-potential dependency grows exponentially with the number 

of modules
-untenable for one person by hand

13



more on alternative composition
Pyretic
-resolving rule-level conflicts in the context of OpenFlow

Merlin/Pane
-manual resolution (by operator) for module-level conflicts

statesman
-loosely coupled
-BUT, resolving conflicts without regard to any objective 

functions / system performance
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Athens (revision of Corybantic)
voting mechanism as the abstraction to determine 
the result of conflict resolution
-voting depends on two module characteristics: precision, 

parity

precision
-how accurately a module is able to compare alternative 

proposals

parity
-how easy it is to normalize the objective functions across 

modules

15
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set of VMs. The choice of this module was inspired from require-
ments of real-world control programs, and is meant also to embody
recent research in tenant bandwidth reservations [4, 16]. The goal
of these methods is to place as many tenant requests as possible for
VM clusters with bandwidth guarantees. Thus, GBM prefers allo-
cations that are likely to fit more such requests by consuming less
network bandwidth. When proposing a network state, GBM uses
the same implementation suggestion by Ballani et al. [4], which
places each request (described in the Hose bandwidth model) in
the smallest (lowest) network subtree. Its compare() method would
prefer network states that use less average link bandwidth. Its eval-
uate() method could return a value inversely proportional to the
average link bandwidth usage of a network state.

Example: Switch Resource Module (SRM). Finally, consider
a module that manages switch resources, such as entries in a flow
table. Unlike other modules, this Switch Resource Module (SRM)
does not need to generate new proposals. Instead, it evaluates pro-
posals from other modules: ensuring no switch is overloaded by
expressing fixed-size flow table limits as a constraint, while also
expressing a preference for proposals that use fewer flow table en-
tries. For our prototype SRM, we assume that it is given adequate
information about flow table usage in each proposal (i.e., we as-
sume all-to-all VM communication patterns for each tenant, and
that flow paths are assigned within a proposal). We do not consider
flow aggregation. SRM’s implementation of compare() method
would prefer network states that use smaller number of flow ta-
ble entries. To evaluate() a network state, it could return a value
that is inversely proportional to the total number of entries used in
switches if the network state is admitted.

3.2 Example proposals by modules
Figure 2 shows examples of proposals generated by two mod-

ules. For illustrative purposes, the examples assume a three level
tree topology with four racks; each rack has four physical machines
with two VM slots per machine. Each rack thus has a capacity of
eight VM slots. We also assume each link has enough bandwidth
to satisfy two incoming tenant requests: R1 <5, 100 Mbps> and R2
<10, 200 Mbps>. In other words, R1 requires a cluster of 5 VMs
connected by virtual links (hoses) of bandwidth 100 Mbps, while
R2 requires a cluster of 10 VMs connected by hoses of bandwidth
200 Mbps.

(a) Example FTM proposal (b) Example GBM proposal

Figure 2: Proposed network states by FTM and GBM for ten-
ant requests R1: <5, 100 Mbps> and R2: <10, 200 Mbps>, re-
spectively. Red slots are occupied by R1 and green slots by R2.
Numbers beside a link show reserved bandwidth on the corre-
sponding link for each request

Figure 2(a) shows the network state proposed by FTM for re-
quests R1 and R2. Since FTM aims to preserve per-tenant fault-
tolerance, it spreads each tenant’s VMs across fault domains, shown

as red rectangles (VMs of R1) and green rectangles (VMs of R2)
in Figure 2(a).

Figure 2(b) shows the network state proposed by GBM for the
two requests. Since GBM tries to place VMs of each request in the
smallest subtree in the topology, it places VMs of R1 in the subtree
of switch S4, and VMs of R2 in the subtree of switch S3.

For GBM, VM placement impacts the reserved bandwidth on
each link. In Figure 2, the number beside a link shows reserved
bandwidth on that link for each request. Each link divides a tenant
tree into two components, and bandwidth needed on this link for
the tenant is determined by multiplying the per-VM bandwidth re-
quired by the tenant and the number of VMs on the smaller of the
two components [4]. For example, in Figure 2(a), the link between
S2 and S4 divides R1’s VMs into 2 components, with 2 and 3 VMs
respectively. Therefore, the bandwidth required by R1 on this link
equals min(2, 3) × 100Mbps = 200Mbps. Similarly, the band-
width required by R2 on this link equals min(2, 8)× 200Mbps =
400Mbps.

3.3 Implementing the Athens API
Currently, each module only needs to implement two of three

methods:

• P propose(requests): return a proposal P representing net-
work state.

• int compare(P1, P2): compare proposals P1, P2, and indicate
which proposal it prefers, or “no preference”.

• float evaluate(P): evaluate a proposal P, and return a value
representing a rating.

Using FTM as an example, we illustrate pseudocode for these
methods. Algorithm 1 shows a code snippet of the propose method.
This method changes the current topology by placing VMs of a
tenant’s request in isolated racks (fault domains) to increase the
tenant’s WCS.

Algorithm 1: Pseudocode for FTM.propose()

1 def propose(requests):
2 newTopology = getCurrentTopology();
3 for r in requests:
4 numVMs = r.numVMs;
5 numOpenSlots =

newTopology.getNumOpenSlots();
6 if numOpenSlots < numVMs:
7 return getCurrentTopology();
8 openRacks = newTopology.getOpenRacks();
9 openRackIndex = 0;

10 length = openRacks.length;
11 for vm in r.getVMs():
12 rackIndex = openRackIndex % length;
13 openRacks [rackIndex ].addVM(vm);
14 openRackIndex += 1;

15 return newTopology;

Algorithms 2 and 3 show the implementation of the evaluate
method for FTM and SRM, respectively. The FTM evaluate method
simply returns the average worse-case survivability (WCS) of all
tenants if the proposal is accepted. Thus, it favors proposals that
result in higher WCS values. The SRM evaluate method simply
calculates the aggregated flow entry count that the switches would
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set of VMs. The choice of this module was inspired from require-
ments of real-world control programs, and is meant also to embody
recent research in tenant bandwidth reservations [4, 16]. The goal
of these methods is to place as many tenant requests as possible for
VM clusters with bandwidth guarantees. Thus, GBM prefers allo-
cations that are likely to fit more such requests by consuming less
network bandwidth. When proposing a network state, GBM uses
the same implementation suggestion by Ballani et al. [4], which
places each request (described in the Hose bandwidth model) in
the smallest (lowest) network subtree. Its compare() method would
prefer network states that use less average link bandwidth. Its eval-
uate() method could return a value inversely proportional to the
average link bandwidth usage of a network state.

Example: Switch Resource Module (SRM). Finally, consider
a module that manages switch resources, such as entries in a flow
table. Unlike other modules, this Switch Resource Module (SRM)
does not need to generate new proposals. Instead, it evaluates pro-
posals from other modules: ensuring no switch is overloaded by
expressing fixed-size flow table limits as a constraint, while also
expressing a preference for proposals that use fewer flow table en-
tries. For our prototype SRM, we assume that it is given adequate
information about flow table usage in each proposal (i.e., we as-
sume all-to-all VM communication patterns for each tenant, and
that flow paths are assigned within a proposal). We do not consider
flow aggregation. SRM’s implementation of compare() method
would prefer network states that use smaller number of flow ta-
ble entries. To evaluate() a network state, it could return a value
that is inversely proportional to the total number of entries used in
switches if the network state is admitted.

3.2 Example proposals by modules
Figure 2 shows examples of proposals generated by two mod-

ules. For illustrative purposes, the examples assume a three level
tree topology with four racks; each rack has four physical machines
with two VM slots per machine. Each rack thus has a capacity of
eight VM slots. We also assume each link has enough bandwidth
to satisfy two incoming tenant requests: R1 <5, 100 Mbps> and R2
<10, 200 Mbps>. In other words, R1 requires a cluster of 5 VMs
connected by virtual links (hoses) of bandwidth 100 Mbps, while
R2 requires a cluster of 10 VMs connected by hoses of bandwidth
200 Mbps.

(a) Example FTM proposal (b) Example GBM proposal

Figure 2: Proposed network states by FTM and GBM for ten-
ant requests R1: <5, 100 Mbps> and R2: <10, 200 Mbps>, re-
spectively. Red slots are occupied by R1 and green slots by R2.
Numbers beside a link show reserved bandwidth on the corre-
sponding link for each request

Figure 2(a) shows the network state proposed by FTM for re-
quests R1 and R2. Since FTM aims to preserve per-tenant fault-
tolerance, it spreads each tenant’s VMs across fault domains, shown

as red rectangles (VMs of R1) and green rectangles (VMs of R2)
in Figure 2(a).

Figure 2(b) shows the network state proposed by GBM for the
two requests. Since GBM tries to place VMs of each request in the
smallest subtree in the topology, it places VMs of R1 in the subtree
of switch S4, and VMs of R2 in the subtree of switch S3.

For GBM, VM placement impacts the reserved bandwidth on
each link. In Figure 2, the number beside a link shows reserved
bandwidth on that link for each request. Each link divides a tenant
tree into two components, and bandwidth needed on this link for
the tenant is determined by multiplying the per-VM bandwidth re-
quired by the tenant and the number of VMs on the smaller of the
two components [4]. For example, in Figure 2(a), the link between
S2 and S4 divides R1’s VMs into 2 components, with 2 and 3 VMs
respectively. Therefore, the bandwidth required by R1 on this link
equals min(2, 3) × 100Mbps = 200Mbps. Similarly, the band-
width required by R2 on this link equals min(2, 8)× 200Mbps =
400Mbps.

3.3 Implementing the Athens API
Currently, each module only needs to implement two of three

methods:

• P propose(requests): return a proposal P representing net-
work state.

• int compare(P1, P2): compare proposals P1, P2, and indicate
which proposal it prefers, or “no preference”.

• float evaluate(P): evaluate a proposal P, and return a value
representing a rating.

Using FTM as an example, we illustrate pseudocode for these
methods. Algorithm 1 shows a code snippet of the propose method.
This method changes the current topology by placing VMs of a
tenant’s request in isolated racks (fault domains) to increase the
tenant’s WCS.

Algorithm 1: Pseudocode for FTM.propose()

1 def propose(requests):
2 newTopology = getCurrentTopology();
3 for r in requests:
4 numVMs = r.numVMs;
5 numOpenSlots =

newTopology.getNumOpenSlots();
6 if numOpenSlots < numVMs:
7 return getCurrentTopology();
8 openRacks = newTopology.getOpenRacks();
9 openRackIndex = 0;

10 length = openRacks.length;
11 for vm in r.getVMs():
12 rackIndex = openRackIndex % length;
13 openRacks [rackIndex ].addVM(vm);
14 openRackIndex += 1;

15 return newTopology;

Algorithms 2 and 3 show the implementation of the evaluate
method for FTM and SRM, respectively. The FTM evaluate method
simply returns the average worse-case survivability (WCS) of all
tenants if the proposal is accepted. Thus, it favors proposals that
result in higher WCS values. The SRM evaluate method simply
calculates the aggregated flow entry count that the switches would
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set of VMs. The choice of this module was inspired from require-
ments of real-world control programs, and is meant also to embody
recent research in tenant bandwidth reservations [4, 16]. The goal
of these methods is to place as many tenant requests as possible for
VM clusters with bandwidth guarantees. Thus, GBM prefers allo-
cations that are likely to fit more such requests by consuming less
network bandwidth. When proposing a network state, GBM uses
the same implementation suggestion by Ballani et al. [4], which
places each request (described in the Hose bandwidth model) in
the smallest (lowest) network subtree. Its compare() method would
prefer network states that use less average link bandwidth. Its eval-
uate() method could return a value inversely proportional to the
average link bandwidth usage of a network state.

Example: Switch Resource Module (SRM). Finally, consider
a module that manages switch resources, such as entries in a flow
table. Unlike other modules, this Switch Resource Module (SRM)
does not need to generate new proposals. Instead, it evaluates pro-
posals from other modules: ensuring no switch is overloaded by
expressing fixed-size flow table limits as a constraint, while also
expressing a preference for proposals that use fewer flow table en-
tries. For our prototype SRM, we assume that it is given adequate
information about flow table usage in each proposal (i.e., we as-
sume all-to-all VM communication patterns for each tenant, and
that flow paths are assigned within a proposal). We do not consider
flow aggregation. SRM’s implementation of compare() method
would prefer network states that use smaller number of flow ta-
ble entries. To evaluate() a network state, it could return a value
that is inversely proportional to the total number of entries used in
switches if the network state is admitted.

3.2 Example proposals by modules
Figure 2 shows examples of proposals generated by two mod-

ules. For illustrative purposes, the examples assume a three level
tree topology with four racks; each rack has four physical machines
with two VM slots per machine. Each rack thus has a capacity of
eight VM slots. We also assume each link has enough bandwidth
to satisfy two incoming tenant requests: R1 <5, 100 Mbps> and R2
<10, 200 Mbps>. In other words, R1 requires a cluster of 5 VMs
connected by virtual links (hoses) of bandwidth 100 Mbps, while
R2 requires a cluster of 10 VMs connected by hoses of bandwidth
200 Mbps.

(a) Example FTM proposal (b) Example GBM proposal

Figure 2: Proposed network states by FTM and GBM for ten-
ant requests R1: <5, 100 Mbps> and R2: <10, 200 Mbps>, re-
spectively. Red slots are occupied by R1 and green slots by R2.
Numbers beside a link show reserved bandwidth on the corre-
sponding link for each request

Figure 2(a) shows the network state proposed by FTM for re-
quests R1 and R2. Since FTM aims to preserve per-tenant fault-
tolerance, it spreads each tenant’s VMs across fault domains, shown

as red rectangles (VMs of R1) and green rectangles (VMs of R2)
in Figure 2(a).

Figure 2(b) shows the network state proposed by GBM for the
two requests. Since GBM tries to place VMs of each request in the
smallest subtree in the topology, it places VMs of R1 in the subtree
of switch S4, and VMs of R2 in the subtree of switch S3.

For GBM, VM placement impacts the reserved bandwidth on
each link. In Figure 2, the number beside a link shows reserved
bandwidth on that link for each request. Each link divides a tenant
tree into two components, and bandwidth needed on this link for
the tenant is determined by multiplying the per-VM bandwidth re-
quired by the tenant and the number of VMs on the smaller of the
two components [4]. For example, in Figure 2(a), the link between
S2 and S4 divides R1’s VMs into 2 components, with 2 and 3 VMs
respectively. Therefore, the bandwidth required by R1 on this link
equals min(2, 3) × 100Mbps = 200Mbps. Similarly, the band-
width required by R2 on this link equals min(2, 8)× 200Mbps =
400Mbps.

3.3 Implementing the Athens API
Currently, each module only needs to implement two of three

methods:

• P propose(requests): return a proposal P representing net-
work state.

• int compare(P1, P2): compare proposals P1, P2, and indicate
which proposal it prefers, or “no preference”.

• float evaluate(P): evaluate a proposal P, and return a value
representing a rating.

Using FTM as an example, we illustrate pseudocode for these
methods. Algorithm 1 shows a code snippet of the propose method.
This method changes the current topology by placing VMs of a
tenant’s request in isolated racks (fault domains) to increase the
tenant’s WCS.

Algorithm 1: Pseudocode for FTM.propose()

1 def propose(requests):
2 newTopology = getCurrentTopology();
3 for r in requests:
4 numVMs = r.numVMs;
5 numOpenSlots =

newTopology.getNumOpenSlots();
6 if numOpenSlots < numVMs:
7 return getCurrentTopology();
8 openRacks = newTopology.getOpenRacks();
9 openRackIndex = 0;

10 length = openRacks.length;
11 for vm in r.getVMs():
12 rackIndex = openRackIndex % length;
13 openRacks [rackIndex ].addVM(vm);
14 openRackIndex += 1;

15 return newTopology;

Algorithms 2 and 3 show the implementation of the evaluate
method for FTM and SRM, respectively. The FTM evaluate method
simply returns the average worse-case survivability (WCS) of all
tenants if the proposal is accepted. Thus, it favors proposals that
result in higher WCS values. The SRM evaluate method simply
calculates the aggregated flow entry count that the switches would
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set of VMs. The choice of this module was inspired from require-
ments of real-world control programs, and is meant also to embody
recent research in tenant bandwidth reservations [4, 16]. The goal
of these methods is to place as many tenant requests as possible for
VM clusters with bandwidth guarantees. Thus, GBM prefers allo-
cations that are likely to fit more such requests by consuming less
network bandwidth. When proposing a network state, GBM uses
the same implementation suggestion by Ballani et al. [4], which
places each request (described in the Hose bandwidth model) in
the smallest (lowest) network subtree. Its compare() method would
prefer network states that use less average link bandwidth. Its eval-
uate() method could return a value inversely proportional to the
average link bandwidth usage of a network state.

Example: Switch Resource Module (SRM). Finally, consider
a module that manages switch resources, such as entries in a flow
table. Unlike other modules, this Switch Resource Module (SRM)
does not need to generate new proposals. Instead, it evaluates pro-
posals from other modules: ensuring no switch is overloaded by
expressing fixed-size flow table limits as a constraint, while also
expressing a preference for proposals that use fewer flow table en-
tries. For our prototype SRM, we assume that it is given adequate
information about flow table usage in each proposal (i.e., we as-
sume all-to-all VM communication patterns for each tenant, and
that flow paths are assigned within a proposal). We do not consider
flow aggregation. SRM’s implementation of compare() method
would prefer network states that use smaller number of flow ta-
ble entries. To evaluate() a network state, it could return a value
that is inversely proportional to the total number of entries used in
switches if the network state is admitted.

3.2 Example proposals by modules
Figure 2 shows examples of proposals generated by two mod-

ules. For illustrative purposes, the examples assume a three level
tree topology with four racks; each rack has four physical machines
with two VM slots per machine. Each rack thus has a capacity of
eight VM slots. We also assume each link has enough bandwidth
to satisfy two incoming tenant requests: R1 <5, 100 Mbps> and R2
<10, 200 Mbps>. In other words, R1 requires a cluster of 5 VMs
connected by virtual links (hoses) of bandwidth 100 Mbps, while
R2 requires a cluster of 10 VMs connected by hoses of bandwidth
200 Mbps.

(a) Example FTM proposal (b) Example GBM proposal

Figure 2: Proposed network states by FTM and GBM for ten-
ant requests R1: <5, 100 Mbps> and R2: <10, 200 Mbps>, re-
spectively. Red slots are occupied by R1 and green slots by R2.
Numbers beside a link show reserved bandwidth on the corre-
sponding link for each request

Figure 2(a) shows the network state proposed by FTM for re-
quests R1 and R2. Since FTM aims to preserve per-tenant fault-
tolerance, it spreads each tenant’s VMs across fault domains, shown

as red rectangles (VMs of R1) and green rectangles (VMs of R2)
in Figure 2(a).

Figure 2(b) shows the network state proposed by GBM for the
two requests. Since GBM tries to place VMs of each request in the
smallest subtree in the topology, it places VMs of R1 in the subtree
of switch S4, and VMs of R2 in the subtree of switch S3.

For GBM, VM placement impacts the reserved bandwidth on
each link. In Figure 2, the number beside a link shows reserved
bandwidth on that link for each request. Each link divides a tenant
tree into two components, and bandwidth needed on this link for
the tenant is determined by multiplying the per-VM bandwidth re-
quired by the tenant and the number of VMs on the smaller of the
two components [4]. For example, in Figure 2(a), the link between
S2 and S4 divides R1’s VMs into 2 components, with 2 and 3 VMs
respectively. Therefore, the bandwidth required by R1 on this link
equals min(2, 3) × 100Mbps = 200Mbps. Similarly, the band-
width required by R2 on this link equals min(2, 8)× 200Mbps =
400Mbps.

3.3 Implementing the Athens API
Currently, each module only needs to implement two of three

methods:

• P propose(requests): return a proposal P representing net-
work state.

• int compare(P1, P2): compare proposals P1, P2, and indicate
which proposal it prefers, or “no preference”.

• float evaluate(P): evaluate a proposal P, and return a value
representing a rating.

Using FTM as an example, we illustrate pseudocode for these
methods. Algorithm 1 shows a code snippet of the propose method.
This method changes the current topology by placing VMs of a
tenant’s request in isolated racks (fault domains) to increase the
tenant’s WCS.

Algorithm 1: Pseudocode for FTM.propose()

1 def propose(requests):
2 newTopology = getCurrentTopology();
3 for r in requests:
4 numVMs = r.numVMs;
5 numOpenSlots =

newTopology.getNumOpenSlots();
6 if numOpenSlots < numVMs:
7 return getCurrentTopology();
8 openRacks = newTopology.getOpenRacks();
9 openRackIndex = 0;

10 length = openRacks.length;
11 for vm in r.getVMs():
12 rackIndex = openRackIndex % length;
13 openRacks [rackIndex ].addVM(vm);
14 openRackIndex += 1;

15 return newTopology;

Algorithms 2 and 3 show the implementation of the evaluate
method for FTM and SRM, respectively. The FTM evaluate method
simply returns the average worse-case survivability (WCS) of all
tenants if the proposal is accepted. Thus, it favors proposals that
result in higher WCS values. The SRM evaluate method simply
calculates the aggregated flow entry count that the switches would
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