state management

5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

modular

| creation of
_— [oF:[a = .
applications L firewall | monitor l| routing apps built
balancer —)
from high-
level

ing API Pyretic
programming 4 < abstractions

runtime controller platform

hardware-

switch API OpenFlow < oriented

switches

datacenter network (DCN)

runs multiple management applications

= traffic engineering
= server |load balancing
= network virtualization

infrastructure

= failure recovery NetPilot [SIGCOMM’| 2]
= energy saving Elastic tree [NSDI’10]
= switch configuration

management applications

application

perform

computation

measure reconfigure

y,
network)

e

running multiple applications

perform

computation

y

network
\VJ
perform perform
computation computation

5

running multiple applications

applications can
” inadvertently affect the
allocates .
traffic operations of another

traffic engineering

through B

Y
network
\V\J
perform (/ firmware-
computation upgrade on B

infrastructure

6

running multiple applications

applications can
inadvertently affect the
allocates .
traffic operations of another

traffic engineering

through B

= application conflict

Y
network
\V\J
perform (/ firmware-
computation upgrade on B

infrastructure

7

running multiple applications

applications can
inadvertently affect the
allocates .
traffic operations of another

traffic engineering

through B

= application conflict

y)
network
\V\J
perform (/ HIEn\VEIES traffic lost
computation upgrade on B at B

infrastructure

7

running multiple applications

perform

computation

traffic engineering

N\
Switch A $ Switch D

allocates L -I~
ciiile Switch Bl y
through B Yo

J

network
\ V\J

firmware-

upgrade on B

infrastructure

|

traffic lost
at B

TE application allocates
traffic on the path
through Switch B

Switch-firmware-upgrac
application schedules
switch B for upgrading

running multiple applications

combined effects lead to

network-wide failures
move traffic - safety failure

failure mitigation

fromAtoB

flaky
switch A

Y
network
\V\J
perform (/ firmware-
computation upgrade on B

infrastructure

9

running multiple applications

combined effects lead to

network-wide failures
move traffic - safety failure

failure mitigation

fromAtoB

flaky
switch A

connectivity <
4 lost {
perform (/ firmware-
computation upgrade on B

infrastructure

9

running multiple applications

Core Routers Failure-mitigation
/____Pod application tries to shut

down flaky Agg A,
assuming Agg B is up. Connectivity of
[ToRs is lost

failure mitigation
Switch-firmware-upgrade

move trafﬁc application assumes Agg A |
fromAto B $ ToRs | s up, and schedules Agg B

for upgrading.

flaky
switch A

J

network

perform (/ firmware-
computation upgrade on B

infrastructure

|0

running multiple applications

Core Routers Failure-mitigation
/____Pod application tries to shut

down flaky Agg A,
assuming Agg B is up. Connectivity of
[ToRs is lost

failure mitigation
Switch-firmware-upgrade

move trafﬁc application assumes Agg A |
fromAto B $ ToRs | s up, and schedules Agg B

for upgrading.

flaky
switch A

J

connectivity
lost

AN

perform (/ firmware-
computation upgrade on B

infrastructure

|0

alternative to running multiple applications

one single monolithic application

= complex
= explicit coordination
= high overhead on applications

alternative to running multiple applications

one single monolithic application

= complex
= explicit coordination
= high overhead on applications

tightly coupled, repeated extension

12

statesman approach

statesman approach

build and run applications in a loosely coupled
manner

statesman approach

build and run applications in a loosely coupled
manner

introduce a separate (state) management system

= conflict resolution
= invariant enforcement

= applications “pull” observed
states (OYS)

= applications “push”

computation proposed states (PS)

- the separate statesman
system “merges’” the states
into target states (T5)

perform

state 4
\ management)

et P

perform (-/ perform
computation computation

statesman approach

measure reconfigure
applications

actual desired
network network
state state

statesman approach

measure reconfigure
applications

actual desired
network network
state state

statesman approach

application

. merge
applications
actual desired
network application network
state state

application

DC checker

\ /

applications Do
L 4 /

dependency
model

actual desired
network application network

state state

checker

checker

use state dependency model

= determine whether PSes applicable to existing OSes
= detect and resolve conflicts among PSes
=form TSes

checker

use state dependency model

= determine whether PSes applicable to existing OSes
= detect and resolve conflicts among PSes
=form TSes

use operator-specified invariants
= examine the TSes against the invariants

state variables in one application’s PS can depend on state
variables in another application’s P$

B depends on A

= A is a prerequisite for -

writing B states

state variables in one application’s PS can depend on state
variables in another application’s P$

B depends on A
= A is a prerequisite for
writing B states

=B is controllable only if A
value is appropriate

state variables in one application’s PS can depend on state
variables in another application’s P$

B depends on A

= A is a prerequisite for -

writing B states

=B is controllable only if A
value is appropriate

conflicts

=B is uncontrollable due to
state (or state change) in A

using state dependency model

Path Dependency
Path/Traffic Setup

e |
|
Routing Control 4.—5— Link Interface Config
| |
t . t
Device Configuration -i—i* Link Power
|
S oo
, i | Link
' | Operating System Setup :
Power Device

22

using state dependency model

Statesman exposes e o Path Dependency

| Path/Traffic Setup :
- B’s (latest) value S

-together Wlth a Iog|ca| i Routing Control 4:—2— Linklnten:ce Config
- . ' 4 .

Contro”ablllty Val"lable il Device Configuration —|—|->: : Link Power !
=“1” only if all B’s parents are 5 s -
: ! Link

controllable | | Operating System Setup i

I T '

Power Device

22

using state dependency model

Statesman exposes e e Path Dependency
| Path/Traffic Setup :
- B’s (latest) value S
—together Wlth a Iog|ca| i Routing Control Jl—i— Link Interface Config
" : | f L f
ContrO”ablllty Val"lable il Device Configuration —|—|->: : Link Power !
=“1” only if all B’s parents are 5 s -
: ! Link
controllable | | Operating System Setup i
" ; t |
ques |On] Power Device

- how to extend the
dependency model?

=advantage of having an
explicit separate model?

22

resolving conflicts

23

resolving conflicts
TS-OS, PS-OS

= conflicts due to the changing OS
= makes some variables in TS/PS uncontrollable

= solution: simply reject

23

TS-OS, PS-OS

= conflicts due to the changing OS
= makes some variables in TS/PS uncontrollable

= solution: simply reject
PS-TS

=a PS can conflict with the TS due to an accepted PS from

another application
= TS is really just the accumulation of all accepted in the past

= solution
= accept with last-write-wins / priority-based locking
= at the level of individual switches and links

what

= invariants: infrastructure’s operational stability, independent of
apps
= suffice to safeguard the network & not too stringent with app goals

= examples: connectivity, capacity

how

= checking TS against invariants
= maintain a base network state graph using values from the OS
= compute difference between TS and OS
= check invariants on the new network state

discussion

making multiple applications coexist

= ONIX, NOX: no support

- Pyretic, Pane, Maple: compose target traffic management
applications

= Corybantics: hosting multiple applications on isolated slices

25

statesman: use cases,
evaluations ...

26

statesman deployment

. Link Failure | |Switch Firmware | | Checker
10 geographically- e || s | {5
distributed datacenters
(DCs) —
. . Other DCs<§ (— vProxy —]
- cover SWItCheS’ Ilnl(s (ServiceFront/l;nd/Pla\)A(/osBackend]
within each DC and wisos| [Storgeservs

Diff OS-TS

across DC (WAN) EE "=
th ree aPPI ications [Collector][ColIector] *** | | Updater

= switch-upgrade
= failure-mitigation
=inter-DC TE

27

challenges—maintaining globally available and
distributed states

=inter-DC
= due to WAN failures, DCs may be disconnected

=within-DC
= huge volume of state data: hundreds of thousands of switches and links
= millions of state variables

28

- heterogeneity: diverse range of network elements expose
heterogenous interfaces for updates

= device can fail during an update
= device respond slow, dominating the application control loop

solution—maintaining globally available and
distributed states

30

solution—maintaining globally available and
distributed states

partitioning checker’s responsibility into impact
groups
= one impact group per DC

= one additional impact group with border routers of all DCs
and the WAN links

30

solution—maintaining globally available and
distributed states

partitioning checker’s responsibility into impact
groups
= one impact group per DC

= one additional impact group with border routers of all DCs
and the WAN links

partitioning monitor

= split monitor’s responsibility into many instances
= each covers |k switches

30

solution—updating DCN states

solution—updating DCN states

heterogeneity
= OpenFlow and command templates

31

solution—updating DCN states

heterogeneity
= OpenFlow and command templates

dynamic failures

- stateless updates
=simply push to the devices the latest OS-TS difference

31

use case: maintaining invariants

switch_upgrade and

CORE 1 4]
________________ —— . failure_mitigation
AGG | (1 @ D @ @: @ .
- coexXist
ToR | I B ’
Podi Podd Pod10 statesman goal:
X Link with FCS error . L. .
maintaining capacity
Invariant

=99% ToR pairs have at least
50% capacity

32

use case: maintaining invariants

one DC with 10 pods

=each pod has 4 AGGs and a
number of ToRs

X Link with FCS error — upgrade a_” 40 AGGS

= (sequentially) pod by pod

= attempt parallel upgrades
within each pod

33

use case: maintaining invariants

90 ToR pairs

=one ToR from each pod
=put the 9 ToR pairs from the

____________________) R o - g = = = N\ = -

AGGID - @M D@ Do @

, ! (NN i X i o0 0 i
R [-+ @ (- @ (- @ same pods together
Pod 1 Pod 4 Pod 10

X Link with FCS error

100% Capacity 0 75% Capacity 450% Capacity

Time Series in Minutes

use case: maintaining invariants

90 ToR pairs

____________________) R o - g = = = N\ = -

. -. - =one ToR from each pod
e e e B =put the 9 ToR pairs from the
TR {0 +-- | (0 -+ @ -+ @ same pods together

i —————— —————— - i —————— —————— - i —————— —————— -

X Link with FCS error A’ B, C

100% Capacity 0 75% Capacity A50% Capacity - SWitCh-U Pgrade u Pgrades
pod 1,2,3

Time Series in Minutes

90 ToR pairs

=one ToR from each pod
=put the 9 ToR pairs from the

__

AGG ! - @ Cj @ - @

! i ese e i X i oo i i
R (0 - W} - @ M-+ @ same pods together
Pod 1 Pod 4 Pod 10
X Link with FCS error D

100% Capacity 0 75% Capacity 450% Capacity - fal | u re-miti gation detects
problem, shutting down link

Time Series in Minutes

90 ToR pairs

=one ToR from each pod
=put the 9 ToR pairs from the

__

AGG ! - @ Cj @ - @
:ooo:x :oooi

ToR mfﬂ .- m M- @ same pods together
Pod 1 Pod 4 Pod 10
X Link with FCS error E

100% Capacity 0 75% Capacity A50% Capacity - SWitCh-U Pgrade SIOWS dOWﬂ

by the checker

= upgrades Agg |,2 together; then
Agg 3; finally Agg 4

Time Series in Minutes

use case: resolving conflicts

DC2|

BR = Border Router
setup

""Q@@//@\ """" =8 border routers (BRs)

=24 (12 physical links x 2
directions) inter-DC links
:DcséBRS goal

= upgrade BRs while inter-DC
TE is on

38

use case: resolving conflicts

'DC 2!

o= Border foter % solution: statesman
' coordinates, by locks,
swtich_upgrade, TE

=assign TE low-level lock
= switch_upgrade high-level
lock

39

use case: resolving conflicts

'DC 2|
BR = Border Router BR 3|

statesman coordinates
swtich_upgrade, TE

=assign TE low-level lock
= switch _upgrade high-level
lock

= switch_upgrade acquires
high-level lock on BR|

0 10 _ 20 30 40 50
Time Series in Minutes

40

use case: resolving conflicts

.DC 2!

statesman coordinates
swtich_upgrade, TE

=assign TE low-level lock
= switch _upgrade high-level
lock

B

= TE fails to hold low-level

lock, moving traffic away
from BR|

\I | | |
0 10 _ 20 30 40 50
Time Series in Minutes

41

use case: resolving conflicts

'DC 2|
BR = Border Router BR 3|

statesman coordinates
swtich_upgrade, TE

=assign TE low-level lock
= switch _upgrade high-level
lock

C,D
= C upgrading BR| in progress
=D upgrading done at BR|,
releasing high-level lock

0 10 _ 20 30 40 50
Time Series in Minutes

42

use case: resolving conflicts

'DC 2|
BR = Border Router BR 3|

statesman coordinates
swtich_upgrade, TE

=assign TE low-level lock
= switch _upgrade high-level
lock

E

= TE grabs low-level lock, in
operation

\I | | | |
0 10 _ 20 30 40 50
Time Series in Minutes

43

use case: resolving conflicts

'DC 2|
BR = Border Router BR 3|

statesman coordinates
swtich_upgrade, TE

=assign TE low-level lock
= switch _upgrade high-level
lock

il qUESTION
= what next!?

0 10 _ 20 30 40 50
Time Series in Minutes

44

statesman performance

evaluating latency
= application: (<10ms) negligible
= checker: seconds
= updater: (>50%) dominating

45

