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datacenter network (DCN)
runs multiple management applications
-traffic engineering
-server load balancing
-network virtualization

infrastructure
-failure recovery NetPilot [SIGCOMM’12]
-energy saving Elastic tree [NSDI’10]
-switch configuration
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Abstract— We present Statesman, a network-state management
service that allows multiple network management applications to
operate independently, while maintaining network-wide safety and
performance invariants. Network state captures various aspects of
the network such as which links are alive and how switches are for-
warding traffic. Statesman uses three views of the network state.
In observed state, it maintains an up-to-date view of the actual net-
work state. Applications read this state and propose state changes
based on their individual goals. Using a model of dependencies
among state variables, Statesman merges these proposed states into
a target state that is guaranteed to maintain the safety and perfor-
mance invariants. It then updates the network to the target state.
Statesman has been deployed in ten Microsoft Azure datacenters
for several months, and three distinct applications have been built
on it. We use the experience from this deployment to demonstrate
how Statesman enables each application to meet its goals, while
maintaining network-wide invariants.

Categories and Subject Descriptors:
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design;
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network management

Keywords:
Network state; software-defined networking; datacenter network

1. Introduction
Today’s planetary-scale services (e.g., search, social network-

ing, and cloud computing) depend on large datacenter networks
(DCNs). Keeping these networks running smoothly is difficult, due
to the sheer number of physical devices, and the dynamic nature of
the environment. At any given moment, multiple switches expe-
rience component failures, are brought down for planned mainte-
nance or saving energy, are upgraded with new firmware, or are
reconfigured to adapt to prevailing traffic demand. In response,
DCN operators have developed an array of automated systems for
managing the traffic (e.g., traffic engineering [12, 13], server load
balancing [25], and network virtualization [17]) and the infrastruc-
ture (e.g., hardware power control for failure mitigation or energy
saving [10, 30], switch firmware upgrade, and switch configuration
management [4, 5]).
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Figure 1: Example of an application conflict

Each management application is highly sophisticated in its own
right, usually requiring several years to design, develop, and de-
ploy. It typically takes the form of a “control loop” that measures
the current state of the network, performs a computation, and then
reconfigures the network. For example, a traffic engineering (TE)
application measures the current traffic demand and network topo-
logy, solves an optimization problem, and then changes the routing
configuration to match demand. These applications are compli-
cated because they must work correctly even in the presence of
failures, variable delays in communicating with a distributed set of
devices, and frequent changes in network conditions.

Designing and running a single network management application
is challenging enough; large DCNs must simultaneously run mul-
tiple applications—created by different teams, each reading and
writing some part of the network state. For instance, both a TE
application and an application to mitigate link failures need to run
continuously to, respectively, adjust the routing configuration con-
tinuously and detect and resolve failures quickly.

These applications can conflict with each other, even if they in-
teract with the network at different levels, such as establishing net-
work paths, assigning IP addresses to interfaces, or installing firm-
ware on switches. One application can inadvertently affect the ope-
ration of another. As an example in Figure 1, suppose a TE ap-
plication wants to create a tunnel through the switch B, while a
firmware-upgrade application wants to upgrade B. Depending on
which action happens first, either the TE application fails to create
the tunnel (because B is already down), or the already-established
tunnel ultimately drops traffic during the firmware upgrade.

Running multiple management applications also raises the risk
of network-wide failures because their complex interactions make
it hard to reason about their combined effect. Figure 2 shows an
example where one application wants to shut down switch AggB
to upgrade its firmware, while another wants to shut down switch
AggA to mitigate packet corruption. While each application acting
alone is fine, their joint actions would disconnect the ToRs (top-of-
rack). To prevent such disasters, it is imperative to ensure that the
collective actions of the applications do not violate certain network-
wide invariants, which specify basic safety and performance re-
quirements for the network. For instance, a pod of servers must not
be disconnected from the rest of the datacenter, and there must be
some minimum bandwidth between each pair of pods.
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Figure 2: Example of a safety violation

DCN operators could conceivably circumvent the problems that
stem from running multiple applications by developing a single ap-
plication that performs all functions, e.g., combining TE, firmware
upgrade, and failure mitigation. However, this monolithic applica-
tion would be highly complex, and worse, it would need to be ex-
tended repeatedly as new needs arise. Thus, DCN operators need a
way to keep the applications separate.

Another option is to have explicit coordination among appli-
cations. Corybantic [23] is one recent proposal that follows this
approach. While coordination may be useful for a subset of ap-
plications, using it as a general solution to the problem of multi-
application co-existence imposes high overhead on applications. It
would require each application to understand the intended network
changes of all others. To make matters worse, every time an appli-
cation is changed or a new one is developed, DCN operators would
need to test again, and potentially retrofit some existing applica-
tions, in order to ensure that all of them continue to co-exist safely.

We argue that network management applications should be built
and run in a loosely coupled manner, without explicit or implicit
dependencies on each other, and conflict resolution and invariant
enforcement should be handled by a separate management system.
This architecture would simplify application development, and its
simplicity would boost network stability and predictability. It may
forgo some performance gains possible through tight coupling and
joint optimization. However, as noted above, such coupling greatly
increases application complexity. Further, since applications may
have competing objectives, a management system to resolve con-
flicts and maintain invariants would be needed anyway. We thus
believe that loose coupling of applications is a worthwhile tradeoff
in exchange for significant reduction in complexity.

In this paper, we present Statesman, a network-state manage-
ment service that supports multiple loosely-coupled management
applications in large DCNs. Each application operates by reading
and writing some part of the network state at its own pace, and Sta-
tesman functions as the conflict resolver and invariant guardian.
Our design introduces two main ideas that simplify the design and
deployment of network management applications:

Three views of network state (observed, proposed, target): In
order to prevent conflicts and invariant violations, applications can-
not change the state of the network directly. Instead, each applica-
tion applies its own logic to the network’s observed state to gen-
erate proposed states that may change one or more state variables.
Statesman merges all proposed states into one target state. In the
merging process, it examines all proposed states to resolve con-
flicts and ensures that the target state satisfies an extensible set of
network-wide invariants. Our design is inspired by version control
systems like git. Each application corresponds to a different git
user and (i) the observed state corresponds to the code each user
“pulls”, (ii) the proposed state corresponds to the code the user
wants to “push”, and (iii) the target state corresponds to the merged
code that is ultimately stored back in the shared repository.

Dependency model of state variables: Prior work on abstract-
ing network state for applications models the state as independent
variable-value pairs [18, 19]. However, this model does not contain
enough semantic knowledge about how various state variables are
related, which hinders detection of conflicts and potential invariant
violations. For example, a tunnel cannot direct traffic over a path
that includes a switch that is administratively down. To ensure safe
merging of proposed states, Statesman uses a dependency model to
capture the domain-specific dependencies among state variables.

Statesman has been deployed in ten datacenters of Microsoft
Azure for several months. It currently manages over 1.5 million
state variables from links and switches across the globe. We have
also deployed two management applications—switch firmware up-
grade and link failure mitigation, and a third one—inter-datacenter
TE—is undergoing pre-deployment testing. The diverse function-
alities of these applications showcase how Statesman can safely
support multiple applications, without hurting each other or the net-
work. We also show that these benefits come with reasonably low
overhead. For instance, the latency for conflict resolution and in-
variant checking is under 10 seconds even in the largest DCN with
394K state variables. We believe that our experience with States-
man can inform the design of future management systems for large
production networks.

2. Statesman Model
In this section, we provide more details on the model of network

state underlying Statesman, and how applications use that model.

2.1 Three Views of Network State

Although management applications have different functionali-
ties, they typically follow a control loop of reading some aspects
of the network state, running some computation on the state, and
accordingly changing the network. One could imagine that each
application reads and writes states to the network devices directly.

However, direct interaction between the network and applica-
tions is undesirable for two reasons. First, it cannot ensure that
individual applications or their collective actions will not violate
network-wide invariants. Second, reliably reading and writing net-
work state is complex because of response-time variances and link
or switch failures. When a command to a switch takes a long time,
the application has to decide when to retry, how many times, and
when to give up. When a command fails, the application has to
parse the error code and decide how to react.

Given issues above, Statesman abstracts the network state as
multiple variable-value pairs. Further, it maintains three different
types of views of network state. Two of these are observed state
(OS) and target state (TS). The OS is (a latest view of) the actual
state of the network, which Statesman keeps up-to-date. Applica-
tions read the OS to learn about current network state. The TS is
the desired state of the network, and Statesman is responsible for
updating the network to match the TS. Any success or failure of
updating the network towards the TS will be (eventually) reflected
into the OS, from where the applications will learn about the pre-
vailing network conditions.

The OS and TS views are not sufficient for resolving conflicts
and enforcing invariants. If applications directly write to the TS,
the examples in Figure 1 and 2 can still happen. We thus introduce
the third type of view called proposed state (PS) that captures the
state desired by applications. Each application writes its own PS.
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DCN operators could conceivably circumvent the problems that
stem from running multiple applications by developing a single ap-
plication that performs all functions, e.g., combining TE, firmware
upgrade, and failure mitigation. However, this monolithic applica-
tion would be highly complex, and worse, it would need to be ex-
tended repeatedly as new needs arise. Thus, DCN operators need a
way to keep the applications separate.

Another option is to have explicit coordination among appli-
cations. Corybantic [23] is one recent proposal that follows this
approach. While coordination may be useful for a subset of ap-
plications, using it as a general solution to the problem of multi-
application co-existence imposes high overhead on applications. It
would require each application to understand the intended network
changes of all others. To make matters worse, every time an appli-
cation is changed or a new one is developed, DCN operators would
need to test again, and potentially retrofit some existing applica-
tions, in order to ensure that all of them continue to co-exist safely.

We argue that network management applications should be built
and run in a loosely coupled manner, without explicit or implicit
dependencies on each other, and conflict resolution and invariant
enforcement should be handled by a separate management system.
This architecture would simplify application development, and its
simplicity would boost network stability and predictability. It may
forgo some performance gains possible through tight coupling and
joint optimization. However, as noted above, such coupling greatly
increases application complexity. Further, since applications may
have competing objectives, a management system to resolve con-
flicts and maintain invariants would be needed anyway. We thus
believe that loose coupling of applications is a worthwhile tradeoff
in exchange for significant reduction in complexity.

In this paper, we present Statesman, a network-state manage-
ment service that supports multiple loosely-coupled management
applications in large DCNs. Each application operates by reading
and writing some part of the network state at its own pace, and Sta-
tesman functions as the conflict resolver and invariant guardian.
Our design introduces two main ideas that simplify the design and
deployment of network management applications:

Three views of network state (observed, proposed, target): In
order to prevent conflicts and invariant violations, applications can-
not change the state of the network directly. Instead, each applica-
tion applies its own logic to the network’s observed state to gen-
erate proposed states that may change one or more state variables.
Statesman merges all proposed states into one target state. In the
merging process, it examines all proposed states to resolve con-
flicts and ensures that the target state satisfies an extensible set of
network-wide invariants. Our design is inspired by version control
systems like git. Each application corresponds to a different git
user and (i) the observed state corresponds to the code each user
“pulls”, (ii) the proposed state corresponds to the code the user
wants to “push”, and (iii) the target state corresponds to the merged
code that is ultimately stored back in the shared repository.

Dependency model of state variables: Prior work on abstract-
ing network state for applications models the state as independent
variable-value pairs [18, 19]. However, this model does not contain
enough semantic knowledge about how various state variables are
related, which hinders detection of conflicts and potential invariant
violations. For example, a tunnel cannot direct traffic over a path
that includes a switch that is administratively down. To ensure safe
merging of proposed states, Statesman uses a dependency model to
capture the domain-specific dependencies among state variables.

Statesman has been deployed in ten datacenters of Microsoft
Azure for several months. It currently manages over 1.5 million
state variables from links and switches across the globe. We have
also deployed two management applications—switch firmware up-
grade and link failure mitigation, and a third one—inter-datacenter
TE—is undergoing pre-deployment testing. The diverse function-
alities of these applications showcase how Statesman can safely
support multiple applications, without hurting each other or the net-
work. We also show that these benefits come with reasonably low
overhead. For instance, the latency for conflict resolution and in-
variant checking is under 10 seconds even in the largest DCN with
394K state variables. We believe that our experience with States-
man can inform the design of future management systems for large
production networks.

2. Statesman Model
In this section, we provide more details on the model of network

state underlying Statesman, and how applications use that model.

2.1 Three Views of Network State

Although management applications have different functionali-
ties, they typically follow a control loop of reading some aspects
of the network state, running some computation on the state, and
accordingly changing the network. One could imagine that each
application reads and writes states to the network devices directly.

However, direct interaction between the network and applica-
tions is undesirable for two reasons. First, it cannot ensure that
individual applications or their collective actions will not violate
network-wide invariants. Second, reliably reading and writing net-
work state is complex because of response-time variances and link
or switch failures. When a command to a switch takes a long time,
the application has to decide when to retry, how many times, and
when to give up. When a command fails, the application has to
parse the error code and decide how to react.

Given issues above, Statesman abstracts the network state as
multiple variable-value pairs. Further, it maintains three different
types of views of network state. Two of these are observed state
(OS) and target state (TS). The OS is (a latest view of) the actual
state of the network, which Statesman keeps up-to-date. Applica-
tions read the OS to learn about current network state. The TS is
the desired state of the network, and Statesman is responsible for
updating the network to match the TS. Any success or failure of
updating the network towards the TS will be (eventually) reflected
into the OS, from where the applications will learn about the pre-
vailing network conditions.

The OS and TS views are not sufficient for resolving conflicts
and enforcing invariants. If applications directly write to the TS,
the examples in Figure 1 and 2 can still happen. We thus introduce
the third type of view called proposed state (PS) that captures the
state desired by applications. Each application writes its own PS.
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Checker plays a pivotal role of generating the TS. After reading
the OS, PSes, and TS from the storage service, the checker first ex-
amines whether some PSes are applicable with respect to the latest
OS (e.g., the proposed change may have already been made or can-
not be made at all due to a failure). It then detects conflicts among
PSes with the state dependency model and resolves them with one
of two configurable mechanisms: last-writer-wins or priority-based
locking. After merging the valid and non-conflicting PSes into the
TS, the checker examines the TS for operator-specified invariants.
It writes the TS to the storage service only if the TS complies with
the invariants. It also writes the acceptance or rejection results of
the PSes to the storage service, so applications can learn about the
outcomes and react accordingly.

Monitor periodically collects the current network state from the
switches and links, transforms it into OS variables, and writes the
variables to the storage service. In addition to making it easy for
other components and applications to learn about current network
state, the monitor also shields them from the heterogeneity among
devices. Based on the switch vendor and the supported technolo-
gies, it uses the corresponding protocol (e.g., SNMP or OpenFlow)
to collect the network statistics, and it translates protocol-specific
data to protocol-agnostic state variables. Other components and ap-
plications use these abstract variables without worrying about the
specifics of the underlying infrastructure.

Updater reads the OS and TS and translates their difference into
update commands that are then sent to the network. The updater
is memoryless—it applies the latest difference between the OS and
TS without regard to what happened in the past. Like the monitor,
the updater handles how to update heterogeneous devices with a
command template pool, and allows other components and appli-
cations to work with device- and protocol-agnostic state variables.

4. Managing Network State
We now describe the various aspects of Statesman in more de-

tails, starting with the network-state data model. We use the ex-
amples in Table 2 to illustrate how we build the state dependency
model, and how to use and extend the model.

4.1 The State Dependency Model

Managing a DCN involves multiple levels of control. To perform
the final function of carrying traffic, the DCN needs to be properly
powered and configured. Statesman aims to support operations in
the complete process of bringing up a large DCN from scratch to

Entity Level in Example Permissiondependency state variables

Path Path/traffic setup Switches on path ReadWrite
MPLS or VLAN config ReadWrite

Link

Link interface IP assignment ReadWrite
config Control plane setup ReadWrite

Link power Interface admin status ReadWrite
Interface oper status ReadOnly

N/A Traffic load ReadOnly
(counters) Packet drop rate ReadOnly

Device

Routing control Flow-link routing rules ReadWrite
Link weight allocation ReadWrite

Device Mgmt. interface setup ReadWrite
configuration OpenFlow agent status ReadWrite

Operating system Firmware version ReadWrite
setup Boot image ReadWrite

Power Admin power status ReadWrite
Power unit reachability ReadOnly

N/A CPU utilization ReadOnly
(counters) Memory utilization ReadOnly

Table 2: Example network state variables

normal operations. In order to capture the relationship among the
state variables at different levels of the management process, we
use the state dependency model of Figure 4. We use the process of
bootstrapping a DCN as an example to explain this model.

At the bottom of the dependency model is the power state of
network devices. With the power cable properly plugged in and
electricity properly distributed to the switches, we then need to con-
trol which switch operating system (i.e., firmware) runs. Running
a functioning firmware on a switch is a prerequisite for managing
switch configuration, e.g., use switch vendor’s API to configure the
management interface, boot up compatible OpenFlow agent, etc.

With device configuration states ready, we are able to control the
link interfaces on the switch now. The fundamental state variable
of a link is its being up or down. The configuration of a link in-
terface follows when the link is ready to be up. There are various
link-interface configuration states, such as IP assignment, VLAN
setup, ECMP-group assignment, etc. Consider an example of con-
trol plane setup where a link interface can be configured to use the
OpenFlow protocol or traditional protocols like BGP. For the cho-
sen option, we need to set it up: either an OpenFlow agent needs
to boot and take control of the link, or the BGP session needs to
start with proper policies. These control plane states of the link
determine whether and how the switch’s routing can be controlled.

We can manage the routing states of the switches when all the
dependent states are correct. We represent the routing state in a
data structure of the flow-link pairs, which is agnostic to the sup-
ported routing protocols. For example, the routing states can map to
the routing rules in OpenFlow or the prefix-route announcement or
withdrawal in BGP. When applications change the value of the rout-
ing state variable, Statesman (specifically the updater) automati-
cally translates the value to appropriate control-plane commands.

One level higher is the path state which controls tunnels through
multiple switches. Creating a tunnel and assigning traffic along the
path depend on all switches on the path having their routing states
ready to manage. Again, Statesman is responsible for translating
the path’s states into the routing states of all switches on the path,
and the application only needs to read or write the path states.
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Checker plays a pivotal role of generating the TS. After reading
the OS, PSes, and TS from the storage service, the checker first ex-
amines whether some PSes are applicable with respect to the latest
OS (e.g., the proposed change may have already been made or can-
not be made at all due to a failure). It then detects conflicts among
PSes with the state dependency model and resolves them with one
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locking. After merging the valid and non-conflicting PSes into the
TS, the checker examines the TS for operator-specified invariants.
It writes the TS to the storage service only if the TS complies with
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the PSes to the storage service, so applications can learn about the
outcomes and react accordingly.
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variables to the storage service. In addition to making it easy for
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gies, it uses the corresponding protocol (e.g., SNMP or OpenFlow)
to collect the network statistics, and it translates protocol-specific
data to protocol-agnostic state variables. Other components and ap-
plications use these abstract variables without worrying about the
specifics of the underlying infrastructure.

Updater reads the OS and TS and translates their difference into
update commands that are then sent to the network. The updater
is memoryless—it applies the latest difference between the OS and
TS without regard to what happened in the past. Like the monitor,
the updater handles how to update heterogeneous devices with a
command template pool, and allows other components and appli-
cations to work with device- and protocol-agnostic state variables.

4. Managing Network State
We now describe the various aspects of Statesman in more de-

tails, starting with the network-state data model. We use the ex-
amples in Table 2 to illustrate how we build the state dependency
model, and how to use and extend the model.

4.1 The State Dependency Model

Managing a DCN involves multiple levels of control. To perform
the final function of carrying traffic, the DCN needs to be properly
powered and configured. Statesman aims to support operations in
the complete process of bringing up a large DCN from scratch to
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MPLS or VLAN config ReadWrite
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config Control plane setup ReadWrite
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Link weight allocation ReadWrite

Device Mgmt. interface setup ReadWrite
configuration OpenFlow agent status ReadWrite

Operating system Firmware version ReadWrite
setup Boot image ReadWrite

Power Admin power status ReadWrite
Power unit reachability ReadOnly

N/A CPU utilization ReadOnly
(counters) Memory utilization ReadOnly

Table 2: Example network state variables

normal operations. In order to capture the relationship among the
state variables at different levels of the management process, we
use the state dependency model of Figure 4. We use the process of
bootstrapping a DCN as an example to explain this model.

At the bottom of the dependency model is the power state of
network devices. With the power cable properly plugged in and
electricity properly distributed to the switches, we then need to con-
trol which switch operating system (i.e., firmware) runs. Running
a functioning firmware on a switch is a prerequisite for managing
switch configuration, e.g., use switch vendor’s API to configure the
management interface, boot up compatible OpenFlow agent, etc.

With device configuration states ready, we are able to control the
link interfaces on the switch now. The fundamental state variable
of a link is its being up or down. The configuration of a link in-
terface follows when the link is ready to be up. There are various
link-interface configuration states, such as IP assignment, VLAN
setup, ECMP-group assignment, etc. Consider an example of con-
trol plane setup where a link interface can be configured to use the
OpenFlow protocol or traditional protocols like BGP. For the cho-
sen option, we need to set it up: either an OpenFlow agent needs
to boot and take control of the link, or the BGP session needs to
start with proper policies. These control plane states of the link
determine whether and how the switch’s routing can be controlled.

We can manage the routing states of the switches when all the
dependent states are correct. We represent the routing state in a
data structure of the flow-link pairs, which is agnostic to the sup-
ported routing protocols. For example, the routing states can map to
the routing rules in OpenFlow or the prefix-route announcement or
withdrawal in BGP. When applications change the value of the rout-
ing state variable, Statesman (specifically the updater) automati-
cally translates the value to appropriate control-plane commands.

One level higher is the path state which controls tunnels through
multiple switches. Creating a tunnel and assigning traffic along the
path depend on all switches on the path having their routing states
ready to manage. Again, Statesman is responsible for translating
the path’s states into the routing states of all switches on the path,
and the application only needs to read or write the path states.
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Checker plays a pivotal role of generating the TS. After reading
the OS, PSes, and TS from the storage service, the checker first ex-
amines whether some PSes are applicable with respect to the latest
OS (e.g., the proposed change may have already been made or can-
not be made at all due to a failure). It then detects conflicts among
PSes with the state dependency model and resolves them with one
of two configurable mechanisms: last-writer-wins or priority-based
locking. After merging the valid and non-conflicting PSes into the
TS, the checker examines the TS for operator-specified invariants.
It writes the TS to the storage service only if the TS complies with
the invariants. It also writes the acceptance or rejection results of
the PSes to the storage service, so applications can learn about the
outcomes and react accordingly.

Monitor periodically collects the current network state from the
switches and links, transforms it into OS variables, and writes the
variables to the storage service. In addition to making it easy for
other components and applications to learn about current network
state, the monitor also shields them from the heterogeneity among
devices. Based on the switch vendor and the supported technolo-
gies, it uses the corresponding protocol (e.g., SNMP or OpenFlow)
to collect the network statistics, and it translates protocol-specific
data to protocol-agnostic state variables. Other components and ap-
plications use these abstract variables without worrying about the
specifics of the underlying infrastructure.

Updater reads the OS and TS and translates their difference into
update commands that are then sent to the network. The updater
is memoryless—it applies the latest difference between the OS and
TS without regard to what happened in the past. Like the monitor,
the updater handles how to update heterogeneous devices with a
command template pool, and allows other components and appli-
cations to work with device- and protocol-agnostic state variables.

4. Managing Network State
We now describe the various aspects of Statesman in more de-

tails, starting with the network-state data model. We use the ex-
amples in Table 2 to illustrate how we build the state dependency
model, and how to use and extend the model.

4.1 The State Dependency Model

Managing a DCN involves multiple levels of control. To perform
the final function of carrying traffic, the DCN needs to be properly
powered and configured. Statesman aims to support operations in
the complete process of bringing up a large DCN from scratch to

Entity Level in Example Permissiondependency state variables

Path Path/traffic setup Switches on path ReadWrite
MPLS or VLAN config ReadWrite

Link

Link interface IP assignment ReadWrite
config Control plane setup ReadWrite

Link power Interface admin status ReadWrite
Interface oper status ReadOnly

N/A Traffic load ReadOnly
(counters) Packet drop rate ReadOnly

Device

Routing control Flow-link routing rules ReadWrite
Link weight allocation ReadWrite

Device Mgmt. interface setup ReadWrite
configuration OpenFlow agent status ReadWrite

Operating system Firmware version ReadWrite
setup Boot image ReadWrite

Power Admin power status ReadWrite
Power unit reachability ReadOnly

N/A CPU utilization ReadOnly
(counters) Memory utilization ReadOnly

Table 2: Example network state variables

normal operations. In order to capture the relationship among the
state variables at different levels of the management process, we
use the state dependency model of Figure 4. We use the process of
bootstrapping a DCN as an example to explain this model.

At the bottom of the dependency model is the power state of
network devices. With the power cable properly plugged in and
electricity properly distributed to the switches, we then need to con-
trol which switch operating system (i.e., firmware) runs. Running
a functioning firmware on a switch is a prerequisite for managing
switch configuration, e.g., use switch vendor’s API to configure the
management interface, boot up compatible OpenFlow agent, etc.

With device configuration states ready, we are able to control the
link interfaces on the switch now. The fundamental state variable
of a link is its being up or down. The configuration of a link in-
terface follows when the link is ready to be up. There are various
link-interface configuration states, such as IP assignment, VLAN
setup, ECMP-group assignment, etc. Consider an example of con-
trol plane setup where a link interface can be configured to use the
OpenFlow protocol or traditional protocols like BGP. For the cho-
sen option, we need to set it up: either an OpenFlow agent needs
to boot and take control of the link, or the BGP session needs to
start with proper policies. These control plane states of the link
determine whether and how the switch’s routing can be controlled.

We can manage the routing states of the switches when all the
dependent states are correct. We represent the routing state in a
data structure of the flow-link pairs, which is agnostic to the sup-
ported routing protocols. For example, the routing states can map to
the routing rules in OpenFlow or the prefix-route announcement or
withdrawal in BGP. When applications change the value of the rout-
ing state variable, Statesman (specifically the updater) automati-
cally translates the value to appropriate control-plane commands.

One level higher is the path state which controls tunnels through
multiple switches. Creating a tunnel and assigning traffic along the
path depend on all switches on the path having their routing states
ready to manage. Again, Statesman is responsible for translating
the path’s states into the routing states of all switches on the path,
and the application only needs to read or write the path states.
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Figure 6: Statesman system design

with dozens of state variables. This scale results in millions of state
variables (§8). Manipulating all variables in a single Paxos ring
would impose a heavy message-exchange load on the file system
to reach consensus over the data value. This impact worsens if the
exchange happens over the WAN (as storage instances are located
in multiple datacenters for reliability). WAN latencies will hurt the
scalability and performance of Statesman.

Therefore, we break a big Paxos ring into independent smaller
rings for each datacenter. One Paxos ring of storage instances is
located in each datacenter, and it only stores the state data of the
switches and links in that datacenter. In this way, Statesman re-
duces the scale of state storage to individual datacenter, and it low-
ers the impact of Paxos consensus by limiting message exchanges
inside the datacenter.

Although the underlying storage is partitioned and distributed,
we still want to provide a uniform and highly available interface
for the applications and other Statesman components. These users
of the storage service should not be required to understand where
and how various state variables are stored.

We thus deploy a globally available proxy layer that provides
uniform access to the network states. Users read or write net-
work states of any datacenters from any proxy without knowing
the exact locations of the storage service. Inside the proxy, we
maintain an in-memory hash table of the switch and link names to
corresponding datacenters for distributing the requests across the
storage-service instances. The proxy instances sit behind a load
balancer, which enables high availability and flexible capacity.

6.2 Stateless Update on Heterogeneous Devices

Network update is a challenging problem itself [12, 20, 28]. In
the context of managing a large network, it becomes even more
challenging for three reasons. First, the update process is device-
and protocol-specific. Although OpenFlow provides a standard in-
terface for changing the forwarding behaviors of switches, there is
no standard interface today for management-related tasks such as
changing the switch power, firmware, or interface configuration.
Second, because of scale and dynamism, network failures during
updates are inevitable. Finally, the device’s response can be slow
and dominate the application’s control loop. Two aspects of the
design of the Statesman updater help to address these challenges.

Command template pool for heterogeneous devices: The changes
from applications (i.e., PSes) are device-agnostic network states.
The updater translates the difference between a state variable’s OS
and TS values into device-specific commands. This translation
is done using a pool of command templates that contains tem-
plates for each update action on each device model with supported
control-plane protocol (e.g., OpenFlow or vendor-specific API).
When the updater carries out an update action, it looks up the tem-
plate from the pool based on the desired action and device details.

For instance, suppose we want to change the value of a switch’s
DeviceRoutingState. If the switch is an OpenFlow-enabled model,
the updater looks up this model’s OpenFlow command template to
translate the routing state change into the insertion or deletion of
OpenFlow rules, and issues rule update commands to the Open-
Flow agent on the switch. Alternatively, if the switch is running
a traditional routing protocol like BGP, the updater looks up the
BGP command template to translate the routing state change into
the BGP-route announcement or withdrawal.

Stateless and automatic failure handling: With all network states
persistently stored by the storage service, the updater can be state-
less and simply read the new values of OS and TS every round.
This mode of operation makes the updater robust to failures in the
network or in the updater itself. It can handle failures with an im-
plicit and automatic retry. When any failure happens in one run of
update, the state changes resulted by the failure reflect as a changed
OS in the storage service. In the next run, the updater picks up the
new OS which already includes the failure’s impact, and it calcu-
lates new commands based on the new OS-TS difference. In this
manner, the updater always brings the latest OS towards the TS, no
matter what failures have happened in the process.

Being stateless also means that we can run as many updater in-
stances as needed to scale, as long as we are able to coherently
partition the work among them. In our current deployment, we run
one instance per state variable per switch model. In this way, each
updater instance is specialized for one task.

6.3 Network Monitors

The monitors collect the network states with various protocols
from the switches, including SNMP and OpenFlow. The moni-
tors then translate the protocol-specific data into the value of corre-
sponding state variables, and write them into the storage service as
the OS. We split the monitoring responsibility across many monitor
instances, so each instance covers roughly 1,000 switches.

Currently the monitors run periodically to collect all switches’
power states, firmware versions, device configurations, and various
counters (and routing states for a subset of switches). For links, our
monitors cover the link power, configuration, and counters like the
packet drop rate and the traffic load.
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-
man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman
facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-
tesman. First, they should understand that it takes time for Sta-
tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-
man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman
facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-
tesman. First, they should understand that it takes time for Sta-
tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-
man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman
facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-
tesman. First, they should understand that it takes time for Sta-
tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-
man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman
facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-
tesman. First, they should understand that it takes time for Sta-
tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-
man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman
facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-
tesman. First, they should understand that it takes time for Sta-
tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-
man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman
facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-
tesman. First, they should understand that it takes time for Sta-
tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.

BR 1

BR 2
DC 1

BR 8

BR 7
DC 4

BR 3
BR 4

DC 2

BR 5
DC 3

BR 6

BR = Border Router

Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops

571



use case: resolving conflicts
statesman coordinates 
swtich_upgrade, TE
-assign TE low-level lock
-switch_upgrade high-level 

lock

A
-switch_upgrade acquires 

high-level lock on BR1

40

0 100 200 300 400
1

10

19

28

37

46

55

64

73

82

91

A

B

C

E

F

D

Time Series in Minutes

T
o

R
−

P
a

ir
 I

n
d

e
x

 

 

100% Capacity 75% Capacity 50% Capacity

Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops

571

0 100 200 300 400
1

10

19

28

37

46

55

64

73

82

91

A

B

C

E

F

D

Time Series in Minutes

T
o

R
−

P
a

ir
 I

n
d

e
x

 

 

100% Capacity 75% Capacity 50% Capacity

Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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evaluating latency
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