
Software-Defined Internet Exchange
5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

SDX: A Software Defined
Internet Exchange

2

today’s Internet routing
border gateway protocol (BGP), many problems
-(IP) destination based routing
- influence only direct neighbors
-indirect expression of policy

3

Internet exchange point (IXP)
layer 2 location where multiple networks meet to
exchange traffic
-already taken root in Europe
-expected to emerge in North America

peering tension with emerging applications (e.g.,
video traffic)
-has the need

right place (front line) to innovate
-has the incentive

4

IXP+SDN = SDX

wider range of routing decision

BGP
-(IP) destination based

routing
- influence only direct

neighbors
-indirect expression of

policy

5

SDX
-far more flexible routing

decision?

application specific peering
-two neighboring ASes exchange traffic only for certain

applications (HTTP, HTTPS)

wider range of routing decision

BGP
-(IP) destination based

routing
- influence only direct

neighbors
-indirect expression of

policy

solution?
6

application specific peering
-two neighboring ASes exchange traffic only for certain

applications (HTTP, HTTPS)

wider range of routing decision

BGP
-(IP) destination based

routing
- influence only direct

neighbors
-indirect expression of

policy

solution?
6

SDX
-install custom rules for

groups of flows
corresponding to a specific
application

inbound traffic engineering
-control how traffic enter a network

wider range of routing decision

BGP
-(IP) destination based

routing
- influence only direct

neighbors
-indirect expression of

policy

solution?
7

inbound traffic engineering
-control how traffic enter a network

wider range of routing decision

BGP
-(IP) destination based

routing
- influence only direct

neighbors
-indirect expression of

policy

solution?
7

SDX
-install rules at an exchange

point that directly control
inbound traffic according to
source IP or port number

wider-area load balancing
-content providers balance client requests across multiple

servers

wider range of routing decision

BGP
-(IP) destination based

routing
- influence only direct

neighbors
-indirect expression of

policy

solution?
8

wider-area load balancing
-content providers balance client requests across multiple

servers

wider range of routing decision

BGP
-(IP) destination based

routing
- influence only direct

neighbors
-indirect expression of

policy

solution?
8

SDX
-announces an anycast IP to

clients, rewrite the client
requests in the middle of
the network

IXP+SDN = SDX?
but SDN
-limited to intradomain: by definition, an SDN controller has

purview of the entire network
-SDN is only a platform, not the solution

SDX goals/challenges
-compelling applications
-programming abstraction
-scalable operation
-realistic deployment

9

IXP+SDN = SDX?
but SDN
-limited to intradomain: by definition, an SDN controller has

purview of the entire network
-SDN is only a platform, not the solution

SDX goals/challenges
-compelling applications
-programming abstraction
-scalable operation
-realistic deployment

10

programming abstraction

11

traditional IXP SDX

AS A AS C

AS B

IXP
(layer 2)

route
server

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

programming abstraction

12

traditional IXP

AS A AS C

AS B

IXP
(layer 2)

route
server

SDX

-virtual SDX switch
-gives each AS the illusion of

its own virtual SDN switch

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

virtual SDX switch abstraction

13

SDX
-gives each AS the illusion of

its own virtual SDN switch

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

virtual SDX switch abstraction

14

application specific
peering

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

virtual SDX switch abstraction

15

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

inbound traffic
engineering

virtual SDX switch abstraction

16

SDX compiles As’s
outbound policy with
B’s inbound policy

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

virtual SDX switch abstraction

17

wider area load
balancing

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

integration with interdomain routing

18

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@
01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;
01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/
0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the

553

SDX route server
-maintains routes on behalf

of all participants
- overriding default BGP routes
- forwarding only along BGP-

advertised routes
- grouping traffic based on

BGP attributes

