
programming SDN
5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

 2

controller platform

load
balancer monitor routingfirewallapplications

runtime

switch API

switches

OpenFlow, P4

but OpenFlow (and P4) is hard to program

 3

but OpenFlow (and P4) is hard to program

low-level programming interface
-akin to assembly language: a thin “wrapper” around switch

operations

 3

but OpenFlow (and P4) is hard to program

low-level programming interface
-akin to assembly language: a thin “wrapper” around switch

operations

monolithic applications with intertwined logic
-handlers that respond to events
- packet arrival
- topology changes
- traffic statistics

 3

 4

controller platform

load
balancer monitor routingfirewallapplications

runtime

switch API

switches

Pyreticprogramming API

OpenFlow, P4

 4

controller platform

load
balancer monitor routingfirewallapplications

runtime

switch API

switches

Pyreticprogramming API

hardware-
oriented

modular
creation of
apps built
from high-

level
abstractions

OpenFlow, P4

Pyretic —
modular programming

 5

Pyretic language and system
creating a single application out of multiple,
independent, reusable network policies that affect the
processing of the “same” traffic

 6

Pyretic language and system
creating a single application out of multiple,
independent, reusable network policies that affect the
processing of the “same” traffic

 7

Pyretic language and system
the enabling constructs and mechanisms
-high level abstraction
-composition
-abstract network topology

implementation
-an interpreter that handles each packet at the controller

(POX)

 8

Pyretic language and system
the enabling constructs and mechanisms
-high level abstraction
-composition
-abstract network topology

implementation
-an interpreter that handles each packet at the controller

(POX)

 9

from OF rules to functions
OF like rules at a switch s:
 patten (field =value) ➡ action

 10

a function:
takes as input a packet on a particular port on s,
outputs a multiset of zero or more packets on
various outports of s

policy as functions
a function:
takes as input a packet on a particular port on s,
outputs a multiset of zero or more packets on

 11

a network-wide policy function:
locate packets ➡ located packets

abstract packet model
the “located packet” model
-a packet is a

{switch: A, inport: 3, …}

 12

A3 6

abstract packet model
the “located packet” model
-a packet is a

{switch: [V,A], inport: 3, …}

{switch: A, inport: 3, vswitch: V, …}

 13

A3 6
B

C1
2

1

2

5

3

V

abstract packet model
the “located packet” model
-a packet is a

{switch: [V,A], inport: 3, …}

{switch: A, inport: 3, vswitch: V, …}

 13

A3 6
B

C1
2

1

2

5

3

V

location
information

abstract packet model
the “located packet” model
-a packet is a

{switch: [V,A], inport: 3, …}

{switch: A, inport: 3, vswitch: V, …}

 13

A3 6
B

C1
2

1

2

5

3

V

location
information

more: IP addresses, MAC addresses …

Pyretic policies
locate packets ➡ located packets

static policy
-a snapshot of a network’s global forwarding behavior
-an abstract function

dynamic policy
-a series of static policies

 14

define policy
C ⩴ A | P[C] | C+C | C»C

static policy (simplified)

 15

primitive actions
define policy
C ⩴ A | P[C] | C+C | C»C

 16

A B C
6 7

fwd(6)

primitive actions
define policy
C ⩴ A | P[C] | C+C | C»C

 17{switch: A, inport: 3, vswitch: V, …}

A3 6
B

C1
2

1

2

5

3

V

{switch: [V,A], inport: 3, …}

push(h=V)

define policy
C ⩴ A | P[C] | C+C | C»C

predicates

 18

A B
D

6
7

match(switch=‘B’, src=‘A’) [flood]

C

8

sequential composition

 19

sequential composition
define policy

 19

sequential composition
define policy
C ⩴ A | P[C] | C+C | C»C

 19

sequential composition
define policy
C ⩴ A | P[C] | C+C | C»C

define C1»C2 as C3

-C3(packet) =
-C1(p1) U … U C2(Pn) where {P1,…Pn} = C1(packet)

 19

parallel composition
define policy
C ⩴ A | P[C] | C+C | C»C

define C1+C2 as C3

-C3(packet) = C1(packet) U C2(Packet)

 20

 21

A B C
6 7

match(switch=‘A’, dstip=‘C’) » fwd(6) +

match(switch=‘B’, dstip=‘C’) » fwd(7)

composite policy example

example sequential composition

 22

Monitor
srcip=5.6.7.8! count

Route
dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Load-balance
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2

Compiled Prioritized Rule Set for “Monitor | Route”
srcip=5.6.7.8,dstip=10.0.0.1! count,fwd(1)
srcip=5.6.7.8,dstip=10.0.0.2! count,fwd(2)
srcip=5.6.7.8! count

dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Compiled Prioritized Rule Set for “Load-balance >> Route”
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1,fwd(1)
srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2,fwd(2)

Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators
Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.

2

Monitor
srcip=5.6.7.8! count

Route
dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Load-balance
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2

Compiled Prioritized Rule Set for “Monitor | Route”
srcip=5.6.7.8,dstip=10.0.0.1! count,fwd(1)
srcip=5.6.7.8,dstip=10.0.0.2! count,fwd(2)
srcip=5.6.7.8! count

dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Compiled Prioritized Rule Set for “Load-balance >> Route”
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1,fwd(1)
srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2,fwd(2)

Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators
Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.

2

example parallel composition

 23

Monitor
srcip=5.6.7.8! count

Route
dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Load-balance
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2

Compiled Prioritized Rule Set for “Monitor | Route”
srcip=5.6.7.8,dstip=10.0.0.1! count,fwd(1)
srcip=5.6.7.8,dstip=10.0.0.2! count,fwd(2)
srcip=5.6.7.8! count

dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Compiled Prioritized Rule Set for “Load-balance >> Route”
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1,fwd(1)
srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2,fwd(2)

Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators
Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.

2

Monitor
srcip=5.6.7.8! count

Route
dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Load-balance
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2

Compiled Prioritized Rule Set for “Monitor | Route”
srcip=5.6.7.8,dstip=10.0.0.1! count,fwd(1)
srcip=5.6.7.8,dstip=10.0.0.2! count,fwd(2)
srcip=5.6.7.8! count

dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Compiled Prioritized Rule Set for “Load-balance >> Route”
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1,fwd(1)
srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2,fwd(2)

Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators
Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.

2

Pyretic — dynamic policy

 24

query policy
define policy
C ⩴ A | P[C] | C+C | C»C | Q

Q ⩴ packets | count

packet, count buckets
-resulting located packets diverted to “buckets” in the

controller
-application registers listeners with buckets
-buckets passes entire packets to the listeners

 25

query policy
define policy
C ⩴ A | P[C] | C+C | C»C | Q

Q ⩴ packets | count

packet, count buckets
-resulting located packets diverted to “buckets” in the

controller
-application registers listeners with buckets
-buckets passes entire packets to the listeners

 26

match(switch=‘A’, dstip=‘C’) [Q + fwd(6)]

query policy example
-application registers listeners with buckets
-buckets passes entire packets to the listener

def printer(pkt):
 print pkt

def dpi():
 Q = packets(None,[])
 Q.when(printer)
 return match(srcip=’1.2.3.4’)[Q]

def main():
 return dpi() | flood

example: deep packet inspection
-application registers listeners with buckets
-buckets passes entire packets to the listener

def printer(pkt):
 print pkt

def dpi():
 Q = packets(None,[])
 Q.when(printer)
 return match(srcip=’1.2.3.4’)[Q]

def main():
 return dpi() | flood

create a query
policy,

monitoring all
traffic

-application registers listeners with buckets
-buckets passes entire packets to the listener

def printer(pkt):
 print pkt

def dpi():
 Q = packets(None,[])
 Q.when(printer)
 return match(srcip=’1.2.3.4’)[Q]

def main():
 return dpi() | flood

register
printer as a

listener

example: deep packet inspection

-application registers listeners with buckets
-buckets passes entire packets to the listener

def printer(pkt):
 print pkt

def dpi():
 Q = packets(None,[])
 Q.when(printer)
 return match(srcip=’1.2.3.4’)[Q]

def main():
 return dpi() | flood

each time a
packet arrives

at
packet_bucket,

printer is
called, printing
the (passed)

packet

example: deep packet inspection

-application registers listeners with buckets
-buckets passes entire packets to the listener

def printer(pkt):
 print pkt

def dpi():
 Q = packets(None,[])
 Q.when(printer)
 return match(srcip=’1.2.3.4’)[Q]

def main():
 return dpi() | flood

construct a
policy that

collects traffic
from 1.2.3.4

example: deep packet inspection

from query to dynamic policy

 32

from query to dynamic policy
dynamic policy
-changes in response to network changes
-query policies drive changes to other policies

 32

from query to dynamic policy
dynamic policy
-changes in response to network changes
-query policies drive changes to other policies

pattern
-query policy A collects network change
-A register dynamic policy B as listener
-upon network change
- A passes the change (pkt) to B
- B updates its policy dynamically

 32

example: round-robin load-balancer

 33

class rrlb(DynamicPolicy):
 
 def __init__(self,s,servers):
 self.switch = s  
 self.servers = servers  
 ...

 Q = packets(limit=1,group_by=[‘srcip’])
 Q.register_callback(self.round_robin)

 self.policy = match(dstport=80) >> Q

 def round_robin(self,pkt):
 self.policy = if_(match(srcip=pkt[‘srcip’]),
 modify(dstip=self.server), self.policy)
 self.client += 1  
 self.server = self.servers[self.client % m]

servers = [‘2.2.2.8’,’2.2.2.9’]
rrlb_on_switch3 = rrlb(3,servers)

example: round-robin load-balancer

 33

class rrlb(DynamicPolicy):
 
 def __init__(self,s,servers):
 self.switch = s  
 self.servers = servers  
 ...

 Q = packets(limit=1,group_by=[‘srcip’])
 Q.register_callback(self.round_robin)

 self.policy = match(dstport=80) >> Q

 def round_robin(self,pkt):
 self.policy = if_(match(srcip=pkt[‘srcip’]),
 modify(dstip=self.server), self.policy)
 self.client += 1  
 self.server = self.servers[self.client % m]

servers = [‘2.2.2.8’,’2.2.2.9’]
rrlb_on_switch3 = rrlb(3,servers)

create a query
policy

example: round-robin load-balancer

 33

class rrlb(DynamicPolicy):
 
 def __init__(self,s,servers):
 self.switch = s  
 self.servers = servers  
 ...

 Q = packets(limit=1,group_by=[‘srcip’])
 Q.register_callback(self.round_robin)

 self.policy = match(dstport=80) >> Q

 def round_robin(self,pkt):
 self.policy = if_(match(srcip=pkt[‘srcip’]),
 modify(dstip=self.server), self.policy)
 self.client += 1  
 self.server = self.servers[self.client % m]

servers = [‘2.2.2.8’,’2.2.2.9’]
rrlb_on_switch3 = rrlb(3,servers)

create a query
policy

register
round_robin

example: round-robin load-balancer

 33

class rrlb(DynamicPolicy):
 
 def __init__(self,s,servers):
 self.switch = s  
 self.servers = servers  
 ...

 Q = packets(limit=1,group_by=[‘srcip’])
 Q.register_callback(self.round_robin)

 self.policy = match(dstport=80) >> Q

 def round_robin(self,pkt):
 self.policy = if_(match(srcip=pkt[‘srcip’]),
 modify(dstip=self.server), self.policy)
 self.client += 1  
 self.server = self.servers[self.client % m]

servers = [‘2.2.2.8’,’2.2.2.9’]
rrlb_on_switch3 = rrlb(3,servers)

create a query
policy

register
round_robin

update server
assignment

example: round-robin load-balancer

 33

class rrlb(DynamicPolicy):
 
 def __init__(self,s,servers):
 self.switch = s  
 self.servers = servers  
 ...

 Q = packets(limit=1,group_by=[‘srcip’])
 Q.register_callback(self.round_robin)

 self.policy = match(dstport=80) >> Q

 def round_robin(self,pkt):
 self.policy = if_(match(srcip=pkt[‘srcip’]),
 modify(dstip=self.server), self.policy)
 self.client += 1  
 self.server = self.servers[self.client % m]

servers = [‘2.2.2.8’,’2.2.2.9’]
rrlb_on_switch3 = rrlb(3,servers)

create a query
policy

register
round_robin

update server
assignment

3 runs rrlb for
two servers

limitation to Pyretic policies
programmers must specify policies in terms of the
underlying physical topology

 34

limitation to Pyretic policies
programmers must specify policies in terms of the
underlying physical topology

 35

abstract network topology
allow a new derived topology to be built on top of an
already existing existing underlying network

Pyretic —
abstract topology abstraction

 36

topology abstraction
modular programming constrains
-what each module sees and can do

enabled by network objects
-an abstract topology
- can be a mix of physical and virtual switches
- can be multiple levels of nesting on top of the one real network
-a policy function applied to this topology

 37

Pyretic network objects
-an abstract topology
-a policy applied to the abstract topology
-a mapping (for derived network)

 38

S1 S2

V abstract (derived) topology

topology abstraction

physical (underlying) topology

mapping
-a function to map changes to the underlying topology up to

changes on the derived network
-a function to map policies against the derived topology down

to equivalent policy expressed only in terms of the
underlying topology

 39

S1 S2

V abstract (derived) topology

topology abstraction

physical (underlying) topology

topology abstraction example
MAC learning
-one big switch, learns where the hosts are located

switching fabric
-sees the entire physical network
-performs routing from one edge link to another

MAC learning
(derived network)

switching fabric
(underlying network) S1 S2

V1
1 2

1 2 2 1

coordinating modules
MAC learning module
-specifies chosen output port(s)

switching module
-directs traffic on a path to the (corresponding) egress port(s)

coordination via abstract packet model

virtual packet header
-a module can push, pop, and inspect
-MAC learning directs traffic from one input port to an

output port
-fabric switching sees a virtual header indicating the

corresponding ingress/egress

runtime performs the mapping

example: transforming topology
a dictionary (mapping)
-(vswitch, vport) ➡ (switch, port)

 43

derived network underlying network

derived network

underlying network S1 S2

V1
1 2

1 2 2 1

S1 S2

V1
1 2

1 2 2

def bfs_vmap(topo):
 vswitch = 1
 vport = 1
 for (switch, port) in topo.egress_locations:
 vmap[(vswitch, vport)] = (switch, port)
 vport += 1
 return vmap

example: transforming topology
a dictionary (mapping)
-(vswitch, vport) ➡ (switch, port)

 44

derived network underlying network

1

recall the packet model {switch: A, inport: 3, vswitch: V, …}

S1 S2

V1
1 2

1 2 2

 ingress_policy =
 (match(switch=S1, inport=1)
 [push(vswitch=V, vinport=1)]
 | match(switch=S2, inport=1)
 [push(vswitch=V, vinport=2)])

example: transforming policy
Pyretic generates ingress function
-“lifts” packets from the underlying network up to the derived

 45

1

S1 S2

V1
1 2

1 2 2

egress_policy = match(vswitch=V)
 [if_(match(switch=S1, voutport=1)
 | match(switch=S2, voutport=2),
 pop(vswitch, vinport, voutport),
 passthrough)]

example: transforming policy
Pyretic generates egress function
-“lowers” packets from the derived to the underlying network

 46

1

S1 S2

V1
1 2

1 2 2

 fabric_policy = match(vswitch=V)[
 (match(switch=S1, voutport=1)[fwd(1)]
 |match(switch=S1, voutport=2)[fwd(2)]
 |match(switch=S2, voutport=1)[fwd(2)]
 |match(switch=S2, voutport=2)[fwd(1)])]

example: transforming policy
Pyretic generates fabric policy
-forwarding between ports in the derived network via a path

in the underlying network

 47

1

virtualizing template

 48

def virtualize(ingress_policy,
 egress_policy,
 fabric_policy,
 derived_policy):
 return if_(~match(vswitch=None),
 (ingress_policy >>
 move(switch=vswitch,inport=vinport) >>
 derived_policy >>
 move(vswitch=switch,vinport=inport,voutport=outport)),
 passthrough) >>
 fabric_policy >>
 egress_policy

virtualizing template

 49

def virtualize(ingress_policy,
 egress_policy,
 fabric_policy,
 derived_policy):
 return if_(~match(vswitch=None),
 (ingress_policy >>
 move(switch=vswitch,inport=vinport) >>
 derived_policy >>
 move(vswitch=switch,vinport=inport,voutport=outport)),
 passthrough) >>
 fabric_policy >>
 egress_policy

virtualizing template

 50

def virtualize(ingress_policy,
 egress_policy,
 fabric_policy,
 derived_policy):
 return if_(~match(vswitch=None),
 (ingress_policy >>
 move(switch=vswitch,inport=vinport) >>
 derived_policy >>
 move(vswitch=switch,vinport=inport,voutport=outport)),
 passthrough) >>
 fabric_policy >>
 egress_policy

packet processing

 51

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

{switch:S1, inport:1, ... }

packet processing

 51

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

{switch:S1, inport:1, ... }

{switch:S1, inport:1, vswitch:V, vinport:1, ... }

packet processing

 51

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

{switch:S1, inport:1, ... }

{switch:S1, inport:1, vswitch:V, vinport:1, ... }

{switch:[V, S1], inport:[1, 1]}

packet processing

 51

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

{switch:S1, inport:1, ... }

{switch:S1, inport:1, vswitch:V, vinport:1, ... }

{switch:[V, S1], inport:[1, 1], outport:2, ...}

{switch:[V, S1], inport:[1, 1]}

packet processing

 51

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

{switch:S1, inport:1, ... }

{switch:S1, inport:1, vswitch:V, vinport:1, ... }

{switch:[V, S1], inport:[1, 1], outport:2, ...}

{switch:S1, inport:1, vswitch:V, vinport:1, voutport:2 }

{switch:[V, S1], inport:[1, 1]}

packet processing

 51

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

{switch:S1, inport:1, ... }

{switch:S1, inport:1, vswitch:V, vinport:1, ... }

{switch:[V, S1], inport:[1, 1], outport:2, ...}

{switch:S1, inport:1, vswitch:V, vinport:1, voutport:2 }

{switch:S1, outport:2,vswitch:V, vinport:1, voutport:2 }

{switch:[V, S1], inport:[1, 1]}

packet processing

 51

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

{switch:S1, inport:1, ... }

{switch:S1, inport:1, vswitch:V, vinport:1, ... }

{switch:[V, S1], inport:[1, 1], outport:2, ...}

{switch:S1, inport:1, vswitch:V, vinport:1, voutport:2 }

{switch:S1, outport:2,vswitch:V, vinport:1, voutport:2 }

{switch:S1, outport:2,vswitch:V, vinport:1, voutport:2 }

{switch:[V, S1], inport:[1, 1]}

packet processing

 51

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

{switch:S1, inport:1, ... }

{switch:S1, inport:1, vswitch:V, vinport:1, ... }

{switch:[V, S1], inport:[1, 1], outport:2, ...}

{switch:S1, inport:1, vswitch:V, vinport:1, voutport:2 }

{switch:S1, outport:2,vswitch:V, vinport:1, voutport:2 }

{switch:S1, outport:2,vswitch:V, vinport:1, voutport:2 }

{switch:[V, S1], inport:[1, 1]}

{switch:S2, inport:2,vswitch:V, vinport:1, voutport:2 }

packet processing

 52

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>

packet processing

 52

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>
{switch:S2, inport:2,vswitch:V, vinport:1, voutport:2 }

packet processing

 52

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>
{switch:S2, inport:2,vswitch:V, vinport:1, voutport:2 }

{switch:S2, inport:2,vswitch:V, vinport:1, voutport:2 }

packet processing

 52

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>
{switch:S2, inport:2,vswitch:V, vinport:1, voutport:2 }

{switch:S2, inport:2,vswitch:V, vinport:1, voutport:2 }

{switch:S2, inport:2,vswitch:V, output: 1, vinport:1, voutport:2 }

packet processing

 52

S1 S2

V1
1 2

1 2 2 1
ingress_policy >>

move(switch=vswitch,inport=vinport)>>

derived_policy (flood) >>

move(vswitch=switch,vinport=inport,vouptport=outport) >>

fabric_policy >>

egress_policy

passthrough >>
{switch:S2, inport:2,vswitch:V, vinport:1, voutport:2 }

{switch:S2, inport:2,vswitch:V, vinport:1, voutport:2 }

{switch:S2, inport:2,vswitch:V, output: 1, vinport:1, voutport:2 }

{switch:S2, output: 1}

