verifying SDN dataplane — 2
5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

HSA

goal

= protocol agnostic, not restricted to existing protocols
= statically verify reachability properties

goal

= protocol agnostic, not restricted to existing protocols
= statically verify reachability properties

challenges

= verify a snapshot of the network state

= assumes external mechanism for collecting the “state” from the entire
network

= checking
= but network state is constantly changing, and compliance checking
needs to be realtime

goal

= protocol agnostic, not restricted to existing protocols
= statically verify reachability properties

challenges

= verify a snapshot of the network state

= assumes external mechanism for collecting the “state” from the entire
network

= checking
= but network state is constantly changing, and compliance checking
needs to be realtime

remedy
=SDN + NetPlumber

SDN presents an opportunity

SDN controller

- observes and controls the network state as the single
creator

presents an opportunity for fast automatic

verification

=analyze the network state — forwarding state
= either as the state is written to switches, or after it is written

NetPlumber

I Invariants]

Network OS

| |
Rule Insert/Delete|

I Update Event

[NetPlumber Agent]

O -
. . 1\
Link/switch 7 Y
up/down / ¢
event //
/

heck
Results

—

\
AN
AN
4
NetPlumber]
4)
Plumbing Graph

real-time checks at update time

NetPlumber
([ose] [ome]

\
\
\
\
\
Network OS \\
1
Rule Insert/Delete| | @ >

| Update Event Y

$

[NetPlumber Agent]— - - - NetPlumber]
A heck [™
1\ Results Plumbing Graph

Link/switch
up/down
event

=incremental HSA checks, leveraging Plumbing graph
= policy query language, avoids writing ad hoc checking code

incremental checking

incrementally updates the transfer functions

affected by a network change

= plumbing graph — the full forwarding state
= captures all possible paths of flows in the network

static checking
= HSA analysis, but with a (wrapper) policy language

plumbing graph overview

Table 2 N
(-) m——— Pipes
Table 1 .
(101bxxxx) 1 match: 10T1xxxx 10101010 | ======= Intra-table dependency
ot 1010 Moo Ve rw: 10101xxx [
11 match: XXX XXXX in-port: 4, out-port: 5
i ; in-port: 1, out-port: 2 \ P 0P Table 4
(1010xxxx,1)|" N match: 10xXxxxxx)
f ! match: 10001xxx rw: 111xxxxx . match: xxxxx010
(10001 xxx 1)/‘}‘/— in-port: 1, out-port: 2 3 in-port: 4, out-port: 5 in-port: 8, out-port: 10
AN N " 2
1 N [| match: 10xxxxxx 101XXXXX match: 1010xxxx 10
“t| in-port: 1, out-port: 3 in-port: 9, out-port: 10
3 Table 3
6 J
match: 101xxxxx
in-port: 6, out-port: 7 1010xxxx

plumbing graph overview

Table 2 N
(-) m——— Pipes
Table 1 .
(101bxxxx) 1 match: 10T1xxxx 10101010 | ======= Intra-table dependency
ot 1010 Moo Ve rw: 10101xxx [
11 match: XXX XXXX in-port: 4, out-port: 5
i ; in-port: 1, out-port: 2 \ P 0P Table 4
(1010xxxx,1)|" N match: 10xXxxxxx)
f ! match: 10001xxx rw: 111xxxxx . match: xxxxx010
(10001 xxx 1)/‘}‘/— in-port: 1, out-port: 2 3 in-port: 4, out-port: 5 in-port: 8, out-port: 10
AN N " 2
1 N [| match: 10xxxxxx 101XXXXX match: 1010xxxx 10
“t| in-port: 1, out-port: 3 in-port: 9, out-port: 10
3 Table 3
6 J
match: 101xxxxx
in-port: 6, out-port: 7 1010xxxx

node: OF-like rule <match, action>

plumbing graph overview

Table 2 _
Table 1 (- \\ Pipes
aplie .
(1011XXXX’4,)—- match: 1011xxxx 10101010 | ====—-- Intra-table dependency
1010) - e rw: 10101xxx -
match: XXXX XX in-port: 4, out-port: 5
in-port: 1, out-port: 2 \ P P Table 4
N match: 10xxxxxx 3)

match: xxxxx010
in-port: 8, out-port: 10

rw: 111xxxxx
in-port: 4, out-port: 5

match: 10001xxx
in-port: 1, out-port: 2

J

~N

match: 1010xxxx 10
in-port: 9, out-port: 10

N
match: 10xxxxxx 101xXXXXX

| in-port: 1, out-port: 3

3 Table 3

match: 101xxxxx

in-port: 6, out-port: 7 1010xxxx

node: OF-like rule <match, action>

directed edges: next-hop dependency

= also called pipe, a pipe from a to b has
= pipe filter is the intersection of a range and b domain

plumbing graph overview

Table 2

(- \\ Pipes
P Table 1 \ (101xxxx4) L} match: 1011xxxx 10101010 -=- Intra-table dependency
D s rw: 10101xxx m
41 match: 1010xxxx 1010xxXX ,'I . 4 .5
N in port: 1, out-port: 2 \ 4 [n-port: 2, out-port Table 4
1 - .1, - . .
N .| match: 10xxxxxx)
match: 10001xxx 10001

)
rw: 1T1xxxxx

5 in-port: 4, out-port: 5

match: xxxxx010

- in-port: 1, out-port: 2 in-port: 8, out-port: 10

J

N
match: 10xxxxxx 101
| in-port: 1, out-port: 3

XXXXX

S
match: 1010xxxx 10
in-port: 9, out-port: 10

3 Table 3

J

match: 101xxxxx
in-port: 6, out-port: 7

node: OF-like rule <match, action>
directed edges: next-hop dependency

= also called pipe, a pipe from a to b has
= pipe filter is the intersection of a range and b domain

dashed edges: intra-table dependency

= subtracting domain of higher-priority rule in the same table
7

compute reachability

Table 1

match: 1010xxxx
in-port: 1, out-port: 2

match: 10001xxx
in-port: 1, out-port: 2

~

Table 2

\

match: 1011xxxx
rewrite: 10101xxx
in-port: 4, out-port: 5

match: 10xxxxxx

5

Table 4

Utep
& JOJO
1010
1110x010 /

T
Flow: XXXXXXXX

match: 10xxxxxx
in-port: 1, out-port: 3

Table 3

match: 101xxxxx
in-port: 6, out-port: 7

11101010

rewrite: 111xxxxx [Filter: 1T1x010 match: xxxxx010
in-port: 4, out-port: 5

in-port: 8, out-port: 10

!

match: 1010xxxx

~\

-

policy checking = reachability computation
- flow generator

= source node: insert flow from the source port and propagates it towards

the destination
= sink node: generates “sink flow” that traverses backwards
= at each hope, processed by the inverse of the rule

= checking policy — probe node

8

compute reachability

Table 2
\
Table 1 match: 101 1xxxx Pipes
rewrite: 10101xxx -
. > Flows
. match: 1010xxxx in-port: 4, out-port: 5 Qtep B
in-port: 1, out-port: 2 < 20355 Table 4
~ match: 10xXxXxxxx 1110x010 & 7

‘ match: 10001xxx 10001xxx . rewrite: 111XXXXX [~ Fiter 11010 | . match: xxxxx010
in-port: 1, out-port: 2 Filter: 10001xxx in-port: 4, out-port: 5 3= —— in-port: 8, out-port: 10

match: 1010xxxx
in-port: 9, out-port: 10

match: 10xxxxxx
in-port: 1, out-port: 3

AAAAAA

Flow: XXXXXXXX

Table 3

match: 101xxxxx
in-port: 6, out-port: 7

= check policy “port | and 10 can only talk using packets
matching xxxxx010”

= place a source node (S) at port |

= place a probe node (P) at port |0, configure P to check
whether all flows from S match xxxxx010

maintaining plumbing graph

incrementally update the portion of the graph

which is affected by a network change

=add new rules
= delete rules

= link up

= link down
=add new tables
= delete tables

maintaining plumbing graph

incrementally update the portion of the graph

which is affected by a network change

=add new rules
= delete rules

= link up

= link down
=add new tables
= delete tables

maintaining plumbing graph — add rules

Table 2) Old flows ======- Intra-table dep.
match: 1011xxxx . .
rewrite: 10101xxx %f New flows Pipes
)

in-port: 4, out-port: 5 U
= match: 10xxxxxx

Table 1

match: 1010xxxx
in-port: 1, out-port: 2

.-_':.--::E i :_,.-é..-E::.-E.- - ..3,'- v . rewrite: 111xxXxxx | Filter- 111xx010 . matCh: xxxxx010 ‘
$ in-port: 4, out-port: 5 in-port: 8, out-port: 10
/
| match: 1010xxxx
i o match: 10001xxx %; P in-port: 9, out-port: 10 {|
Flow: in-port: 1, out-port: 2 Table 3
XXXXXXXX _ Y,
. | match: 101xxxxx
. match: 10xxxxxx Crer 101000 .
in-port: 1, out-port: 3 |H——"—"— "8 in-port: 6, out-port: 7

‘ 101XXXXX — 1010xxxX |
\ - 1011xxxx = empty l

= create pipes
= from new rule to all next-hops
= from previous hop rules to the new one

= update routing flows

= adding flows to the newly created pipes
= subtracting flows passing through lower priority rules

maintaining plumbing graph — delete rules

Table 2 -
- = = = Deleted Flows Pipes
Table 1 match: 1011xxxx Added/Updated hanged Fl
0 rewrite: 10101xxx Flows Unchanged Flows
Trteh: <)
in-port: 4, out-port: 5

\
\
A\
\
A\

Filter: 7 OO
Flow: XXXXXXXX

match: 10001xxx

in-port: 1, out-port: 2

match: 10xxxxxx
in-port: 1, out-port: 3

rewrite: 111xxxxx
in-port: 4, out-port: 5

j match: 10xxxxxx ;

Filter: 10001xxx

in-port: 8, out-port: 10

match: xxxxx010

match: 1010xxxx
in-port: 9, out-port: 10

= remove pipes

= update routing flows
= delete flows which pass through the rule to be removed
= adding back flows passing through lower priority rules

checking policy

probe node
= monitor flows received on a set of ports

configure probe node with flowexp

= filter exp: constrain flows examined
= test exp: test constraints on the matched flow

flowexp

V{f | f ~ filter} : f ~ test
Hf | f~ filter} : f ~ test

policy language

Constraint —

PathConstraint —
Pathlet —

HeaderConstraint —

Flowexp
= regular expression

True | False | ! Constraint
(Constraint | Constraint)
(Constraint & Constraint)
PathConstraint
HeaderConstraint;

list (Pathlet);

Port Specifier [p € {P;}]
Table Specifier [t € {T;}]
Skip Next Hop [.]

Skip Zero or More Hops [.*]
Beginning of Path [7]
(Source/Sink node)

End of Path [$]

(Probe node);

Hreceived M Heonstraint ?é Cb
Hreceived € Heconstraint
H

received —=— Hconstraints

= check constraints on the history of flows

policy language

Constraint — True |False | !Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint,
PathConstraint — list (Pathlet)
Pathlet — Port Specifier [p € {P;}]
| Table Specifier [t € {T;}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.*]
| Beginning of Path ["]
(Source/Sink node)
| End of Path [$]
(Probe node);

Hreceived M Heonstraint ?é Cb
| Hreceived € Heconstraint
H

HeaderConstraint —

received —=— Hconstraints

= path constraints, e.g.,
S—A—B—C— Pmatches (0 = A),(p = A).(p =

= header constraints

= received header intersects / is a subset / exactly equals a specified
header

loops, black holes

each node in plumbing graph

= by default, checks received flows
= for loops, black holes

reachability properties

idea: attach one or more source (sink) nodes and

one or more probe nodes in the plumbing graph

= basic reachability

= a server port S is not reachable from guest ports {Gy,...,Gk}

= place source nodes at each guest port
= probe node at S,and configure it with V/ : f.path ~!["(p € {G1,...Gi})]

= S reachable from {Gj,...,Gy} 3f : fpath ~ [~ (p € {G1,...G V)]
= dual solution with
= place sink node at S, configure probe at guests

vf: fpath ~["(p € {S})]

reachability properties

idea: attach one or more source (sink) nodes and

one or more probe nodes in the plumbing graph

= waypoint: traffic from C to S must pass through M

= solution

= place source at C, probe at S
= configure probe V{f | f.path ~ ["(p e{CHI} : fpath ~ ["*(t = M)

policy translator

guest (sam) .

guest (mi1chael) .

server (webserver) .

waypolnt (HostSrc, HostDst, firewall) :-—

guest (HostSrc),
server (HostDst) .

Prolog (FML)-like frontend language

= declare binding (group)
= specify which groups can communicate

NetPlumber translator generates

= placement of source node
= placement of probe node, configure the probe node with

filter and test expression

20

distributed NetPlumber

® Rule Node © Duplicated Rule Node P> Source Node 4 Probe Node

run parallel instances of NetPlumber on each

cluster

= cluster: highly dependent rules
= (forwarding equivalence classes), e.g., 10.1.0.0/16 subnet traffic be a FEC

=very few dependency across clusters
= very few rules outside the range of 10.1.0.0/16

21

