
verifying SDN dataplane — 2
5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

HSA

2

HSA
goal
-protocol agnostic, not restricted to existing protocols
-statically verify reachability properties

2

HSA
goal
-protocol agnostic, not restricted to existing protocols
-statically verify reachability properties

challenges
-verify a snapshot of the network state
- assumes external mechanism for collecting the “state” from the entire

network
- checking
-but network state is constantly changing, and compliance checking

needs to be realtime

2

HSA
goal
-protocol agnostic, not restricted to existing protocols
-statically verify reachability properties

challenges
-verify a snapshot of the network state
- assumes external mechanism for collecting the “state” from the entire

network
- checking
-but network state is constantly changing, and compliance checking

needs to be realtime

remedy
-SDN + NetPlumber

2

SDN presents an opportunity
SDN controller
-observes and controls the network state as the single

creator

presents an opportunity for fast automatic
verification
-analyze the network state — forwarding state
-either as the state is written to switches, or after it is written

3

NetPlumber

4

100 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

NetPlumber’s speed easily exceeds the requirements
for an enterprise network where configuration state
changes infrequently—say once or twice per day. But in
modern multi-tenant data centers, fast programmatic in-
terfaces to the forwarding plane allow control programs
to rapidly change the network configuration - perhaps
thousands of times per second. For example, we may
move thousands of virtual machines (VMs) to balance
load, with each change requiring a tenant’s virtual net-
work to be reconfigured.

NetPlumber builds on our earlier work on Header
Space Analysis (HSA) [8]. HSA models networks us-
ing a geometric model that is much easier to reason
about than the vendor-specific interfaces on switches
and routers. NetPlumber improves upon HSA in two
ways. First, by running HSA checks incrementally, Net-
Plumber enables real-time checking of updates; this in
turn can prevent bugs from occurring. Second, Net-
Plumber provides a flexible way to express and check
complex policy queries without writing new ad hoc code
for each policy check, as was required by HSA.

The four contributions of this paper are:

1. NetPlumber (section 3): NetPlumber is our real-
time policy checking tool with sub-millisecond av-
erage run time per rule update.

2. Flexible Policy Query Mechanism (section 4):
NetPlumber introduces a flexible way to express
complex policy queries in an extensible, regular-
expression-based language called FlowExp.

3. Distributed NetPlumber (section 5): We show how
to scale NetPlumber to large networks using a dis-
tributed implementation.

4. Evaluation at Scale (section 6): We evaluate Net-
Plumber on three production networks, includ-
ing Google’s global WAN carrying inter-datacenter
traffic.

2 Header Space Analysis
NetPlumber uses HSA [8] as a foundation. HSA
provides a uniform, vendor-independent and protocol-
agnostic model of the network using a geometric model
of packet processing. A header is a point (and a flow is
a region) in a {0, 1}L space, called the header space,
where each bit corresponds to one dimension of this
space and L is an upper bound on header length (in bits).
Networking boxes are modeled using a Switch Transfer
Function T , which transforms a header h received on in-
put port p to a set of packet headers on one or more output
ports: T : (h, p) → {(h1, p1), (h2, p2), ...}.

Each transfer function consists of an ordered set of
rules R. A typical rule consists of a set of physical input
ports, a match wildcard expression, and a set of actions
to be performed on packets that match the wildcard ex-

!"#$%&'()*(

!"#+,-./"&(01"2#(

(
(
(
(
(
(
(

1

+%,343"5(6278&382#5(

099(099(099(

!"#+,-./"&(

Plumbing Graph

099(099(099(

!"#+,-.//!"#+,-.

Link/switch
up/down

event

+,-.+,-.

Rule Insert/Delete
Update Event

Check
 Results

InRRule IRule I
:

swwLink/sink/s
:

ateateUUUpdaUpdaUpda
;

CC
R <

Figure 1: Deploying NetPlumber as a policy checker in SDNs.

pression. Examples of actions include: forward to a port,
drop, rewrite, encapsulate, and decapsulate. Network
topology is modeled using a Topology Transfer Function,
Γ. If port psrc is connected to pdst using a link, then Γ
will have a rule that transfers (h, psrc) to (h, pdst).

HSA computes reachability from source A, via
switches X, Y, ... to destination B as follows. First, cre-
ate a header space region at A representing the set of all
possible packets A could send: the all-wildcard flow with
L wildcard bits and covering the entire L-dimensional
space. Next, apply switch X’s transfer function to the
all-wildcard flow to generate a set of regions at its out-
put ports, which in turn are fed to Y ’s switch transfer
function. The process continues until a subset of the
flows that left A reach B. While the headers may have
been transformed in the journey, the original headers sent
by A can be recovered by applying the inverse transfer
function. Despite considerable optimization, the Python-
based implementation called Hassel described in [8] re-
quires tens of seconds to compute reachability.

3 NetPlumber
NetPlumber is much faster than Hassel at update time
because instead of recomputing all the transformations
each time the network changes, it incrementally updates
only the portions of those transfer function results af-
fected by the change. Underneath, NetPlumber still uses
HSA. Thus, it inherits from HSA the ability to verify a
wide range of policies—including reachability between
ports, loop-freedom, and isolation between groups—
while remaining protocol agnostic.

Figure 1 shows NetPlumber checking policies in an
SDN. An agent sits between the control plane and
switches and sends every state update (installation or re-
moval of rules, link up or down events) to NetPlumber
which in turn updates its internal model of the network; if
a violation occurs, NetPlumber performs a user-defined
action such as removing the violating rule or notifying

2

real-time checks at update time

NetPlumber

5

100 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

NetPlumber’s speed easily exceeds the requirements
for an enterprise network where configuration state
changes infrequently—say once or twice per day. But in
modern multi-tenant data centers, fast programmatic in-
terfaces to the forwarding plane allow control programs
to rapidly change the network configuration - perhaps
thousands of times per second. For example, we may
move thousands of virtual machines (VMs) to balance
load, with each change requiring a tenant’s virtual net-
work to be reconfigured.

NetPlumber builds on our earlier work on Header
Space Analysis (HSA) [8]. HSA models networks us-
ing a geometric model that is much easier to reason
about than the vendor-specific interfaces on switches
and routers. NetPlumber improves upon HSA in two
ways. First, by running HSA checks incrementally, Net-
Plumber enables real-time checking of updates; this in
turn can prevent bugs from occurring. Second, Net-
Plumber provides a flexible way to express and check
complex policy queries without writing new ad hoc code
for each policy check, as was required by HSA.

The four contributions of this paper are:

1. NetPlumber (section 3): NetPlumber is our real-
time policy checking tool with sub-millisecond av-
erage run time per rule update.

2. Flexible Policy Query Mechanism (section 4):
NetPlumber introduces a flexible way to express
complex policy queries in an extensible, regular-
expression-based language called FlowExp.

3. Distributed NetPlumber (section 5): We show how
to scale NetPlumber to large networks using a dis-
tributed implementation.

4. Evaluation at Scale (section 6): We evaluate Net-
Plumber on three production networks, includ-
ing Google’s global WAN carrying inter-datacenter
traffic.

2 Header Space Analysis
NetPlumber uses HSA [8] as a foundation. HSA
provides a uniform, vendor-independent and protocol-
agnostic model of the network using a geometric model
of packet processing. A header is a point (and a flow is
a region) in a {0, 1}L space, called the header space,
where each bit corresponds to one dimension of this
space and L is an upper bound on header length (in bits).
Networking boxes are modeled using a Switch Transfer
Function T , which transforms a header h received on in-
put port p to a set of packet headers on one or more output
ports: T : (h, p) → {(h1, p1), (h2, p2), ...}.

Each transfer function consists of an ordered set of
rules R. A typical rule consists of a set of physical input
ports, a match wildcard expression, and a set of actions
to be performed on packets that match the wildcard ex-

!"#$%&'()*(

!"#+,-./"&(01"2#(

(
(
(
(
(
(
(

1

+%,343"5(6278&382#5(

099(099(099(

!"#+,-./"&(

Plumbing Graph

099(099(099(

!"#+,-.//!"#+,-.

Link/switch
up/down

event

+,-.+,-.

Rule Insert/Delete
Update Event

Check
 Results

InRRule IRule I
:

swwLink/sink/s
:

ateateUUUpdaUpdaUpda
;

CC
R <

Figure 1: Deploying NetPlumber as a policy checker in SDNs.

pression. Examples of actions include: forward to a port,
drop, rewrite, encapsulate, and decapsulate. Network
topology is modeled using a Topology Transfer Function,
Γ. If port psrc is connected to pdst using a link, then Γ
will have a rule that transfers (h, psrc) to (h, pdst).

HSA computes reachability from source A, via
switches X, Y, ... to destination B as follows. First, cre-
ate a header space region at A representing the set of all
possible packets A could send: the all-wildcard flow with
L wildcard bits and covering the entire L-dimensional
space. Next, apply switch X’s transfer function to the
all-wildcard flow to generate a set of regions at its out-
put ports, which in turn are fed to Y ’s switch transfer
function. The process continues until a subset of the
flows that left A reach B. While the headers may have
been transformed in the journey, the original headers sent
by A can be recovered by applying the inverse transfer
function. Despite considerable optimization, the Python-
based implementation called Hassel described in [8] re-
quires tens of seconds to compute reachability.

3 NetPlumber
NetPlumber is much faster than Hassel at update time
because instead of recomputing all the transformations
each time the network changes, it incrementally updates
only the portions of those transfer function results af-
fected by the change. Underneath, NetPlumber still uses
HSA. Thus, it inherits from HSA the ability to verify a
wide range of policies—including reachability between
ports, loop-freedom, and isolation between groups—
while remaining protocol agnostic.

Figure 1 shows NetPlumber checking policies in an
SDN. An agent sits between the control plane and
switches and sends every state update (installation or re-
moval of rules, link up or down events) to NetPlumber
which in turn updates its internal model of the network; if
a violation occurs, NetPlumber performs a user-defined
action such as removing the violating rule or notifying

2

-incremental HSA checks, leveraging Plumbing graph
-policy query language, avoids writing ad hoc checking code

incremental checking
incrementally updates the transfer functions
affected by a network change
-plumbing graph — the full forwarding state
- captures all possible paths of flows in the network

static checking
-HSA analysis, but with a (wrapper) policy language

6

plumbing graph overview

7

102 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rw: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!

rw: 111xxxxx!
in-port: 4, out-port: 5!

Table 2!

2!

4!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!3!
6!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!5!
8!

7!
9!

10!1!

Intra-table dependency!
Pipes!

1010xxxx!

10001xxx!

101xxxxx!

1010xxxx!

111xx010!

10101010!

(1010xxxx,1)!

(10001xxx,1)!

(1011xxxx,4)!

2!
3!

4!

1! 2
3

4

6! 7!

8!

5!

10!
9!

Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!

10001xxx!

11101010! 11101010!

Flow: x

!!

1110x010! 1110x010!

1010xxxx!

"!

Pipes!
Flows!1010x

10001xxx

010xxxx
#$%&'()!*+*+,,,,!

#$%&'()!*+++*,,,!

i

01xxxxx – 1010xxxxx

xxx – 1010xxxx
#$%&'()!*+*,,,,,!

11101010
#$%&'()!111xx010!

i

#$%&'
()!1010xxxx!

1110x010

#$%&'()!*+*+*+*+!

0 #$%&'()!*+*
+,,,,!

0
11101010

1110x010#$%&'()!,,,,,+*+!

i

i
!

#$%&'
()!*+

*+,
,,,!

*+
#$%&'

()!*

#$%&'(
)!*++

+*,,,
!

xxxxxxxxxxxxxx
#$%&'()!*+,,,,,,!

#$%&'()-!

Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-

4

plumbing graph overview

node: OF-like rule <match, action>

7

102 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rw: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!

rw: 111xxxxx!
in-port: 4, out-port: 5!

Table 2!

2!

4!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!3!
6!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!5!
8!

7!
9!

10!1!

Intra-table dependency!
Pipes!

1010xxxx!

10001xxx!

101xxxxx!

1010xxxx!

111xx010!

10101010!

(1010xxxx,1)!

(10001xxx,1)!

(1011xxxx,4)!

2!
3!

4!

1! 2
3

4

6! 7!

8!

5!

10!
9!

Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!

10001xxx!

11101010! 11101010!

Flow: x

!!

1110x010! 1110x010!

1010xxxx!

"!

Pipes!
Flows!1010x

10001xxx

010xxxx
#$%&'()!*+*+,,,,!

#$%&'()!*+++*,,,!

i

01xxxxx – 1010xxxxx

xxx – 1010xxxx
#$%&'()!*+*,,,,,!

11101010
#$%&'()!111xx010!

i

#$%&'
()!1010xxxx!

1110x010

#$%&'()!*+*+*+*+!

0 #$%&'()!*+*
+,,,,!

0
11101010

1110x010#$%&'()!,,,,,+*+!

i

i
!

#$%&'
()!*+

*+,
,,,!

*+
#$%&'

()!*

#$%&'(
)!*++

+*,,,
!

xxxxxxxxxxxxxx
#$%&'()!*+,,,,,,!

#$%&'()-!

Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-

4

plumbing graph overview

node: OF-like rule <match, action>
directed edges: next-hop dependency
-also called pipe, a pipe from a to b has
- pipe filter is the intersection of a range and b domain

7

102 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rw: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!

rw: 111xxxxx!
in-port: 4, out-port: 5!

Table 2!

2!

4!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!3!
6!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!5!
8!

7!
9!

10!1!

Intra-table dependency!
Pipes!

1010xxxx!

10001xxx!

101xxxxx!

1010xxxx!

111xx010!

10101010!

(1010xxxx,1)!

(10001xxx,1)!

(1011xxxx,4)!

2!
3!

4!

1! 2
3

4

6! 7!

8!

5!

10!
9!

Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!

10001xxx!

11101010! 11101010!

Flow: x

!!

1110x010! 1110x010!

1010xxxx!

"!

Pipes!
Flows!1010x

10001xxx

010xxxx
#$%&'()!*+*+,,,,!

#$%&'()!*+++*,,,!

i

01xxxxx – 1010xxxxx

xxx – 1010xxxx
#$%&'()!*+*,,,,,!

11101010
#$%&'()!111xx010!

i

#$%&'
()!1010xxxx!

1110x010

#$%&'()!*+*+*+*+!

0 #$%&'()!*+*
+,,,,!

0
11101010

1110x010#$%&'()!,,,,,+*+!

i

i
!

#$%&'
()!*+

*+,
,,,!

*+
#$%&'

()!*

#$%&'(
)!*++

+*,,,
!

xxxxxxxxxxxxxx
#$%&'()!*+,,,,,,!

#$%&'()-!

Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-

4

plumbing graph overview

node: OF-like rule <match, action>
directed edges: next-hop dependency
-also called pipe, a pipe from a to b has
- pipe filter is the intersection of a range and b domain

dashed edges: intra-table dependency
-subtracting domain of higher-priority rule in the same table

7

102 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rw: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!

rw: 111xxxxx!
in-port: 4, out-port: 5!

Table 2!

2!

4!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!3!
6!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!5!
8!

7!
9!

10!1!

Intra-table dependency!
Pipes!

1010xxxx!

10001xxx!

101xxxxx!

1010xxxx!

111xx010!

10101010!

(1010xxxx,1)!

(10001xxx,1)!

(1011xxxx,4)!

2!
3!

4!

1! 2
3

4

6! 7!

8!

5!

10!
9!

Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!

10001xxx!

11101010! 11101010!

Flow: x

!!

1110x010! 1110x010!

1010xxxx!

"!

Pipes!
Flows!1010x

10001xxx

010xxxx
#$%&'()!*+*+,,,,!

#$%&'()!*+++*,,,!

i

01xxxxx – 1010xxxxx

xxx – 1010xxxx
#$%&'()!*+*,,,,,!

11101010
#$%&'()!111xx010!

i

#$%&'
()!1010xxxx!

1110x010

#$%&'()!*+*+*+*+!

0 #$%&'()!*+*
+,,,,!

0
11101010

1110x010#$%&'()!,,,,,+*+!

i

i
!

#$%&'
()!*+

*+,
,,,!

*+
#$%&'

()!*

#$%&'(
)!*++

+*,,,
!

xxxxxxxxxxxxxx
#$%&'()!*+,,,,,,!

#$%&'()-!

Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-

4

compute reachability

policy checking = reachability computation
-flow generator
- source node: insert flow from the source port and propagates it towards

the destination
- sink node: generates “sink flow” that traverses backwards
- at each hope, processed by the inverse of the rule

-checking policy — probe node
8

102 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rw: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!

rw: 111xxxxx!
in-port: 4, out-port: 5!

Table 2!

2!

4!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!3!
6!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!5!
8!

7!
9!

10!1!

Intra-table dependency!
Pipes!

1010xxxx!

10001xxx!

101xxxxx!

1010xxxx!

111xx010!

10101010!

(1010xxxx,1)!

(10001xxx,1)!

(1011xxxx,4)!

2!
3!

4!

1! 2
3

4

6! 7!

8!

5!

10!
9!

Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!

10001xxx!

11101010! 11101010!

Flow: x

!!

1110x010! 1110x010!

1010xxxx!

"!

Pipes!
Flows!1010x

10001xxx

010xxxx
#$%&'()!*+*+,,,,!

#$%&'()!*+++*,,,!

i

01xxxxx – 1010xxxxx

xxx – 1010xxxx
#$%&'()!*+*,,,,,!

11101010
#$%&'()!111xx010!

i

#$%&'
()!1010xxxx!

1110x010

#$%&'()!*+*+*+*+!

0 #$%&'()!*+*
+,,,,!

0
11101010

1110x010#$%&'()!,,,,,+*+!

i

i
!

#$%&'
()!*+

*+,
,,,!

*+
#$%&'

()!*

#$%&'(
)!*++

+*,,,
!

xxxxxxxxxxxxxx
#$%&'()!*+,,,,,,!

#$%&'()-!

Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-

4

compute reachability

-check policy “port 1 and 10 can only talk using packets
matching xxxxx010”

-place a source node (S) at port 1
-place a probe node (P) at port 10, configure P to check

whether all flows from S match xxxxx010

9

102 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rw: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!

rw: 111xxxxx!
in-port: 4, out-port: 5!

Table 2!

2!

4!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!3!
6!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!5!
8!

7!
9!

10!1!

Intra-table dependency!
Pipes!

1010xxxx!

10001xxx!

101xxxxx!

1010xxxx!

111xx010!

10101010!

(1010xxxx,1)!

(10001xxx,1)!

(1011xxxx,4)!

2!
3!

4!

1! 2
3

4

6! 7!

8!

5!

10!
9!

Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!

10001xxx!

11101010! 11101010!

Flow: x

!!

1110x010! 1110x010!

1010xxxx!

"!

Pipes!
Flows!1010x

10001xxx

010xxxx
#$%&'()!*+*+,,,,!

#$%&'()!*+++*,,,!

i

01xxxxx – 1010xxxxx

xxx – 1010xxxx
#$%&'()!*+*,,,,,!

11101010
#$%&'()!111xx010!

i

#$%&'
()!1010xxxx!

1110x010

#$%&'()!*+*+*+*+!

0 #$%&'()!*+*
+,,,,!

0
11101010

1110x010#$%&'()!,,,,,+*+!

i

i
!

#$%&'
()!*+

*+,
,,,!

*+
#$%&'

()!*

#$%&'(
)!*++

+*,,,
!

xxxxxxxxxxxxxx
#$%&'()!*+,,,,,,!

#$%&'()-!

Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-

4

102 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rw: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!

rw: 111xxxxx!
in-port: 4, out-port: 5!

Table 2!

2!

4!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!3!
6!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!5!
8!

7!
9!

10!1!

Intra-table dependency!
Pipes!

1010xxxx!

10001xxx!

101xxxxx!

1010xxxx!

111xx010!

10101010!

(1010xxxx,1)!

(10001xxx,1)!

(1011xxxx,4)!

2!
3!

4!

1! 2
3

4

6! 7!

8!

5!

10!
9!

Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters
are shown on the arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown
along the dashed lines.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!

10001xxx!

11101010! 11101010!

Flow: x

!!

1110x010! 1110x010!

1010xxxx!

"!

Pipes!
Flows!1010x

10001xxx

010xxxx
#$%&'()!*+*+,,,,!

#$%&'()!*+++*,,,!

i

01xxxxx – 1010xxxxx

xxx – 1010xxxx
#$%&'()!*+*,,,,,!

11101010
#$%&'()!111xx010!

i

#$%&'
()!1010xxxx!

1110x010

#$%&'()!*+*+*+*+!

0 #$%&'()!*+*
+,,,,!

0
11101010

1110x010#$%&'()!,,,,,+*+!

i

i
!

#$%&'
()!*+

*+,
,,,!

*+
#$%&'

()!*

#$%&'(
)!*++

+*,,,
!

xxxxxxxxxxxxxx
#$%&'()!*+,,,,,,!

#$%&'()-!

Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing
graph. The solid lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

3.1 (101xxxxx), it shrinks to 101xxxxxx − 1010xxxx.3

The flows which reach rule 2.2 continue propagating
through the plumbing graph until they reach the probe
node (P), as depicted in Figure 3. However the other
flow that has reached rule 3.1 does not propagate any
further as it cannot pass through the pipe connecting rule
3.1 to rule 4.2. This is because the intersection of the
flow (101xxxxxx − 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.
A sink node absorbs flows from the network. Equiva-
lently, a sink node generates “sink flow” which traverses
the plumbing graph in the reverse direction. When reach-
ing a rule node, a sink flow is processed by the inverse
of the rule.4 Reachability can be computed using sink
nodes: if a sink node is placed at the destination port D,
then the sink flow at source port S gives us the set of
packet headers from S that will reach D. Sink nodes do
not increase the expressive power of NetPlumber; they
only simplify or optimize some policy checks (see sec-
tion 4).

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8].

3.3 Probe Nodes
A fourth type of node called a probe node is used to
check policy or invariants. Probe nodes can be attached
to appropriate locations of the plumbing graph, and can
be used to check the path and header of the received
flows for violations of expected behavior. In section 4,
we discuss how to check a policy using a source (sink)
and probe node. As a simple example, if in our toy ex-
ample of Figure 2 the policy is “port 1 and 10 can only
talk using packets matching xxxxx010”, then we place a
source node at port 1 (S), a probe node at port 10 (P) and
configure P to check whether all flows received from S
match xxxxx010 (Figure 3).

Probe nodes can be of two types: source probe nodes
and sink probe nodes. The former check constraints on
flows generated by source nodes, and the latter check
flows generated by sink nodes. We refer to both as probe
nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first creates pipes from the new rule to all po-

4

maintaining plumbing graph
incrementally update the portion of the graph
which is affected by a network change
-add new rules
-delete rules
- link up
-link down
-add new tables
-delete tables

10

maintaining plumbing graph
incrementally update the portion of the graph
which is affected by a network change
-add new rules
-delete rules
- link up
-link down
-add new tables
-delete tables

11

maintaining plumbing graph — add rules

-create pipes
- from new rule to all next-hops
- from previous hop rules to the new one
-update routing flows
- adding flows to the newly created pipes
- subtracting flows passing through lower priority rules

12

104 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
- 1011xxxx = empty!

Flow: !
xxxxxxxx!

!! "!

Pipes!
Old flows!

#$%&!% '('('

2

i

)*+#$
%& '(

((',
,,!

)*+#$%&!'(',,,,,!

)*+#$%&!111xx010

i

+#)+#$
%&!10101010 xxxxx

)*+#)*+#$%&!$ '('('('('('('('(!

0)*+#$%& '('
(,,,

)
,,!(,,,,,

)*+#)*+#$%&!$,,,,,,, ,('(,('

)

((((!!

+#*+#$
%&!

(
'('

(,,,
,,!

)

in

in

x

!!)*+#$%&!'(((''(((',,,!
#$%&!'(,,

'(,,,,,

)*+#)*+#$%$%

P)*+#$%&-!

match: 1011xxxx!
in-port: 1, out-port: 2!

))*+#
$

)*+#

)*+#$%&!'('
',,,,!

)*+#$%&!'('',,,,!

i

)*+#$%& '('',,,,!

'(''('(''('('((,,,,,, !

)*+#)*+#$%$
)*+#$

%&!'
(''

,,,,
!

(1011xxxx,1)!

,,,,,,,,!

11xxxx,1)

New flows!
Intra-table dep.!

1011xxxx! 10101010!

10101010!

1011xxxx!

Figure 4: Adding rule 1.2 (shaded in green) to table 1. As a result a) 3 pipes are created connecting rule 1.2 to rule 2.1 and 2.2 and
to the source node. b) rule 1.4 will have an intra-table dependency to the new rule (1011xxxx,1). c) The flows highlighted in bold
will be added to the plumbing graph. Also the flow going out of rule 1.4 is updated to empty.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!Flow: x

!!

1110x010! 1110x010!

"!

Pipes!
Unchanged Flows!

)*+#$%&!'(((',,,!

i

1xxxxx – 1010xxxx

xx – 1010xxx)*+#$%&!'(',,,,,!

)*+#$%&!111xx010!

i

)*+#$
%&!1010xxxx!

1110x010

)*+#$%&!'('('('(!

0)*+#$%&!'('
(,,,,!

1110x010)*+#$%&!,,,,,('(!
)*+#$%

&!'((
(',,,

!

xxxxxxxxxxxxxx
)*+#$%&!'(,,,,,,!

P)*+#$%&-!

in-port: 1
10xxxx

out-port: 2
match:

xx
1010xxx 101xxxxx !

1110x010 1111110x010

1010xxxx !

1010xxxx!
1010x010xxxx

)*+##$%&!'('((,,,,!
i

i
!)*+#$%

&!*+#$%&!+#$%& '
((('

,,,
'(((

',,,!
'('

(,,,
,!

'(
)*+#$

%& '(
'('('
(,,,,,,

+#)*+#$
% '(

'('('
(,,,

,,,,,
'

)*+#)*+#$
%&$% ''

)*+#)*+#$%&$%& '('('('(,,,,,,,,

10101010xxxx

Deleted Flows!
Added/Updated
Flows!

Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since
the intra-table dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-
guage, probe nodes are capable of expressing a wide
range of policies and invariants. Section 4.1 will intro-
duce the flowexp language. Sections 4.2 and 4.3 discuss
techniques for checking for loops, black holes and other
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow

Constraint → True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet);
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint $= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the

6

maintaining plumbing graph — delete rules

-remove pipes
-update routing flows
- delete flows which pass through the rule to be removed
- adding back flows passing through lower priority rules

13

104 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
- 1011xxxx = empty!

Flow: !
xxxxxxxx!

!! "!

Pipes!
Old flows!

#$%&!% '('('

2

i

)*+#$
%& '(

((',
,,!

)*+#$%&!'(',,,,,!

)*+#$%&!111xx010

i

+#)+#$
%&!10101010 xxxxx

)*+#)*+#$%&!$ '('('('('('('('(!

0)*+#$%& '('
(,,,

)
,,!(,,,,,

)*+#)*+#$%&!$,,,,,,, ,('(,('

)

((((!!

+#*+#$
%&!

(
'('

(,,,
,,!

)

in

in

x

!!)*+#$%&!'(((''(((',,,!
#$%&!'(,,

'(,,,,,

)*+#)*+#$%$%

P)*+#$%&-!

match: 1011xxxx!
in-port: 1, out-port: 2!

))*+#
$

)*+#

)*+#$%&!'('
',,,,!

)*+#$%&!'('',,,,!

i

)*+#$%& '('',,,,!

'(''('(''('('((,,,,,, !

)*+#)*+#$%$
)*+#$

%&!'
(''

,,,,
!

(1011xxxx,1)!

,,,,,,,,!

11xxxx,1)

New flows!
Intra-table dep.!

1011xxxx! 10101010!

10101010!

1011xxxx!

Figure 4: Adding rule 1.2 (shaded in green) to table 1. As a result a) 3 pipes are created connecting rule 1.2 to rule 2.1 and 2.2 and
to the source node. b) rule 1.4 will have an intra-table dependency to the new rule (1011xxxx,1). c) The flows highlighted in bold
will be added to the plumbing graph. Also the flow going out of rule 1.4 is updated to empty.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!Flow: x

!!

1110x010! 1110x010!

"!

Pipes!
Unchanged Flows!

)*+#$%&!'(((',,,!

i

1xxxxx – 1010xxxx

xx – 1010xxx)*+#$%&!'(',,,,,!

)*+#$%&!111xx010!

i

)*+#$
%&!1010xxxx!

1110x010

)*+#$%&!'('('('(!

0)*+#$%&!'('
(,,,,!

1110x010)*+#$%&!,,,,,('(!
)*+#$%

&!'((
(',,,

!

xxxxxxxxxxxxxx
)*+#$%&!'(,,,,,,!

P)*+#$%&-!

in-port: 1
10xxxx

out-port: 2
match:

xx
1010xxx 101xxxxx !

1110x010 1111110x010

1010xxxx !

1010xxxx!
1010x010xxxx

)*+##$%&!'('((,,,,!
i

i
!)*+#$%

&!*+#$%&!+#$%& '
((('

,,,
'(((

',,,!
'('

(,,,
,!

'(
)*+#$

%& '(
'('('
(,,,,,,

+#)*+#$
% '(

'('('
(,,,

,,,,,
'

)*+#)*+#$
%&$% ''

)*+#)*+#$%&$%& '('('('(,,,,,,,,

10101010xxxx

Deleted Flows!
Added/Updated
Flows!

Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since
the intra-table dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-
guage, probe nodes are capable of expressing a wide
range of policies and invariants. Section 4.1 will intro-
duce the flowexp language. Sections 4.2 and 4.3 discuss
techniques for checking for loops, black holes and other
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow

Constraint → True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet);
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint $= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the

6

checking policy
probe node
-monitor flows received on a set of ports

configure probe node with flowexp
-filter exp: constrain flows examined
-test exp: test constraints on the matched flow

flowexp

14

104 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
- 1011xxxx = empty!

Flow: !
xxxxxxxx!

!! "!

Pipes!
Old flows!

#$%&!% '('('

2

i

)*+#$
%& '(

((',
,,!

)*+#$%&!'(',,,,,!

)*+#$%&!111xx010

i

+#)+#$
%&!10101010 xxxxx

)*+#)*+#$%&!$ '('('('('('('('(!

0)*+#$%& '('
(,,,

)
,,!(,,,,,

)*+#)*+#$%&!$,,,,,,, ,('(,('

)

((((!!

+#*+#$
%&!

(
'('

(,,,
,,!

)

in

in

x

!!)*+#$%&!'(((''(((',,,!
#$%&!'(,,

'(,,,,,

)*+#)*+#$%$%

P)*+#$%&-!

match: 1011xxxx!
in-port: 1, out-port: 2!

))*+#
$

)*+#

)*+#$%&!'('
',,,,!

)*+#$%&!'('',,,,!

i

)*+#$%& '('',,,,!

'(''('(''('('((,,,,,, !

)*+#)*+#$%$
)*+#$

%&!'
(''

,,,,
!

(1011xxxx,1)!

,,,,,,,,!

11xxxx,1)

New flows!
Intra-table dep.!

1011xxxx! 10101010!

10101010!

1011xxxx!

Figure 4: Adding rule 1.2 (shaded in green) to table 1. As a result a) 3 pipes are created connecting rule 1.2 to rule 2.1 and 2.2 and
to the source node. b) rule 1.4 will have an intra-table dependency to the new rule (1011xxxx,1). c) The flows highlighted in bold
will be added to the plumbing graph. Also the flow going out of rule 1.4 is updated to empty.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!Flow: x

!!

1110x010! 1110x010!

"!

Pipes!
Unchanged Flows!

)*+#$%&!'(((',,,!

i

1xxxxx – 1010xxxx

xx – 1010xxx)*+#$%&!'(',,,,,!

)*+#$%&!111xx010!

i

)*+#$
%&!1010xxxx!

1110x010

)*+#$%&!'('('('(!

0)*+#$%&!'('
(,,,,!

1110x010)*+#$%&!,,,,,('(!
)*+#$%

&!'((
(',,,

!

xxxxxxxxxxxxxx
)*+#$%&!'(,,,,,,!

P)*+#$%&-!

in-port: 1
10xxxx

out-port: 2
match:

xx
1010xxx 101xxxxx !

1110x010 1111110x010

1010xxxx !

1010xxxx!
1010x010xxxx

)*+##$%&!'('((,,,,!
i

i
!)*+#$%

&!*+#$%&!+#$%& '
((('

,,,
'(((

',,,!
'('

(,,,
,!

'(
)*+#$

%& '(
'('('
(,,,,,,

+#)*+#$
% '(

'('('
(,,,

,,,,,
'

)*+#)*+#$
%&$% ''

)*+#)*+#$%&$%& '('('('(,,,,,,,,

10101010xxxx

Deleted Flows!
Added/Updated
Flows!

Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since
the intra-table dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-
guage, probe nodes are capable of expressing a wide
range of policies and invariants. Section 4.1 will intro-
duce the flowexp language. Sections 4.2 and 4.3 discuss
techniques for checking for loops, black holes and other
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow

Constraint → True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet);
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint $= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the

6
104 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
- 1011xxxx = empty!

Flow: !
xxxxxxxx!

!! "!

Pipes!
Old flows!

#$%&!% '('('

2

i

)*+#$
%& '(

((',
,,!

)*+#$%&!'(',,,,,!

)*+#$%&!111xx010

i

+#)+#$
%&!10101010 xxxxx

)*+#)*+#$%&!$ '('('('('('('('(!

0)*+#$%& '('
(,,,

)
,,!(,,,,,

)*+#)*+#$%&!$,,,,,,, ,('(,('

)

((((!!

+#*+#$
%&!

(
'('

(,,,
,,!

)

in

in

x

!!)*+#$%&!'(((''(((',,,!
#$%&!'(,,

'(,,,,,

)*+#)*+#$%$%

P)*+#$%&-!

match: 1011xxxx!
in-port: 1, out-port: 2!

))*+#
$

)*+#

)*+#$%&!'('
',,,,!

)*+#$%&!'('',,,,!

i

)*+#$%& '('',,,,!

'(''('(''('('((,,,,,, !

)*+#)*+#$%$
)*+#$

%&!'
(''

,,,,
!

(1011xxxx,1)!

,,,,,,,,!

11xxxx,1)

New flows!
Intra-table dep.!

1011xxxx! 10101010!

10101010!

1011xxxx!

Figure 4: Adding rule 1.2 (shaded in green) to table 1. As a result a) 3 pipes are created connecting rule 1.2 to rule 2.1 and 2.2 and
to the source node. b) rule 1.4 will have an intra-table dependency to the new rule (1011xxxx,1). c) The flows highlighted in bold
will be added to the plumbing graph. Also the flow going out of rule 1.4 is updated to empty.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!Flow: x

!!

1110x010! 1110x010!

"!

Pipes!
Unchanged Flows!

)*+#$%&!'(((',,,!

i

1xxxxx – 1010xxxx

xx – 1010xxx)*+#$%&!'(',,,,,!

)*+#$%&!111xx010!

i

)*+#$
%&!1010xxxx!

1110x010

)*+#$%&!'('('('(!

0)*+#$%&!'('
(,,,,!

1110x010)*+#$%&!,,,,,('(!
)*+#$%

&!'((
(',,,

!

xxxxxxxxxxxxxx
)*+#$%&!'(,,,,,,!

P)*+#$%&-!

in-port: 1
10xxxx

out-port: 2
match:

xx
1010xxx 101xxxxx !

1110x010 1111110x010

1010xxxx !

1010xxxx!
1010x010xxxx

)*+##$%&!'('((,,,,!
i

i
!)*+#$%

&!*+#$%&!+#$%& '
((('

,,,
'(((

',,,!
'('

(,,,
,!

'(
)*+#$

%& '(
'('('
(,,,,,,

+#)*+#$
% '(

'('('
(,,,

,,,,,
'

)*+#)*+#$
%&$% ''

)*+#)*+#$%&$%& '('('('(,,,,,,,,

10101010xxxx

Deleted Flows!
Added/Updated
Flows!

Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since
the intra-table dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-
guage, probe nodes are capable of expressing a wide
range of policies and invariants. Section 4.1 will intro-
duce the flowexp language. Sections 4.2 and 4.3 discuss
techniques for checking for loops, black holes and other
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow

Constraint → True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet);
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint $= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the

6

policy language

Flowexp
-regular expression
-check constraints on the history of flows

15

104 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
- 1011xxxx = empty!

Flow: !
xxxxxxxx!

!! "!

Pipes!
Old flows!

#$%&!% '('('

2

i

)*+#$
%& '(

((',
,,!

)*+#$%&!'(',,,,,!

)*+#$%&!111xx010

i

+#)+#$
%&!10101010 xxxxx

)*+#)*+#$%&!$ '('('('('('('('(!

0)*+#$%& '('
(,,,

)
,,!(,,,,,

)*+#)*+#$%&!$,,,,,,, ,('(,('

)

((((!!

+#*+#$
%&!

(
'('

(,,,
,,!

)

in

in

x

!!)*+#$%&!'(((''(((',,,!
#$%&!'(,,

'(,,,,,

)*+#)*+#$%$%

P)*+#$%&-!

match: 1011xxxx!
in-port: 1, out-port: 2!

))*+#
$

)*+#

)*+#$%&!'('
',,,,!

)*+#$%&!'('',,,,!

i

)*+#$%& '('',,,,!

'(''('(''('('((,,,,,, !

)*+#)*+#$%$
)*+#$

%&!'
(''

,,,,
!

(1011xxxx,1)!

,,,,,,,,!

11xxxx,1)

New flows!
Intra-table dep.!

1011xxxx! 10101010!

10101010!

1011xxxx!

Figure 4: Adding rule 1.2 (shaded in green) to table 1. As a result a) 3 pipes are created connecting rule 1.2 to rule 2.1 and 2.2 and
to the source node. b) rule 1.4 will have an intra-table dependency to the new rule (1011xxxx,1). c) The flows highlighted in bold
will be added to the plumbing graph. Also the flow going out of rule 1.4 is updated to empty.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!Flow: x

!!

1110x010! 1110x010!

"!

Pipes!
Unchanged Flows!

)*+#$%&!'(((',,,!

i

1xxxxx – 1010xxxx

xx – 1010xxx)*+#$%&!'(',,,,,!

)*+#$%&!111xx010!

i

)*+#$
%&!1010xxxx!

1110x010

)*+#$%&!'('('('(!

0)*+#$%&!'('
(,,,,!

1110x010)*+#$%&!,,,,,('(!
)*+#$%

&!'((
(',,,

!

xxxxxxxxxxxxxx
)*+#$%&!'(,,,,,,!

P)*+#$%&-!

in-port: 1
10xxxx

out-port: 2
match:

xx
1010xxx 101xxxxx !

1110x010 1111110x010

1010xxxx !

1010xxxx!
1010x010xxxx

)*+##$%&!'('((,,,,!
i

i
!)*+#$%

&!*+#$%&!+#$%& '
((('

,,,
'(((

',,,!
'('

(,,,
,!

'(
)*+#$

%& '(
'('('
(,,,,,,

+#)*+#$
% '(

'('('
(,,,

,,,,,
'

)*+#)*+#$
%&$% ''

)*+#)*+#$%&$%& '('('('(,,,,,,,,

10101010xxxx

Deleted Flows!
Added/Updated
Flows!

Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since
the intra-table dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-
guage, probe nodes are capable of expressing a wide
range of policies and invariants. Section 4.1 will intro-
duce the flowexp language. Sections 4.2 and 4.3 discuss
techniques for checking for loops, black holes and other
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow

Constraint → True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet);
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint $= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the

6

policy language

-path constraints, e.g.,

-header constraints
- received header intersects / is a subset / exactly equals a specified

header
16

104 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
- 1011xxxx = empty!

Flow: !
xxxxxxxx!

!! "!

Pipes!
Old flows!

#$%&!% '('('

2

i

)*+#$
%& '(

((',
,,!

)*+#$%&!'(',,,,,!

)*+#$%&!111xx010

i

+#)+#$
%&!10101010 xxxxx

)*+#)*+#$%&!$ '('('('('('('('(!

0)*+#$%& '('
(,,,

)
,,!(,,,,,

)*+#)*+#$%&!$,,,,,,, ,('(,('

)

((((!!

+#*+#$
%&!

(
'('

(,,,
,,!

)

in

in

x

!!)*+#$%&!'(((''(((',,,!
#$%&!'(,,

'(,,,,,

)*+#)*+#$%$%

P)*+#$%&-!

match: 1011xxxx!
in-port: 1, out-port: 2!

))*+#
$

)*+#

)*+#$%&!'('
',,,,!

)*+#$%&!'('',,,,!

i

)*+#$%& '('',,,,!

'(''('(''('('((,,,,,, !

)*+#)*+#$%$
)*+#$

%&!'
(''

,,,,
!

(1011xxxx,1)!

,,,,,,,,!

11xxxx,1)

New flows!
Intra-table dep.!

1011xxxx! 10101010!

10101010!

1011xxxx!

Figure 4: Adding rule 1.2 (shaded in green) to table 1. As a result a) 3 pipes are created connecting rule 1.2 to rule 2.1 and 2.2 and
to the source node. b) rule 1.4 will have an intra-table dependency to the new rule (1011xxxx,1). c) The flows highlighted in bold
will be added to the plumbing graph. Also the flow going out of rule 1.4 is updated to empty.

match: 1010xxxx!
in-port: 1, out-port: 2!

match: 10001xxx!
in-port: 1, out-port: 2!

match: 10xxxxxx!
in-port: 1, out-port: 3!

Table 1! match: 1011xxxx!
rewrite: 10101xxx!

in-port: 4, out-port: 5!
match: 10xxxxxx!
rewrite: 111xxxxx!

in-port: 4, out-port: 5!

Table 2!

match: 101xxxxx!
in-port: 6, out-port: 7!

Table 3!

match: xxxxx010!
in-port: 8, out-port: 10!

match: 1010xxxx!
in-port: 9, out-port: 10!

Table 4!

101xxxxx – 1010xxxx!
Flow: xxxxxxxx!Flow: x

!!

1110x010! 1110x010!

"!

Pipes!
Unchanged Flows!

)*+#$%&!'(((',,,!

i

1xxxxx – 1010xxxx

xx – 1010xxx)*+#$%&!'(',,,,,!

)*+#$%&!111xx010!

i

)*+#$
%&!1010xxxx!

1110x010

)*+#$%&!'('('('(!

0)*+#$%&!'('
(,,,,!

1110x010)*+#$%&!,,,,,('(!
)*+#$%

&!'((
(',,,

!

xxxxxxxxxxxxxx
)*+#$%&!'(,,,,,,!

P)*+#$%&-!

in-port: 1
10xxxx

out-port: 2
match:

xx
1010xxx 101xxxxx !

1110x010 1111110x010

1010xxxx !

1010xxxx!
1010x010xxxx

)*+##$%&!'('((,,,,!
i

i
!)*+#$%

&!*+#$%&!+#$%& '
((('

,,,
'(((

',,,!
'('

(,,,
,!

'(
)*+#$

%& '(
'('('
(,,,,,,

+#)*+#$
% '(

'('('
(,,,

,,,,,
'

)*+#)*+#$
%&$% ''

)*+#)*+#$%&$%& '('('('(,,,,,,,,

10101010xxxx

Deleted Flows!
Added/Updated
Flows!

Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since
the intra-table dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-
guage, probe nodes are capable of expressing a wide
range of policies and invariants. Section 4.1 will intro-
duce the flowexp language. Sections 4.2 and 4.3 discuss
techniques for checking for loops, black holes and other
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow

Constraint → True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint → list(Pathlet);
Pathlet → Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint → Hreceived ∩ Hconstraint $= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the

6

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

matches ,

loops, black holes
each node in plumbing graph
-by default, checks received flows
- for loops, black holes

17

reachability properties
idea: attach one or more source (sink) nodes and
one or more probe nodes in the plumbing graph
-basic reachability
- a server port S is not reachable from guest ports {G1,…,Gk}
- place source nodes at each guest port
- probe node at S, and configure it with

- S reachable from {G1,…,Gk}
- dual solution with
- place sink node at S, configure probe at guests

18

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

reachability properties
idea: attach one or more source (sink) nodes and
one or more probe nodes in the plumbing graph
-waypoint: traffic from C to S must pass through M
-solution
- place source at C, probe at S
- configure probe

19

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 105

path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
immediately after the source node. It also matches on
“(p = A).(p = C)” because the flow passes through
exactly one intermediate port from A to C.

A HeaderConstraint can check if 1) The received
header has any intersection with a specified header; this
is useful when we want to ensure that some packets of
a specified type can reach the probe. 2) The received
header is a subset of a specific header; this is useful when
we wish to limit the set of headers that can reach the
probe. 3) The received header is exactly equal to a spec-
ified header; this is useful to check whether the packets
received at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reach-
ability constraints by attaching one or more source (or
sink) nodes and one or more probe nodes in appropriate
locations in the plumbing graph. The probe nodes are
configured to check the appropriate filter and test flow-
exp constraints as shown below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using a source probe: Place a source node
that generates a wildcarded flow at each of the guest

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ports. Next, place a source probe node on port S and con-
figure it to check for the flow expression: ∀f : f.path ∼
![ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ˆ (p ∈ {S})].

Reachability via a Waypoint: Next, suppose we wish
to ensure that all traffic from port C to port S must pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ˆ (p ∈
{C})]} : f.path ∼ [ˆ .$ | ˆ ..$ | ˆ ...$]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Roughly speak-
ing, if a policy is checking something at the destination
regardless of where the traffic comes from, then using
sink probes is more efficient. For example, suppose a
manager wishes to specify that all flows arriving at a
server S pass through waypoint M . Using source probes
would require placing one source probe at every poten-
tial source. This can be computationally expensive as
the run time of NetPlumber grows linearly with number
of source or sink nodes. On the other hand, if the policy
is about checking a condition for a particular source –
such as computer C should be able to communicate with
all other nodes – then using a source probe will be more
efficient. Intuitively, we want to minimize the amount
of flow in the plumbing graph required to check a given
policy, as generating flow is computationally expensive.

7

policy translator

Prolog (FML)-like frontend language
-declare binding (group)
-specify which groups can communicate

NetPlumber translator generates
-placement of source node
-placement of probe node, configure the probe node with

filter and test expression
20

106 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

4.4 Policy translator
So far we have described a logical language called flow-
exp which is convenient for analysis and specifying pre-
cisely how flows are routed within the network. Flowexp
is, however, less appropriate as a language for network
managers to express higher level policy. Thus, for higher
level policy specification, we decided to reuse the pol-
icy constructs proposed in the Flow-based Management
Language (FML) [6], a high-level declarative language
for expressing network-wide policies about a variety of
different management tasks. FML essentially allows a
manager to specify predicates about groups of users (e.g.,
faculty, students), and specifies which groups can com-
municate. FML also allows additional predicates on the
types of communication allowed such as the need to pass
through waypoints.

Unfortunately, the current FML implementation is
tightly integrated with an OpenFlow controller, and so
cannot be easily reused in NetPlumber. We worked
around this by encoding a set of constructs inspired by
FML in Prolog. Thus, network administrators can use
Prolog as the frontend language to declare various bind-
ings inspired by FML, such as hosts, usernames, groups
and addresses. Network administrators can also use Pro-
log to specify different policies. For example, the follow-
ing policy describes 1) the guest and server groups,
and 2) a policy: ”Traffic should go through firewall if it
flows from a guest to a server”.

guest(sam).
guest(michael).
server(webserver).
waypoint(HostSrc, HostDst, firewall):-

guest(HostSrc),
server(HostDst).

We have written a translator that converts such high
level policy specifications written in Prolog to 1) the
placement of source nodes, 2) the placement of probe
nodes, and 3) the filter and test expressions for each
probe node. In the example above, the translator gen-
erates two source nodes at Sam and Michael’s ports and
one probe node at the web server’s port. The waypoint
keyword is implemented by flowexp: .*(t=firewall).

The output of the translator is, in fact, a C++ struct
that lists all source, sink, and probe nodes. The source
probes and sink probes are encoded in flowexp syntax
using ASCII text. Finally, NetPlumber translates flowexp
into C++ code that it executes.

Note that because FML is not designed to declare path
constraints that can be expressed in flowexp, we found it
convenient to make the translator extensible. For exam-
ple, two new policy constructs we have built-in beyond
the FML-inspired constructs are “at most N hops” and

Rule Node! Duplicated Rule Node! Source Node! Probe Node!

Figure 6: A typical plumbing graph consists of clusters of
highly dependent rules corresponding to FECs in network.
There may be rules whose dependency edges cross clusters.
By replicating those rules, we can create clusters without de-
pendencies and run each cluster as an isolated NetPlumber in-
stance running on a different machine.

“immediately followed by”—but it is easy to add further
constructs.

5 Distributed NetPlumber
NetPlumber is memory-intensive because it maintains
considerable data about every rule and every flow in the
plumbing graph. For very large networks, with millions
of rules and a large number of policy constraints, Net-
Plumber’s memory requirements can exceed that of a
single machine. Further, as shown in section 3.5, the
run time of NetPlumber grows linearly with the size of
the tables. This can be potentially unacceptable for very
large networks.

Thus, a natural approach is to run parallel instances of
NetPlumber, each verifying a subset of the network and
each small enough to fit into the memory of a single ma-
chine. Finally, a collector can be used to gather the check
results from every NetPlumber instance and produce the
final result.

One might expect to parallelize based on switches:
i.e., each NetPlumber instance creates a plumbing graph
for a subset of switches in the network (vertical distribu-
tion). This can address the memory bottleneck, but need
not improve performance, as the NetPlumber instances
can depend on each other. In the worst case, an instance
may not be able to start its job unless the previous in-
stance is done. This technique can also require consider-
able communication between different instances.

A key observation is that in every practical network
we have seen, the plumbing graph looks like Figure 6:
there are clusters of highly dependent rules with very few
dependencies between rules in different clusters. This
is caused by forwarding equivalence classes (FECs) that
are routed end-to-end in the network with possible ag-
gregation. The rules belonging to a forwarding equiv-
alence class have a high degree of dependency among
each other. For example, 10.1.0.0/16 subnet traffic might
be a FEC in a network. There might be rules that further
divide this FEC into smaller subnets (such as 10.1.1.0/24,

8

distributed NetPlumber

run parallel instances of NetPlumber on each
cluster
-cluster: highly dependent rules
- (forwarding equivalence classes), e.g., 10.1.0.0/16 subnet traffic be a FEC
-very few dependency across clusters
- very few rules outside the range of 10.1.0.0/16

21

106 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

4.4 Policy translator
So far we have described a logical language called flow-
exp which is convenient for analysis and specifying pre-
cisely how flows are routed within the network. Flowexp
is, however, less appropriate as a language for network
managers to express higher level policy. Thus, for higher
level policy specification, we decided to reuse the pol-
icy constructs proposed in the Flow-based Management
Language (FML) [6], a high-level declarative language
for expressing network-wide policies about a variety of
different management tasks. FML essentially allows a
manager to specify predicates about groups of users (e.g.,
faculty, students), and specifies which groups can com-
municate. FML also allows additional predicates on the
types of communication allowed such as the need to pass
through waypoints.

Unfortunately, the current FML implementation is
tightly integrated with an OpenFlow controller, and so
cannot be easily reused in NetPlumber. We worked
around this by encoding a set of constructs inspired by
FML in Prolog. Thus, network administrators can use
Prolog as the frontend language to declare various bind-
ings inspired by FML, such as hosts, usernames, groups
and addresses. Network administrators can also use Pro-
log to specify different policies. For example, the follow-
ing policy describes 1) the guest and server groups,
and 2) a policy: ”Traffic should go through firewall if it
flows from a guest to a server”.

guest(sam).
guest(michael).
server(webserver).
waypoint(HostSrc, HostDst, firewall):-

guest(HostSrc),
server(HostDst).

We have written a translator that converts such high
level policy specifications written in Prolog to 1) the
placement of source nodes, 2) the placement of probe
nodes, and 3) the filter and test expressions for each
probe node. In the example above, the translator gen-
erates two source nodes at Sam and Michael’s ports and
one probe node at the web server’s port. The waypoint
keyword is implemented by flowexp: .*(t=firewall).

The output of the translator is, in fact, a C++ struct
that lists all source, sink, and probe nodes. The source
probes and sink probes are encoded in flowexp syntax
using ASCII text. Finally, NetPlumber translates flowexp
into C++ code that it executes.

Note that because FML is not designed to declare path
constraints that can be expressed in flowexp, we found it
convenient to make the translator extensible. For exam-
ple, two new policy constructs we have built-in beyond
the FML-inspired constructs are “at most N hops” and

Rule Node! Duplicated Rule Node! Source Node! Probe Node!

Figure 6: A typical plumbing graph consists of clusters of
highly dependent rules corresponding to FECs in network.
There may be rules whose dependency edges cross clusters.
By replicating those rules, we can create clusters without de-
pendencies and run each cluster as an isolated NetPlumber in-
stance running on a different machine.

“immediately followed by”—but it is easy to add further
constructs.

5 Distributed NetPlumber
NetPlumber is memory-intensive because it maintains
considerable data about every rule and every flow in the
plumbing graph. For very large networks, with millions
of rules and a large number of policy constraints, Net-
Plumber’s memory requirements can exceed that of a
single machine. Further, as shown in section 3.5, the
run time of NetPlumber grows linearly with the size of
the tables. This can be potentially unacceptable for very
large networks.

Thus, a natural approach is to run parallel instances of
NetPlumber, each verifying a subset of the network and
each small enough to fit into the memory of a single ma-
chine. Finally, a collector can be used to gather the check
results from every NetPlumber instance and produce the
final result.

One might expect to parallelize based on switches:
i.e., each NetPlumber instance creates a plumbing graph
for a subset of switches in the network (vertical distribu-
tion). This can address the memory bottleneck, but need
not improve performance, as the NetPlumber instances
can depend on each other. In the worst case, an instance
may not be able to start its job unless the previous in-
stance is done. This technique can also require consider-
able communication between different instances.

A key observation is that in every practical network
we have seen, the plumbing graph looks like Figure 6:
there are clusters of highly dependent rules with very few
dependencies between rules in different clusters. This
is caused by forwarding equivalence classes (FECs) that
are routed end-to-end in the network with possible ag-
gregation. The rules belonging to a forwarding equiv-
alence class have a high degree of dependency among
each other. For example, 10.1.0.0/16 subnet traffic might
be a FEC in a network. There might be rules that further
divide this FEC into smaller subnets (such as 10.1.1.0/24,

8

