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Fabric: a retrospective on evolving SDN

end-to-end arguments in system design
MPLS

Fabric: end-to-end arguments + MPLS



End-To-End Arguments in
System Design

http://web.mit.edu/Saltzer/www/publications/endtoend/

endtoend.pdf
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End-lo-End arguments

design principle
=the placement of functions among the modules of a

distributed system

=functions placed at lower level
= redundant
= of little value



moving a function upward

placing a function in a layered system closer to the

application that uses the function

=one class of function placement
=sharpened by the emergence of data communication network



data communication network

for a distributed system that includes
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=draw a modular boundary around the communication
subsystem (network) and a firm interface between it and the
rest of the system

=a function can be placed at!
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data communication network

for a distributed system that includes
communication

= draw a modular boundary around the communication
subsystem (network) and a firm interface between it and the
rest of the system

-af End-To-End argument

® the function in question can completely and

-t correctly be implemented only with the
-t knowledge and help of the application standing at
- r the endpoints of the communication subsystem

® providing that questioned function as a feature of
the communication subsystem is impossible



example function — reliable data transfer (rdt)

from host A to host B, failures can occur at various
points

= A passes (app) data to the rdt program

= A rdt program askes the network subsystem to transmit

= the network subsystem moves packets from A to B

=B communication program removes packets from the
network protocol to the rdt app

= rdt app writes the received data on the disc



reliable data transfer (rdt) —Ist attempt

brute force countermeasure

= reinforce each of the steps along the way
= using duplicates, time-out, retry, redundancy, error checking

= reduce the probability of each individual threat



rdt — alternate approach

end-to-end check and retry

= if something wrong, retry from the beginning

=when failure rare:
= normally work on a first try, occasionally a 2nd/3rd tries



brute force countermeasure VS. end-to-end check
and retry

Q: whether or not this attempt to be helpful on

the part of the network is useful to the rdt app

=brute force
= even the threat of one step (e.g., step 4) is eliminated, the rdt app must
still counter the remaining threats
= only reduce the frequency of retries
= no effect on the inevitability of correctness of the outcome



brute force countermeasure VS. end-to-end check
and retry

Q: whether or not this attempt to be helpful on

the part of the network is useful to the rdt app

=brute force
= even the threat of one step (e.g., step 4) is eliminated, the rdt app must
still counter the remaining threats
= only reduce the frequency of retries
= no effect on the inevitability of correctness of the outcome

= for the network to go out of its way to be extraordinarily reliable does
not reduce the burden on the app ...



brute force countermeasure VS. end-to-end check
and retry

Q: amount of effort to put into reliable measures

=an engineering trade-off based on performance, rather than a
requirement for correctness, frequently the trade-off is
complex

= brute force

= more efficient (hop-by-hop), but some app may find the cost of the
enhancement not worth the result

=end to end check and retry
= within app, simplifies the network but increases overall cost



other functions

delivery guarantees

secure transmission

duplicate message suppression
in order message delivery



end to end argument and “Occam’s Razor™

Occam’s Razor
= do not make more assumptions than the minimum needed

end-to-end argument is a kind of “Occam’s Razor”

=when it comes to choosing the functions to be provided

within a subsystem

= the subsystem frequently specified before app that uses the subsystem
are known

= a rational principle for organizing the subsystem



MPLS, the 2.5 layer



Tag Switching Architecture
Overview

https://ieeexplore.ieee.org/document/650179/
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tag switching =

a label swapping

forwarding paradigm + network layer routing
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tag switching =

a label swapping

forwarding paradigm + network layer routing

(forwarding component)  (control component)
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forwarding — label swapping

a tag switch uses the tag as an index in its TFIB
= <incoming tag, outgoing tag, outgoing interface ...>

R4

R2

incoming=100
outgoing=6

R5

incoming=6
outgoing=10

R3

incoming=17
outgoing=>5

incoming=5
outgoing=10

21
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forwarding — label swapping

a tag switch uses the tag as an index in its TFIB
= <incoming tag, outgoing tag, outgoing interface ...>

100

R4

R2

incoming=100
outgoing=6

R5

incoming=6
outgoing=10

R3

incoming=17
outgoing=>5

incoming=5
outgoing=10
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forwarding — label swapping

replaces the tag with the outgoing tag
= <incoming tag, outgoing tag, outgoing interface ...>

100 ===> 6
R4 R2
incoming=100 incoming=6
outgoing=6 outgoing=10 R
/incoming= 10
R5 R3 outgoing=6
incoming=17 incoming=>5

outgoing=5 outgoing=10
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forwarding — label swapping

replaces the tag with the outgoing tag
= <incoming tag, outgoing tag, outgoing interface ...>

100f f---> 6|  peeeeeeeee--- > 10] |
R4 R2 ™
incoming=100 incoming=6
outgoing=6 outgoing=10 R
/incoming= 10
R5 R3 outgoing=6
incoming=17 incoming=>5

outgoing=5 outgoing=10
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high forwarding performance

label swapping enables high

performance

= exact match algorithm using fixed
length (20 bit)
=fairly short tag as an index
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label swapping enables high

performance
= exact match algorithm using fixed compare.
length (20 bit) longest
=fairly short tag as an index prefix
match

simple enough to allow straightforward hardware implementation




control — tag binding

binding between a tag and network-layer route

= create a tag binding
= allocating a tag, binding it to a route

= distribute the tag binding information among tag switches

28



tag binding examples

different tag binding scheme realizes different

control functionalities

= destination-based routing
- flexible route (explicit routes)
= hierarchy of routing knowledge (BGP)

29



destination-based routing

a switch allocates tags and binds them to address

prefixes in its FIB

= downstream allocation

= the tag carried in a packet is generated and bound to a prefix by the
switch at the downstream end of a link

30



destination-based routing

downstream allocation

=the tag carried in a packet is generated and bound to a prefix
by the switch at the downstream end of a link

=for each route in the (downstream) switch’s FIB

= allocates a (incoming) tag
= creates an entry in its TFIB

= advertises the binding between the (incoming) tag and the route to the
(upstream) other adjacent switches

31



destination-based routing

downstream allocation

=R receives 192.6/16 bound to tag <6>

R4

R2

RI

192.6/16 <6>
<

\
/

R5

R3
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destination-based routing

R1 receives 192.6/16 with tag <6>

= creates an entry in TFIB, sets outgoing tag to <6>
= generates a local tag <10>, sets incoming tag to <10>

R4

R2

R5

192.6/16 <6>
<

R3

RI
/lncoming= 10
outgoing=6
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destination-based routing

R1 receives 192.6/16 with tag <6>

= set outgoing tag to <6>, set incoming tag to <|0>
=advertises 192.6/16 with <|0> to others

R4

R2

/9

R5

2.6§6"/O_\

RI

192.6/16 <6>
<

/incoming= 10

R3

\6
\‘ﬂﬂ outgoing=6

07
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destination-based routing

similarly, R2, R3, R4

= receive tag binding, create TFIB entries, re-advertise

R4

192.6/16 <6>
<

R5

/9
R2 | L&y
Y\6v/0.>
incoming=100 incoming=6 192.6/16 <6>
outgoing=6 outgoing=10 R <
I22.6/I6 <5> LI\6 incoming=10
R3 \9% outgoing=6
L 4=
incoming=5

outgoing=10
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destination-based routing

R5, router left to which is not a tag switch
=R5 also augments its FIB with outgoing tag <5>

192.6/16 <6>
<

R4 R2 |'R¢/,
Y\T/OA
incoming=100 incoming=6\ 192.6/16 <6>
outgoing=6 outgoing=10 R <
192.6/16 <5> \%4 ::%:i.:ggz-;o

RS R3 [
incoming=17 incoming=>5
outgoing=>5 outgoing=10

? I
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destination-based routing

a switch allocates tags and binds them to address
prefixes in its FIB

100f ---> 6|  preeeeeeeee-- > 10] |
R4 R2 ™
incoming=100 incoming=6
outgoing=6 outgoing=10 R
/incoming=|0
R5 R3 outgoing=6
incoming=17 incoming=>5 ‘L é
outgoing=>5 outgoing=10 _.-°°

[ 4

? RN D T — SETY




observation — routes aggregation

tag allocation is topology-driven

= if a tag switch forwards multiple packets to the same next-
hop neighbor
= only a single (incoming) tag is needed

= if a tag switch receives a set of routes associated with a single
tag
= only a single (incoming) tag is needed
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scaling properties

tag switching used for destination-based routing

# of tags a switch maintains # of routes in the FIB
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tag switching used for destination-based routing

# of tags a switch maintains << # of routes in the FIB

tag associated with routes, rather than flows

= much less state required
=no need to perform flow classicification

more robust & stable destination-based routing in the presence of traffic

pattern change




flexible routing (explicit routes)

provides forwarding along the paths different from

the path determined by destination-based routing

= install tag binding in tag switches that do not correspond to
the destination based routing paths
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hierarchical routing (BGP)

Internet routing (BGP)

= 2-tier routing scheme, collection of routing domains
tag switching

=decouples interior (intra-) and exterior (inter-) routing

= significantly reduces load on non-border switches

=only border maintains routing information for both interior/
exterior routing
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hierarchical routing (BGP)

tag stack
= a set of tags carried by a packet organized as a stack

operations
= label swapping as before: swap tag at the top
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hierarchical routing (BGP)

tag stack
= a set of tags carried by a packet organized as a stack

operations

= label swapping as before: swap tag at the top
= pop the stack
= push one more tag into the stack
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hierarchical routing (BGP)

when a packet is forwarded between two border

tag switches in different domains

=the tag stack only has one tag, associated with the AS-level
route
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hierarchical routing (BGP)

when a packet is forwarded between two border

tag switches in different domains

=the tag stack only has one tag, associated with the AS-level
route

when a packet is forwarded within a domain

= ingress router: 2nd tag associated with an interior route to
the egress border is pushed
=internal switches: only operate on the 2nd top tag

= egress border: pop the top (2nd) tag, uses the original tag for
tag switching to routers in another domain
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Fabric: A Retrospective on
Evolving SDN

http://yuba.stanford.edu/~casado/fabric.pdf
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Fabric:
end to end arguments + MPLS



many proposals towards a better network

MPLS

=simplifies hardware + improves control flexibility

SDN attempts to make further progress but

suffers certain shortcomings

= can we overcome those shortcomings by adopting the
insights underlying MPLS?
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an ideal network

hardware
=simple (inexpensive)
=vendor-neutral

= future proof: accommodate future innovation as much as
possible

control
= flexible: meet future requirements as they arise
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review

original Internet, MPLS, SDN along two dimensions

= requirements
= interfaces

53



requirements

tWO sources

= hosts
= operators

hosts

=want their packets to travel to a particular destination with
some QoS requirement about the nature of the services
these packets receive en-route to the destination

operators
= TE, tunneling, virtualization, isolation, ...
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interfaces

places where control information pass between

hetwork entities

= host-network

= how hosts inform the network of their requirements
- e.g., packet header (destination address), ...
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interfaces

places where control information pass between

hetwork entities

= host-network
= how hosts inform the network of their requirements
- e.g., packet header (destination address), ...

= operator-network

= how operator informs the network of their requirements
- e.g., per-box configuration command

= packet-switch

= how a packet identifies itself to a switch
- e.g., packet header as an index into the forwarding table

57



host-network operator- packet-switch
interface network interface
interface
original | destination none destination
Internet | address address
MPLS packet header [ none label (used
(inspected by by internal
edge tag switch) tag switch)
SDN packet fully packet
header programmatic | header
(Openflow) interface (Openflow)
(network

abstractions)
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shortcomings of SDN

not fulfill the promise of simple hardware
= Openflow far more complex than the tens of bits MPLS

host requirements generality expected to increase

=in turn means the generality of the host-network interface
will increase, but the increased generality must also be
present to every switch

unnecessary coupling the host requirements to the
network core behavior
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extending SDN with MPLS inspiration

SDN architecture should incorporate “fabric”
=fabric is a transport element

Edge Controller

| Fabric Controller ‘
\4
Src Fabric Dst
Host l > ' > Elements |"> | 1 Host |
Ingress Egress

Edage Switch Edage Switch

61



extending SDN with MPLS inspiration

SDN architecture should incorporate “fabric”
=fabric is a transport element

Edge Controller

| Fabric Controller ‘
\

Src Fabric Dst
Host l > ' - Elements > | 1 Host |

Ingress Egress
Edae Switch Edae Switch

61
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SDN architecture should incorporate “fabric”
=fabric is a transport element

Edge Controller

Fabric Controller
\4
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Host ' > - Elements ' 1 Host |
Ingress Egress
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extending SDN with MPLS inspiration

three components: hosts, edge (ingress, egress),
fabric (core)

Edge Controller

| Fabric Controller i
\
Src Fabric Dst
Host ' > ' > Elements ' > ' 1 Host |
Ingress Egress

Edage Switch Edage Switch
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extending SDN with MPLS inspiration

host
= generator and destination of traffic

Edge Controller

| Fabric Controller ‘
\4
Src Fabric Dst
_> ' > Elements |"> ' —>
Ingress Egress

Edage Switch Edage Switch
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extending SDN with MPLS inspiration

edge
= (ingress + edge controller) provide the host-network
interface

= edge controller provides operator-network interface

Edge Controller

| Fabric Controller ‘

Src Fabric Dst
Host [ ™ > Elements - 1 Host
T T — T
Ingress Egress

Edage Switch Edage Switch
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extending SDN with MPLS inspiration

fabric
= packet-switch interface (packet transfer alone)

Edge Controller

Fabric Controller
\4
Src | ' Fabric ' Dst l
Ingress Egress

Edage Switch Edage Switch
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extending SDN with MPLS inspiration

simplifies hardware + improves control flexibility

Edge Controller

| Fabric Controller i
\
Src Fabric Dst
Host ' > ' > Elements ' > ' 1 Host |
Ingress Egress

Edage Switch Edage Switch
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