5590, fall 2020
software defined networking

anduo wang, Temple University
T 17:30-20:00

Fabric: a retrospective on evolving SDN

end-to-end arguments in system design
MPLS

Fabric: end-to-end arguments + MPLS

End-To-End Arguments in
System Design

http://web.mit.edu/Saltzer/www/publications/endtoend/

endtoend.pdf

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

End-lo-End arguments

design principle
=the placement of functions among the modules of a
distributed system

End-lo-End arguments

design principle
=the placement of functions among the modules of a

distributed system

=functions placed at lower level
= redundant
= of little value

moving a function upward

placing a function in a layered system closer to the

application that uses the function

=one class of function placement
=sharpened by the emergence of data communication network

data communication network

for a distributed system that includes

commuhnication

=draw a modular boundary around the communication
subsystem (network) and a firm interface between it and the
rest of the system

=a function can be placed at!

data communication network

for a distributed system that includes

commuhnication

=draw a modular boundary around the communication
subsystem (network) and a firm interface between it and the
rest of the system

=a function can be placed at
= the network subsystem
= the client (application that uses the function)

= the joint nature
= redundantly

data communication network

for a distributed system that includes

commuhnication

=draw a modular boundary around the communication
subsystem (network) and a firm interface between it and the
rest of the system

=a function can be placed at
= the network subsystem
= the client (application that uses the function)

= the joint nature
= redundantly

data communication network

for a distributed system that includes
communication

= draw a modular boundary around the communication
subsystem (network) and a firm interface between it and the
rest of the system

-af End-To-End argument

® the function in question can completely and

-t correctly be implemented only with the
-t knowledge and help of the application standing at
- r the endpoints of the communication subsystem

® providing that questioned function as a feature of
the communication subsystem is impossible

example function — reliable data transfer (rdt)

from host A to host B, failures can occur at various
points

= A passes (app) data to the rdt program

= A rdt program askes the network subsystem to transmit

= the network subsystem moves packets from A to B

=B communication program removes packets from the
network protocol to the rdt app

= rdt app writes the received data on the disc

reliable data transfer (rdt) —Ist attempt

brute force countermeasure

= reinforce each of the steps along the way
= using duplicates, time-out, retry, redundancy, error checking

= reduce the probability of each individual threat

rdt — alternate approach

end-to-end check and retry

= if something wrong, retry from the beginning

=when failure rare:
= normally work on a first try, occasionally a 2nd/3rd tries

brute force countermeasure VS. end-to-end check
and retry

Q: whether or not this attempt to be helpful on

the part of the network is useful to the rdt app

=brute force
= even the threat of one step (e.g., step 4) is eliminated, the rdt app must
still counter the remaining threats
= only reduce the frequency of retries
= no effect on the inevitability of correctness of the outcome

brute force countermeasure VS. end-to-end check
and retry

Q: whether or not this attempt to be helpful on

the part of the network is useful to the rdt app

=brute force
= even the threat of one step (e.g., step 4) is eliminated, the rdt app must
still counter the remaining threats
= only reduce the frequency of retries
= no effect on the inevitability of correctness of the outcome

= for the network to go out of its way to be extraordinarily reliable does
not reduce the burden on the app ...

brute force countermeasure VS. end-to-end check
and retry

Q: amount of effort to put into reliable measures

=an engineering trade-off based on performance, rather than a
requirement for correctness, frequently the trade-off is
complex

= brute force

= more efficient (hop-by-hop), but some app may find the cost of the
enhancement not worth the result

=end to end check and retry
= within app, simplifies the network but increases overall cost

other functions

delivery guarantees

secure transmission

duplicate message suppression
in order message delivery

end to end argument and “Occam’s Razor™

Occam’s Razor
= do not make more assumptions than the minimum needed

end-to-end argument is a kind of “Occam’s Razor”

=when it comes to choosing the functions to be provided

within a subsystem

= the subsystem frequently specified before app that uses the subsystem
are known

= a rational principle for organizing the subsystem

MPLS, the 2.5 layer

Tag Switching Architecture
Overview

https://ieeexplore.ieee.org/document/650179/

https://ieeexplore.ieee.org/document/650179/

tag switching =

a label swapping

forwarding paradigm + network layer routing

20

tag switching =

a label swapping

forwarding paradigm + network layer routing

(forwarding component) (control component)

20

forwarding — label swapping

a tag switch uses the tag as an index in its TFIB
= <incoming tag, outgoing tag, outgoing interface ...>

R4

R2

incoming=100
outgoing=6

R5

incoming=6
outgoing=10

R3

incoming=17
outgoing=>5

incoming=5
outgoing=10

21

/incoming= 10

RI

outgoing=6

forwarding — label swapping

a tag switch uses the tag as an index in its TFIB
= <incoming tag, outgoing tag, outgoing interface ...>

100

R4

R2

incoming=100
outgoing=6

R5

incoming=6
outgoing=10

R3

incoming=17
outgoing=>5

incoming=5
outgoing=10

22

/incoming= 10

RI

outgoing=6

forwarding — label swapping

replaces the tag with the outgoing tag
= <incoming tag, outgoing tag, outgoing interface ...>

100 ===> 6
R4 R2
incoming=100 incoming=6
outgoing=6 outgoing=10 R
/incoming= 10
R5 R3 outgoing=6
incoming=17 incoming=>5

outgoing=5 outgoing=10

23

forwarding — label swapping

replaces the tag with the outgoing tag
= <incoming tag, outgoing tag, outgoing interface ...>

100f f---> 6| peeeeeeeee--- > 10] |
R4 R2 ™
incoming=100 incoming=6
outgoing=6 outgoing=10 R
/incoming= 10
R5 R3 outgoing=6
incoming=17 incoming=>5

outgoing=5 outgoing=10

24

high forwarding performance

label swapping enables high

performance

= exact match algorithm using fixed
length (20 bit)
=fairly short tag as an index

25

high forwarding performance

label swapping enables high

performance

= exact match algorithm using fixed clompare:
length (20 bit) ongest

e | prefix
fairly short tag as an index match

26

label swapping enables high

performance
= exact match algorithm using fixed compare.
length (20 bit) longest
=fairly short tag as an index prefix
match

simple enough to allow straightforward hardware implementation

control — tag binding

binding between a tag and network-layer route

= create a tag binding
= allocating a tag, binding it to a route

= distribute the tag binding information among tag switches

28

tag binding examples

different tag binding scheme realizes different

control functionalities

= destination-based routing
- flexible route (explicit routes)
= hierarchy of routing knowledge (BGP)

29

destination-based routing

a switch allocates tags and binds them to address

prefixes in its FIB

= downstream allocation

= the tag carried in a packet is generated and bound to a prefix by the
switch at the downstream end of a link

30

destination-based routing

downstream allocation

=the tag carried in a packet is generated and bound to a prefix
by the switch at the downstream end of a link

=for each route in the (downstream) switch’s FIB

= allocates a (incoming) tag
= creates an entry in its TFIB

= advertises the binding between the (incoming) tag and the route to the
(upstream) other adjacent switches

31

destination-based routing

downstream allocation

=R receives 192.6/16 bound to tag <6>

R4

R2

RI

192.6/16 <6>
<

\
/

R5

R3

32

destination-based routing

R1 receives 192.6/16 with tag <6>

= creates an entry in TFIB, sets outgoing tag to <6>
= generates a local tag <10>, sets incoming tag to <10>

R4

R2

R5

192.6/16 <6>
<

R3

RI
/lncoming= 10
outgoing=6

33

destination-based routing

R1 receives 192.6/16 with tag <6>

= set outgoing tag to <6>, set incoming tag to <|0>
=advertises 192.6/16 with <|0> to others

R4

R2

/9

R5

2.6§6"/O_\

RI

192.6/16 <6>
<

/incoming= 10

R3

\6
\‘ﬂﬂ outgoing=6

07

34

4‘\/

destination-based routing

similarly, R2, R3, R4

= receive tag binding, create TFIB entries, re-advertise

R4

192.6/16 <6>
<

R5

/9
R2 | L&y
Y\6v/0.>
incoming=100 incoming=6 192.6/16 <6>
outgoing=6 outgoing=10 R <
I22.6/I6 <5> LI\6 incoming=10
R3 \9% outgoing=6
L 4=
incoming=5

outgoing=10

35

destination-based routing

R5, router left to which is not a tag switch
=R5 also augments its FIB with outgoing tag <5>

192.6/16 <6>
<

R4 R2 |'R¢/,
Y\T/OA
incoming=100 incoming=6\ 192.6/16 <6>
outgoing=6 outgoing=10 R <
192.6/16 <5> \%4 ::%:i.:ggz-;o

RS R3 [
incoming=17 incoming=>5
outgoing=>5 outgoing=10

? I

36

destination-based routing

a switch allocates tags and binds them to address
prefixes in its FIB

100f ---> 6| preeeeeeeee-- > 10] |
R4 R2 ™
incoming=100 incoming=6
outgoing=6 outgoing=10 R
/incoming=|0
R5 R3 outgoing=6
incoming=17 incoming=>5 ‘L é
outgoing=>5 outgoing=10 _.-°°

[4

? RN D T — SETY

observation — routes aggregation

tag allocation is topology-driven

= if a tag switch forwards multiple packets to the same next-
hop neighbor
= only a single (incoming) tag is needed

= if a tag switch receives a set of routes associated with a single
tag
= only a single (incoming) tag is needed

38

scaling properties

tag switching used for destination-based routing

of tags a switch maintains # of routes in the FIB

39

scaling properties

tag switching used for destination-based routing

of tags a switch maintains << # of routes in the FIB

40

scaling properties

tag switching used for destination-based routing

of tags a switch maintains << # of routes in the FIB

tag associated with routes, rather than flows

=much less state required
=no need to perform flow classicification

41

tag switching used for destination-based routing

of tags a switch maintains << # of routes in the FIB

tag associated with routes, rather than flows

= much less state required
=no need to perform flow classicification

more robust & stable destination-based routing in the presence of traffic

pattern change

flexible routing (explicit routes)

provides forwarding along the paths different from

the path determined by destination-based routing

= install tag binding in tag switches that do not correspond to
the destination based routing paths

43

hierarchical routing (BGP)

Internet routing (BGP)

= 2-tier routing scheme, collection of routing domains
tag switching

=decouples interior (intra-) and exterior (inter-) routing

= significantly reduces load on non-border switches

=only border maintains routing information for both interior/
exterior routing

44

hierarchical routing (BGP)

tag stack
= a set of tags carried by a packet organized as a stack

operations
= label swapping as before: swap tag at the top

45

hierarchical routing (BGP)

tag stack
= a set of tags carried by a packet organized as a stack

operations

= label swapping as before: swap tag at the top
= pop the stack
= push one more tag into the stack

46

hierarchical routing (BGP)

when a packet is forwarded between two border

tag switches in different domains

=the tag stack only has one tag, associated with the AS-level
route

47

hierarchical routing (BGP)

when a packet is forwarded between two border

tag switches in different domains

=the tag stack only has one tag, associated with the AS-level
route

when a packet is forwarded within a domain

= ingress router: 2nd tag associated with an interior route to
the egress border is pushed
=internal switches: only operate on the 2nd top tag

= egress border: pop the top (2nd) tag, uses the original tag for
tag switching to routers in another domain

48

Fabric: A Retrospective on
Evolving SDN

http://yuba.stanford.edu/~casado/fabric.pdf

http://yuba.stanford.edu/~casado/fabric.pdf

Fabric:
end to end arguments + MPLS

many proposals towards a better network

MPLS

=simplifies hardware + improves control flexibility

SDN attempts to make further progress but

suffers certain shortcomings

= can we overcome those shortcomings by adopting the
insights underlying MPLS?

51

an ideal network

hardware
=simple (inexpensive)
=vendor-neutral

= future proof: accommodate future innovation as much as
possible

control
= flexible: meet future requirements as they arise

52

review

original Internet, MPLS, SDN along two dimensions

= requirements
= interfaces

53

requirements

tWO sources

= hosts
= operators

hosts

=want their packets to travel to a particular destination with
some QoS requirement about the nature of the services
these packets receive en-route to the destination

operators
= TE, tunneling, virtualization, isolation, ...

54

interfaces

places where control information pass between

hetwork entities

= host-network

= how hosts inform the network of their requirements
- e.g., packet header (destination address), ...

55

interfaces

places where control information pass between

hetwork entities

= host-network

= how hosts inform the network of their requirements
- e.g., packet header (destination address), ...

= operator-network

= how operator informs the network of their requirements
- e.g., per-box configuration command

56

interfaces

places where control information pass between

hetwork entities

= host-network
= how hosts inform the network of their requirements
- e.g., packet header (destination address), ...

= operator-network

= how operator informs the network of their requirements
- e.g., per-box configuration command

= packet-switch

= how a packet identifies itself to a switch
- e.g., packet header as an index into the forwarding table

57

host-network operator- packet-switch
interface network interface
interface
original | destination none destination
Internet | address address
MPLS packet header [none label (used
(inspected by by internal
edge tag switch) tag switch)
SDN packet fully packet
header programmatic | header
(Openflow) interface (Openflow)
(network

abstractions)

host-network operator- packet-switch
interface network interface
interface
original | destination none destination
Internet | address address
MPLS packet header [none label (used
(inspected by by internal
edge tag switch) tag switch)
SDN packet fully packet
header programmatic | header
(Openflow) interface (Openflow)
(network

abstractions)

shortcomings of SDN

not fulfill the promise of simple hardware
= Openflow far more complex than the tens of bits MPLS

host requirements generality expected to increase

=in turn means the generality of the host-network interface
will increase, but the increased generality must also be
present to every switch

unnecessary coupling the host requirements to the
network core behavior

60

extending SDN with MPLS inspiration

SDN architecture should incorporate “fabric”
=fabric is a transport element

Edge Controller

| Fabric Controller ‘
\4
Src Fabric Dst
Host l > ' > Elements |"> | 1 Host |
Ingress Egress

Edage Switch Edage Switch

61

extending SDN with MPLS inspiration

SDN architecture should incorporate “fabric”
=fabric is a transport element

Edge Controller

| Fabric Controller ‘
\

Src Fabric Dst
Host l > ' - Elements > | 1 Host |

Ingress Egress
Edae Switch Edae Switch

61

extending SDN with MPLS inspiration

SDN architecture should incorporate “fabric”
=fabric is a transport element

Edge Controller

Fabric Controller
\4
Src Fabric Dst
Host ' > - Elements ' 1 Host |
Ingress Egress

Edage Switch Edage Switch

61

extending SDN with MPLS inspiration

three components: hosts, edge (ingress, egress),
fabric (core)

Edge Controller

| Fabric Controller i
\
Src Fabric Dst
Host ' > ' > Elements ' > ' 1 Host |
Ingress Egress

Edage Switch Edage Switch

62

extending SDN with MPLS inspiration

host
= generator and destination of traffic

Edge Controller

| Fabric Controller ‘
\4
Src Fabric Dst
_> ' > Elements |"> ' —>
Ingress Egress

Edage Switch Edage Switch

63

extending SDN with MPLS inspiration

edge
= (ingress + edge controller) provide the host-network
interface

= edge controller provides operator-network interface

Edge Controller

| Fabric Controller ‘

Src Fabric Dst
Host [™ > Elements - 1 Host
T T — T
Ingress Egress

Edage Switch Edage Switch

64

extending SDN with MPLS inspiration

fabric
= packet-switch interface (packet transfer alone)

Edge Controller

Fabric Controller
\4
Src | ' Fabric ' Dst l
Ingress Egress

Edage Switch Edage Switch

65

extending SDN with MPLS inspiration

simplifies hardware + improves control flexibility

Edge Controller

| Fabric Controller i
\
Src Fabric Dst
Host ' > ' > Elements ' > ' 1 Host |
Ingress Egress

Edage Switch Edage Switch

66

