
centralized control — separating
data- and control- planes

5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

some materials in this slide are based on lectures by
Jennifer Rexford https://www.cs.princeton.edu/courses/archive/fall13/cos597E/

Nick Feamster http://noise.gatech.edu/classes/cs8803sdn/fall2014/

https://www.cs.princeton.edu/courses/archive/fall13/cos597E/
http://noise.gatech.edu/classes/cs8803sdn/fall2014/

data, control, and
management planes

 3

 4

vendor
lock-in

control
plane

data plane

control
plane

data plane

control
plane

data plane

control
plane

data plane

management
scripts and tools

control
plane

data plane

 4

vendor
lock-in

control
plane

data plane

control
plane

data plane

control
plane

data plane

control
plane

data plane

management
scripts and tools

control
plane

data plane

 5

defines network composition, control plane
configuration, and monitoring schemes

example: CLI, scripts

generates forwarding tables and filters for
the data plane

example: distributed routing protocols

handles packets
example: forwarding

management plane

control plane

data plane

 5

defines network composition, control plane
configuration, and monitoring schemes

example: CLI, scripts

generates forwarding tables and filters for
the data plane

example: distributed routing protocols

handles packets
example: forwarding

management plane

control plane

data plane

 5

defines network composition, control plane
configuration, and monitoring schemes

example: CLI, scripts

generates forwarding tables and filters for
the data plane

example: distributed routing protocols

handles packets
example: forwarding

management plane

control plane

data plane

9/16/13&

2&

Timescales

7

Data Control Management

Time-
scale

Packet
(nsec)

Event (10
msec to sec)

Human (min
to hours)

Tasks Forwarding,
buffering,
filtering,
scheduling

Routing,
circuit
set-up

Analysis,
configuration

Location Line-card
hardware

Router
software

Humans or
scripts

Data and Control Planes

8

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane!

control plane!

Data Plane

•  Streaming algorithms on packets
– Matching on some bits
– Perform some actions

•  Wide range of functionality
– Forwarding
– Access control
– Mapping header fields
– Traffic monitoring
– Buffering and marking
– Shaping and scheduling
– Deep packet inspection

9

Switching
Fabric

Processor

Switch: Match on Destination MAC

•  MAC addresses are location independent
– Assigned by the vendor of the interface card
– Cannot be aggregated across hosts in LAN

10

mac1

mac2

mac3

mac4

mac5

host host host ...!
mac1! mac2! mac3!

switch

host

host

mac4!

mac5!

Router: Match on IP Prefix

•  IP addresses grouped into common subnets
– Allocated by ICANN, regional registries, ISPs,

and within individual organizations
– Variable-length prefix identified by a mask length

11

host host host

LAN 1!

...! host host host

LAN 2!

...!

router router router WAN! WAN!

1.2.3.4! 1.2.3.7! 1.2.3.156! 5.6.7.8! 5.6.7.9! 5.6.7.212!

1.2.3.0/24!
5.6.7.0/24!

forwarding table!

Prefixes may be nested.
Routers identify the
longest matching prefix.!

Forwarding vs. Routing

•  Forwarding: data plane
– Directing a data packet to an outgoing link
– Individual router using a forwarding table

•  Routing: control plane
– Computing paths the packets will follow
– Routers talking amongst themselves
– Individual router creating a forwarding table

12

timescales

 6

9/16/13&

2&

Timescales

7

Data Control Management

Time-
scale

Packet
(nsec)

Event (10
msec to sec)

Human (min
to hours)

Tasks Forwarding,
buffering,
filtering,
scheduling

Routing,
circuit
set-up

Analysis,
configuration

Location Line-card
hardware

Router
software

Humans or
scripts

Data and Control Planes

8

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane!

control plane!

Data Plane

•  Streaming algorithms on packets
– Matching on some bits
– Perform some actions

•  Wide range of functionality
– Forwarding
– Access control
– Mapping header fields
– Traffic monitoring
– Buffering and marking
– Shaping and scheduling
– Deep packet inspection

9

Switching
Fabric

Processor

Switch: Match on Destination MAC

•  MAC addresses are location independent
– Assigned by the vendor of the interface card
– Cannot be aggregated across hosts in LAN

10

mac1

mac2

mac3

mac4

mac5

host host host ...!
mac1! mac2! mac3!

switch

host

host

mac4!

mac5!

Router: Match on IP Prefix

•  IP addresses grouped into common subnets
– Allocated by ICANN, regional registries, ISPs,

and within individual organizations
– Variable-length prefix identified by a mask length

11

host host host

LAN 1!

...! host host host

LAN 2!

...!

router router router WAN! WAN!

1.2.3.4! 1.2.3.7! 1.2.3.156! 5.6.7.8! 5.6.7.9! 5.6.7.212!

1.2.3.0/24!
5.6.7.0/24!

forwarding table!

Prefixes may be nested.
Routers identify the
longest matching prefix.!

Forwarding vs. Routing

•  Forwarding: data plane
– Directing a data packet to an outgoing link
– Individual router using a forwarding table

•  Routing: control plane
– Computing paths the packets will follow
– Routers talking amongst themselves
– Individual router creating a forwarding table

12

data and control planes

 7

9/16/13&

2&

Timescales

7

Data Control Management

Time-
scale

Packet
(nsec)

Event (10
msec to sec)

Human (min
to hours)

Tasks Forwarding,
buffering,
filtering,
scheduling

Routing,
circuit
set-up

Analysis,
configuration

Location Line-card
hardware

Router
software

Humans or
scripts

Data and Control Planes

8

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane!

control plane!

Data Plane

•  Streaming algorithms on packets
– Matching on some bits
– Perform some actions

•  Wide range of functionality
– Forwarding
– Access control
– Mapping header fields
– Traffic monitoring
– Buffering and marking
– Shaping and scheduling
– Deep packet inspection

9

Switching
Fabric

Processor

Switch: Match on Destination MAC

•  MAC addresses are location independent
– Assigned by the vendor of the interface card
– Cannot be aggregated across hosts in LAN

10

mac1

mac2

mac3

mac4

mac5

host host host ...!
mac1! mac2! mac3!

switch

host

host

mac4!

mac5!

Router: Match on IP Prefix

•  IP addresses grouped into common subnets
– Allocated by ICANN, regional registries, ISPs,

and within individual organizations
– Variable-length prefix identified by a mask length

11

host host host

LAN 1!

...! host host host

LAN 2!

...!

router router router WAN! WAN!

1.2.3.4! 1.2.3.7! 1.2.3.156! 5.6.7.8! 5.6.7.9! 5.6.7.212!

1.2.3.0/24!
5.6.7.0/24!

forwarding table!

Prefixes may be nested.
Routers identify the
longest matching prefix.!

Forwarding vs. Routing

•  Forwarding: data plane
– Directing a data packet to an outgoing link
– Individual router using a forwarding table

•  Routing: control plane
– Computing paths the packets will follow
– Routers talking amongst themselves
– Individual router creating a forwarding table

12

data plane
streaming algorithms on packets
-matching on some bits
-perform some actions

wide range of functionality
-forwarding
-access control
-traffic monitoring
-packet inspection

 8

9/16/13&

2&

Timescales

7

Data Control Management

Time-
scale

Packet
(nsec)

Event (10
msec to sec)

Human (min
to hours)

Tasks Forwarding,
buffering,
filtering,
scheduling

Routing,
circuit
set-up

Analysis,
configuration

Location Line-card
hardware

Router
software

Humans or
scripts

Data and Control Planes

8

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane!

control plane!

Data Plane

•  Streaming algorithms on packets
– Matching on some bits
– Perform some actions

•  Wide range of functionality
– Forwarding
– Access control
– Mapping header fields
– Traffic monitoring
– Buffering and marking
– Shaping and scheduling
– Deep packet inspection

9

Switching
Fabric

Processor

Switch: Match on Destination MAC

•  MAC addresses are location independent
– Assigned by the vendor of the interface card
– Cannot be aggregated across hosts in LAN

10

mac1

mac2

mac3

mac4

mac5

host host host ...!
mac1! mac2! mac3!

switch

host

host

mac4!

mac5!

Router: Match on IP Prefix

•  IP addresses grouped into common subnets
– Allocated by ICANN, regional registries, ISPs,

and within individual organizations
– Variable-length prefix identified by a mask length

11

host host host

LAN 1!

...! host host host

LAN 2!

...!

router router router WAN! WAN!

1.2.3.4! 1.2.3.7! 1.2.3.156! 5.6.7.8! 5.6.7.9! 5.6.7.212!

1.2.3.0/24!
5.6.7.0/24!

forwarding table!

Prefixes may be nested.
Routers identify the
longest matching prefix.!

Forwarding vs. Routing

•  Forwarding: data plane
– Directing a data packet to an outgoing link
– Individual router using a forwarding table

•  Routing: control plane
– Computing paths the packets will follow
– Routers talking amongst themselves
– Individual router creating a forwarding table

12

distributed control plane
example: distance-vector routing: RIP
-each node computes path cost
- …based on neighbor’s path cost
- Bellman-Ford algorithm

 9

9/16/13&

3&

Example: Shortest-Path Routing
•  Compute:&path%costs&to&all&nodes&

– From&a&source&u&to&all&other&nodes&
– Cost&of&the&path&through&each&link&
– Next&hop&along&least?cost&path&to&s&

13

3
2

2

1

1
4

1

4

5

3

u

s
6

v (u,v)
w (u,w)
x (u,w)
y (u,v)
z (u,v)

link

s (u,w)
t (u,w)

v

w

y

x

t

z

Distributed Control Plane

•  Link-state routing: OSPF, IS-IS
– Flood the entire topology to all nodes
– Each node computes shortest paths
– Dijkstra’s algorithm

14 14

v (u,v)
w (u,w)
x (u,w)
y (u,v)
z (u,v)

link

s (u,w)
t (u,w)

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

Distributed Control Plane

•  Distance-vector routing: RIP, EIGRP
– Each node computes path cost
– … based on each neighbors’ path cost
– Bellman-Ford algorithm

15

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

du(z) = min{c(u,v) + dv(z),
 c(u,w) + dw(z)}

Traffic Engineering Problem

•  Management plane: setting the weights
–  Inversely proportional to link capacity?
– Proportional to propagation delay?
– Network-wide optimization based on traffic?

16

3!
2!

2!

1!

1!
3!

1!

4!

5!

3!

3!

Traffic Engineering: Optimization

•  Inputs
– Network topology
– Link capacities
– Traffic matrix

•  Output
– Link weights

•  Objective
– Minimize max-utilized link
– Or, minimize a sum of link congestion

17

3!
2!

2!

1!

1!
3!

1!

4!

5!

3!

Transient Routing Disruptions

•  Topology changes
– Link weight change
– Node/link failure or recovery

•  Routing convergence
– Nodes temporarily disagree how to route
– Leading to transient loops and blackholes

18

1!

4!

5!

3!

1!

4!

10!

3!

1!

4!

10!

3!

management plane
example: set weights for traffic engineering

 10

9/16/13&

3&

Example: Shortest-Path Routing
•  Compute:&path%costs&to&all&nodes&

– From&a&source&u&to&all&other&nodes&
– Cost&of&the&path&through&each&link&
– Next&hop&along&least?cost&path&to&s&

13

3
2

2

1

1
4

1

4

5

3

u

s
6

v (u,v)
w (u,w)
x (u,w)
y (u,v)
z (u,v)

link

s (u,w)
t (u,w)

v

w

y

x

t

z

Distributed Control Plane

•  Link-state routing: OSPF, IS-IS
– Flood the entire topology to all nodes
– Each node computes shortest paths
– Dijkstra’s algorithm

14 14

v (u,v)
w (u,w)
x (u,w)
y (u,v)
z (u,v)

link

s (u,w)
t (u,w)

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

Distributed Control Plane

•  Distance-vector routing: RIP, EIGRP
– Each node computes path cost
– … based on each neighbors’ path cost
– Bellman-Ford algorithm

15

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

du(z) = min{c(u,v) + dv(z),
 c(u,w) + dw(z)}

Traffic Engineering Problem

•  Management plane: setting the weights
–  Inversely proportional to link capacity?
– Proportional to propagation delay?
– Network-wide optimization based on traffic?

16

3!
2!

2!

1!

1!
3!

1!

4!

5!

3!

3!

Traffic Engineering: Optimization

•  Inputs
– Network topology
– Link capacities
– Traffic matrix

•  Output
– Link weights

•  Objective
– Minimize max-utilized link
– Or, minimize a sum of link congestion

17

3!
2!

2!

1!

1!
3!

1!

4!

5!

3!

Transient Routing Disruptions

•  Topology changes
– Link weight change
– Node/link failure or recovery

•  Routing convergence
– Nodes temporarily disagree how to route
– Leading to transient loops and blackholes

18

1!

4!

5!

3!

1!

4!

10!

3!

1!

4!

10!

3!

management plane

Aaron Gember-Jacobson., et al. “Management Plane Analytics” IMC 2015

management plane
diverse management practice
-design practice
-set physical network composition (heterogeneity), logical structure

(spanning tree)
-operation practice
-change network for diverse purposes (router, middle-box)
- tedious, error-prone

Aaron Gember-Jacobson., et al. “Management Plane Analytics” IMC 2015

management plane
diverse management practice
-design practice
-set physical network composition (heterogeneity), logical structure

(spanning tree)
-operation practice
-change network for diverse purposes (router, middle-box)
- tedious, error-prone

lacking principled understanding of management
practice
-how practice impacts network health (performance,

availability)?

Aaron Gember-Jacobson., et al. “Management Plane Analytics” IMC 2015

network management today:
mastering complexity

 12

complexity management plane

control plane

data plane

 13

complexity management plane

control plane

data plane

control logic and packet handling
-bundled in distributed switching element
-management objectives implicitly embedded

 13

complexity management plane

control plane

data plane

control logic and packet handling
-bundled in distributed switching element
-management objectives implicitly embedded

tension
-ever-evolving management requirement
-incremental point solutions to control plane, and complex

management tools “coax” the control plane

 13

complexity management plane

control plane

data plane

control logic and packet handling
-bundled in distributed switching element
-management objectives implicitly embedded

tension
-ever-evolving management requirement
-incremental point solutions to control plane, and complex

management tools “coax” the control plane

challenge
-indirect, coordinated control
- interacting protocols and mechanisms

 13

further reading:
A clean slate 4D approach to network control and management

https://dl.acm.org/doi/10.1145/1096536.1096541

4D

 14

https://dl.acm.org/doi/10.1145/1096536.1096541

4D goals
-network-wide objectives
-observe and control
-network-wide views
-complete visibility
-direct control
-direct, sole control

 15

dissemination

decision

data

discovery

network wide objectives

ne
tw

or
k

w
id

e
vi

ew
s direct control

-refactoring network
functionality

-extreme design point
-decoupled, centralized control

 16

dissemination

decision

data

discovery

network wide objectives

ne
tw

or
k

w
id

e
vi

ew
s direct control

4D architecture

4D by example

 17

AF1
AF2

BF1
BF2

R3

Location A

Location B

Data Center

R4

R1 R2

Front Office

i1.1

i1.2

i3.2
i3.1

i4.2
i4.1

i2.1

i2.2

metric=1

metric=1

metric=1 R5

metric=1

metric=1
AD2

AD1

BD1

BD2

Figure 1: Enterprise network with two locations, each location
with a front office and a data-center.

to the data centers to drop packets that violate the policy. Interface
i1.1 is configured with a packet filter that drops all packets from the
BF subnet, and interface i3.1 drops all packets from the AF subnet.
The network functions as desired, until the day when the data-

center staff decides to add a new, high-capacity dedicated link be-
tween the data centers (shown as a dashed line between R1 and
R3—perhaps they have decided to use each other as remote backup
locations). It seems reasonable that with packet filters protecting
the entrances to the data centers, the new link between data cen-
ters should not compromise the security policy. However, the new
link changes the routing such that packets sent from AF to BD will
travel from R2 to R1 to R3 to BD—completely avoiding the packet
filter installed on interface i3.1 and violating the security policy.
When the designers eventually discover the security hole, probably
due to an attack exploiting the hole, they would typically respond
by copying the packet filter from i3.1 to i3.2, so it now also drops
packets from AF. This filter design does plug the security hole, but
it means that if the front office link from R2 to R4 fails, AF will be
unable to reach BF. Even though the links from R2 to R1 to R3 to
R4 are all working, the packet filter on interface i3.2 will drop the
packets from subnet AF.
In this example, the problems arise because the ability of a net-

work to carry packets depends on the routing protocols and the
packet filters working in concert. While routing automatically adapts
to topology changes, there is no corresponding way to automati-
cally adapt packet filters or other state. It could be argued that a
more “optimal” placement of packet filters, or the use of multi-
dimensional packet filters (i.e., filters that test both source and des-
tination address of a packet) would fix the problems shown in this
example. However, as networks grow in size and complexity from
the trivial example used here for illustrative purposes, finding these
optimal placements and maintaining the many multi-dimensional
packet filters they generate requires developing and integrating en-
tirely new sets of tools into the network’s management systems.
Since these tools will be separate from the protocols that control
routing in real time, they will perpetually be attempting to remain
synchronized with routing protocols by trying to model and guess
the protocols’ behavior.
In contrast, the 4D architecture simply and directly eliminates

this entire class of problems. The 4D architecture allows the direct
specification of a “reachability matrix” and automated mechanisms
for simultaneously setting the forwarding-table entries and packet
filters on the routers based on the current network state.

2.2 Peering Policies in Transit Networks
Routing policy is based on the premise that a router that does not

announce a route to a destination to a peer will not be sent pack-

AS1 AS3

AS2

br.nyc.as3

br.atl.as3
br.atl.as1

br.nyc.as1

br.nyc.as2

Figure 2: Autonomous Systems (ASes) peering with each other
via external BGP (eBGP) sessions. AS1 must place packet fil-
ters on its ingress links to prevent AS3 from sending packets to
destinations for which AS1 has not agreed to provide transit.

ets for that destination by that peer. However, the routing system
does nothing to prevent an unscrupulous peer from sending pack-
ets to that destination anyway. Enforcing routing policy is nearly
impossible with today’s control and management planes.
Figure 2 shows an example of three Autonomous Systems (ASes)

peering with each other via three external BGP sessions (one eBGP
session along each of the links shown in the figure). Assume that
AS1 is a major transit network, and it announces a route to desti-
nation d in its eBGP session with AS2. If AS1’s policy is to not
provide AS3 with transit service for d, it does not announce d in
its eBGP sessions with AS3. However, if AS3 wishes to be un-
scrupulous (e.g., use AS1 for transit service without paying), it can
assume AS1 does know a way to d (e.g., so AS1’s own customers
can reach d). If AS3 sends packets for d to br.nyc.as1, they will
definitely be delivered, as br.nyc.as1 must have a route to d in order
to handle legitimate traffic from AS2.
Enforcing routing policy requires installing packet filters to drop

packets to destinations which have not been announced as reach-
able. As the announcements received by an AS, and the AS’s own
topology, change over time, the announcements sent by the AS will
change and the packet filters must be moved correspondingly. Im-
plementing such functionality by adding another ad hoc script to
the management plane is essentially impossible today. Even if it
were possible to write a script that snoops on the eBGP announce-
ments sent to each neighboring border router and installs packet
filters on the ingress interface as appropriate, the script would be
extremely dangerous as it would not properly order the packet filter
installation/removal with the BGP announcements. For example, it
would be bad to announce to a neighbor border router a route to a
destination before removing the packet filters that drop the packets
sent to the destination.
Beyond ordering issues, transit networks handle a large num-

ber of destinations, and each packet filter applied to an interface
consumes forwarding resources and reduces the effective capacity
of the interface. It might be desirable to move packet filters into
the network whenever possible, away from the ingress interfaces,
so that one packet filter can enforce the BGP policy for multiple
ingress interfaces.
Enforcing routing policy requires dynamically placing packet fil-

ters to respond to the continually changing routes selected by that
policy. Correctly and optimally placing the filters requires that the
placement be synchronized with the announcement of routing deci-
sions and that the placement algorithms have access to the complete
routing topology of the network. The 4D architecture provides the
primitives and abstractions needed to implement correct placement
strategies and support placement optimization algorithms.

dissemination

decision

data

discovery

network wide objectives

ne
tw

or
k

w
id

e
vi

ew
s direct control

4D and SDN

 18

dissemination

decision

data

discovery

controller

control application

OpenFlow, P4

higher-level
abstractions

programmable
switches

2005 2020

Ethane:
a realization of 4D for

secure enterprise network

 19

further reading:
Ethane: Taking Control of the Enterprise
http://www.sigcomm.org/node/2620

http://www.sigcomm.org/node/2620

Ethane goals
enterprise networks
-strict reliability and security constraints
-operated by non-experts

goals
-policy over principals
-direct path selection
-binding packets and its origin

 20

Ethane goals
enterprise networks
-strict reliability and security constraints
-operated by non-experts

goals
-policy over principals
-direct path selection
-binding packets and its origin

 20

net-wide objectives

ne
tw

or
k

w
id

e
vi

ew
s

direct control

4D

Ethane goals
enterprise networks
-strict reliability and security constraints
-operated by non-experts

goals
-policy over principals
-policy directs path
-binding packets and its origin

 21

net-wide objectives

ne
tw

or
k

w
id

e
vi

ew
s

direct control

4D

from 4D to Ethane

 22

dissemination

decision

data

discovery

controller

Ethane policy

secure channel

policy
language

over
principals

registered
Ethane

switches

Ethane policy

 23

Switch has been configured with the Controller’s credentials and
the Controller with the Switches’ credentials.

If a Switch finds a shorter path to the Controller, it attempts two-
way authentication with it before advertising that path as a valid
route. Therefore, the minimum spanning tree grows radially from
the Controller, hop-by-hop as each Switch authenticates.

Authentication is done using the preconfigured credentials to en-
sure that a misbehaving node cannot masquerade as the Controller
or another Switch. If authentication is successful, the Switch cre-
ates an encrypted connection with the Controller that is used for all
communication between the pair.

By design, the Controller knows the upstream Switch and phys-
ical port to which each authenticating Switch is attached. After a
Switch authenticates and establishes a secure channel to the Con-
troller, it forwards all packets it receives for which it does not have
a flow entry to the Controller, annotated with the ingress port. This
includes the traffic of authenticating Switches.

Therefore, the Controller can pinpoint the attachment point to the
spanning tree of all non-authenticated Switches and hosts. Once
a Switch authenticates, the Controller will establish a flow in the
network between itself and the Switch for the secure channel.

4. THE POL-ETH POLICY LANGUAGE
Pol-Eth is a language for declaring policy in an Ethane network.

While Ethane doesn’t mandate a particular language, we describe
Pol-Eth as an example, to illustrate what’s possible. We have im-
plemented Pol-Eth and use it in our prototype network.

4.1 Overview
In Pol-Eth, network policy is declared as a set of rules, each con-

sisting of a condition and a corresponding action. For example, the
rule to specify that user bob is allowed to communicate with the
web server (using HTTP) is the following:

[(usrc="bob")∧(protocol="http")∧(hdst="websrv")]:allow;
Conditions. Conditions are a conjunction of zero or more pred-
icates which specify the properties a flow must have in order for
the action to be applied. From the preceding example rule, if the
user initiating the flow is “bob” and the flow protocol is “HTTP”
and the flow destination is host “websrv,” then the flow is allowed.
The left hand side of a predicate specifies the domain, and the right
hand side gives the entities to which it applies. For example, the
predicate (usrc=“bob”) applies to all flows in which the source
is user bob. Valid domains include {usrc, udst, hsrc, hdst, apsrc,
apdst, protocol}, which respectively signify the user, host, and ac-
cess point sources and destinations and the protocol of the flow.

In Pol-Eth, the values of predicates may include single names
(e.g., “bob”), list of names (e.g., [“bob”,“linda”]), or group inclu-
sion (e.g., in(“workstations”)). All names must be registered with
the Controller or declared as groups in the policy file, as described
below.

Actions. Actions include allow, deny, waypoints, and outbound-
only (for NAT-like security). Waypoint declarations include a list
of entities to route the flow through, e.g., waypoints(“ids”,“web-
proxy”).

4.2 Rule and Action Precedence
Pol-Eth rules are independent and don’t contain an intrinsic or-

dering; thus, multiple rules with conflicting actions may be satis-
fied by the same flow. Conflicts are resolved by assigning priorities
based on declaration order. If one rule precedes another in the pol-
icy file, it is assigned a higher priority.

Groups —
desktops = ["griffin","roo"];
laptops = ["glaptop","rlaptop"];
phones = ["gphone","rphone"];
server = ["http_server","nfs_server"];
private = ["desktops","laptops"];
computers = ["private","server"];
students = ["bob","bill","pete"];
profs = ["plum"];
group = ["students","profs"];
waps = ["wap1","wap2"];
%%
Rules —
[(hsrc=in("server")∧(hdst=in("private"))] : deny;
Do not allow phones and private computers to communicate
[(hsrc=in("phones")∧(hdst=in("computers"))] : deny;
[(hsrc=in("computers")∧(hdst=in("phones"))] : deny;
NAT-like protection for laptops
[(hsrc=in("laptops")] : outbound-only;
No restrictions on desktops communicating with each other
[(hsrc=in("desktops")∧(hdst=in("desktops"))] : allow;
For wireless, non-group members can use http through
a proxy. Group members have unrestricted access.
[(apsrc=in("waps"))∧(user=in("group"))] :allow;
[(apsrc=in("waps"))∧(protocol="http)] : waypoints("http-proxy");
[(apsrc=in("waps"))] : deny;
[]: allow; # Default-on: by default allow flows

Figure 4: A sample policy file using Pol-Eth

Unfortunately, in today’s multi-user operating systems, it is dif-
ficult from a network perspective to attribute outgoing traffic to a
particular user. In Ethane, if multiple users are logged into the same
machine (and not identifiable from within the network), Ethane ap-
plies the least restrictive action to each of the flows. This is an
obvious relaxation of the security policy. To address this, we are
exploring integration with trusted end-host operating systems to
provide user-isolation and identification (for example, by provid-
ing each user with a virtual machine having a unique MAC).

4.3 Policy Example
Figure 4 contains a derivative of the policy which governs con-

nectivity for our university deployment. Pol-Eth policy files consist
of two parts—group declarations and rules—separated by a ‘%%’
delimiter. In this policy, all flows which do not otherwise match
a rule are permitted (by the last rule). Servers are not allowed to
initiate connections to the rest of the network, providing protection
similar to DMZs today. Phones and computers can never commu-
nicate. Laptops are protected from inbound flows (similar to the
protection provided by NAT), while workstations can communicate
with each other. Guest users from wireless access points may only
use HTTP and must go through a web proxy, while authenticated
users have no such restrictions.

4.4 Implementation
Given how frequently new flows are created—and how fast de-

cisions must be made—it is not practical to interpret the network
policy. Instead, we need to compile it. But compiling Pol-Eth is
non-trivial because of the potentially huge namespace in the net-
work: Creating a lookup table for all possible flows specified in the
policy would be impractical.

Our Pol-Eth implementation combines compilation and just-in-
time creation of search functions. Each rule is associated with the
principles to which it applies. This is a one-time cost, performed at
startup and on each policy change.

The first time a sender communicates with a new receiver, a cus-
tom permission check function is created dynamically to handle all

7

Ethane in action
three examples
-bootstrapping
-link failure
-replicating controller

Figure 1: Example of communication on an Ethane network.
Route setup shown by dotted lines; the path taken by the first
packet of a flow shown by dashed lines.

ple, via HTTP redirects in a manner similar to those used by com-
mercial WiFi hotspots—binding users to hosts. Therefore, when-
ever a packet arrives at the Controller, it can securely associate the
packet to the particular user and host that sent it.

There are several powerful consequences of the Controller know-
ing both where users and machines are attached and all bindings
associated with them. First, the Controller can keep track of where
any entity is located: When it moves, the Controller finds out as
soon as packets start to arrive from a different Switch port. The
Controller can choose to allow the new flow or it might choose to
deny the moved flow (e.g., to restrict mobility for a VoIP phone
due to E911 regulations). Another powerful consequence is that
the Controller can journal all bindings and flow-entries in a log.
Later, if needed, the Controller can reconstruct all network events;
e.g., which machines tried to communicate or which user commu-
nicated with a service. This can make it possible to diagnose a
network fault or to perform auditing or forensics, long after the
bindings have changed.

In principle, Ethane does not mandate the use of a particular pol-
icy language. For completeness, however, we have designed and
deployed Pol-Eth, in which policies are declared as a set of rules
consisting of predicates and, for matching flows, the set of result-
ing actions (e.g., allow, deny, or route via a waypoint). As we will
see, Pol-Eth’s small set of easily understood rules can still express
powerful and flexible policies for large, complex networks.

2.2 Ethane in Use
Putting all these pieces together, we now consider the five basic

activities that define how an Ethane network works, using Figure 1
to illustrate:

Registration. All Switches, users, and hosts are registered at the
Controller with the credentials necessary to authenticate them. The
credentials depend on the authentication mechanisms in use. For
example, hosts may be authenticated by their MAC addresses, users
via username and password, and switches through secure certifi-
cates. All switches are also preconfigured with the credentials needed
to authenticate the Controller (e.g., the Controller’s public key).

Bootstrapping. Switches bootstrap connectivity by creating a span-
ning tree rooted at the Controller. As the spanning tree is being
created, each switch authenticates with and creates a secure chan-
nel to the Controller. Once a secure connection is established, the
switches send link-state information to the Controller, which ag-
gregates this information to reconstruct the network topology.

Authentication.

1. UserA joins the network with hostA. Because no flow entries
exist in switch 1 for the new host, it will initially forward all

Figure 2: An example Ethane deployment.

of hostA’s packets to the Controller (marked with switch 1’s
ingress port).

2. HostA sends a DHCP request to the Controller. After check-
ing hostA’s MAC address,3 the Controller allocates an IP ad-
dress (IPA) for it, binding hostA to IPA, IPA to MACA, and
MACA to a physical port on switch 1.

3. UserA opens a web browser, whose traffic is directed to the
Controller, and authenticates through a web-form. Once au-
thenticated, userA is bound to hostA.

Flow Setup.

1. UserA initiates a connection to userB (who we assume has
already authenticated in a manner similar to userA). Switch
1 forwards the packet to the Controller after determining that
the packet does not match any active entries in its flow table.

2. On receipt of the packet, the Controller decides whether to
allow or deny the flow, or require it to traverse a set of way-
points.

3. If the flow is allowed, the Controller computes the flow’s
route, including any policy-specified waypoints on the path.
The Controller adds a new entry to the flow tables of all the
Switches along the path.

Forwarding.

1. If the Controller allowed the path, it sends the packet back
to switch 1 which forwards it based on the new flow entry.
Subsequent packets from the flow are forwarded directly by
the Switch, and are not sent to the Controller.

2. The flow-entry is kept in the switch until it times out (due to
inactivity) or is revoked by the Controller.

3. ETHANE IN MORE DETAIL

3.1 An Ethane Network
Figure 2 shows a typical Ethane network. The end-hosts are

unmodified and connect via a wired Ethane Switch or an Ethane
wireless access point. (From now on, we will refer to both as
“Switches”, described next in §3.2).4

3The network may use a stronger form of host authentication, such
as 802.1X, if desired.
4We will see later that an Ethane network can also include legacy
Ethernet switches and access points, so long as we include some
Ethane Switches in the network. The more switches we replace,
the easier to manage and the more secure the network.

3

deployment
Stanford CS department
-100Mb/s Ethernet network: 300 hosts, several hundred users,

19 switches
-policy: looking at the use of VLANs, end-host firewall

configurations, NATs, and router ACLs
-controller: standard Linux PC (1.6GHz, 512MB)

performance and scalability
how Ethane performs in the campus network
-controller performance as a function of flow-requests
-performance under (controller/link) failures
-flow table size

extrapolate for larger networks
-using measurement from two more data sets

performance
how Ethane performs in the campus network
-controller performance as a function of flow-requests
-performance under (controller/link) failures

performance
how Ethane performs in the campus network
-controller performance as a function of flow-requests
-performance under (controller/link) failures

performance — flow requests
-30-40 new flow

requests per second
-peak: 750 requests

 0

 200

 400

 600

 0 2 4 6 8 10

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

 0

 200

 400

 600

 800

 0 24 48 72 96

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 2000 4000 6000 8000 10000

Re
sp

on
se

 ti
m

e
(m

s)

Load (flows / s)

Figure 6: Flow-setup times as a function of Controller load.
Packet sizes were 64B, 128B and 256B, evenly distributed.

age cost of an update on a 3,000 node topology is 10ms. In the
following section we present an analysis of flow-setup times under
normal operation and during link failure.

5.3 Deployment
Our Ethane prototype is deployed in our department’s 100Mb/s

Ethernet network. We installed eleven wired and eight wireless
Ethane Switches. There are currently approximately 300 hosts on
this Ethane network, with an average of 120 hosts active in a 5-
minute window. We created a network policy to closely match—
and in most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use of
VLANs, end-host firewall configurations, NATs and router ACLs.
We found that often the existing configuration files contained rules
no longer relevant to the current state of the network, in which case
they were not included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, laptops,
and phones) are protected from outbound connections from servers,
while workstations can communicate uninhibited. Hosts that con-
nect to an Ethane Switch port must register a MAC address, but
require no user authentication. Wireless nodes protected by WPA
and a password do not require user authentication, but if the host
MAC address is not registered (in our network this means they are
a guest), they can only access a small number of services (HTTP,
HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our open wireless
access points require users to authenticate through the university-
wide system. The VoIP phones are restricted from communicating
with non-phones and are statically bound to a single access point to

 0
 200
 400
 600
 800

 1000
 1200

 0 5 10 15 20 25 30 35

A
ct

iv
e

flo
w

s

Time (hours)
Figure 7: Active flows for LBL network [19].

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30

Lo
ad

 (
flo

w
s

/ s
)

Time (days)
Figure 8: Flow-request rate for Stanford network.

prevent mobility (for E911 location compliance). Our policy file is
132 lines long.

6. PERFORMANCE AND SCALABILITY
Deploying Ethane has taught us a lot about the operation of a

centrally-managed network, and it enabled us to evaluate many as-
pects of its performance and scalability, especially with respect to
the numbers of users, end-hosts, and Switches. We start by look-
ing at how Ethane performs in our network, and then, using our
measurements and data from others, we try to extrapolate the per-
formance for larger networks.

In this section, we first measure the Controller’s performance
as a function of the flow-request rate, and we then try to estimate
how many flow-requests we can expect in a network of a given
size. This allows us to answer our primary question: How many
Controllers are needed for a network of a given size? We then
examine the behavior of an Ethane network under Controller and
link failures. Finally, to help decide the practicality and cost of
Switches for larger networks, we consider the question: How big
does the flow table need to be in the Switch?

6.1 Controller Scalability
Recall that our Ethane prototype is currently used by approx-

imately 300 hosts, with an average of 120 hosts active in a 5-
minute window. From these hosts, we see 30-40 new flow requests
per second (Figure 5) with a peak of 750 flow requests per sec-
ond.9 Figure 6 shows how our Controller performs under load:
for up to 11,000 flows per second—greater than the peak laod we
observed—flows were set up in less than 1.5 milliseconds in the
worst case, and the CPU showed negligible load.

Our results suggest that a single Controller could comfortably
handle 10,000 new flow requests per second. We fully expect this
number to increase if we concentrated on optimizing the design.
With this in mind, it is worth asking to how many end-hosts this
load corresponds.

We considered two recent datasets: One from an 8,000-host net-
work at LBL [19] and one from a 22,000-host network at Stanford.
As is described in [12], the number of maximum outstanding flows

9Samples were taken every 30 seconds.

9

performance — controller setup time

 0

 200

 400

 600

 0 2 4 6 8 10

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

 0

 200

 400

 600

 800

 0 24 48 72 96

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 2000 4000 6000 8000 10000

Re
sp

on
se

 ti
m

e
(m

s)

Load (flows / s)

Figure 6: Flow-setup times as a function of Controller load.
Packet sizes were 64B, 128B and 256B, evenly distributed.

age cost of an update on a 3,000 node topology is 10ms. In the
following section we present an analysis of flow-setup times under
normal operation and during link failure.

5.3 Deployment
Our Ethane prototype is deployed in our department’s 100Mb/s

Ethernet network. We installed eleven wired and eight wireless
Ethane Switches. There are currently approximately 300 hosts on
this Ethane network, with an average of 120 hosts active in a 5-
minute window. We created a network policy to closely match—
and in most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use of
VLANs, end-host firewall configurations, NATs and router ACLs.
We found that often the existing configuration files contained rules
no longer relevant to the current state of the network, in which case
they were not included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, laptops,
and phones) are protected from outbound connections from servers,
while workstations can communicate uninhibited. Hosts that con-
nect to an Ethane Switch port must register a MAC address, but
require no user authentication. Wireless nodes protected by WPA
and a password do not require user authentication, but if the host
MAC address is not registered (in our network this means they are
a guest), they can only access a small number of services (HTTP,
HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our open wireless
access points require users to authenticate through the university-
wide system. The VoIP phones are restricted from communicating
with non-phones and are statically bound to a single access point to

 0
 200
 400
 600
 800

 1000
 1200

 0 5 10 15 20 25 30 35

A
ct

iv
e

flo
w

s

Time (hours)
Figure 7: Active flows for LBL network [19].

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30

Lo
ad

 (
flo

w
s

/ s
)

Time (days)
Figure 8: Flow-request rate for Stanford network.

prevent mobility (for E911 location compliance). Our policy file is
132 lines long.

6. PERFORMANCE AND SCALABILITY
Deploying Ethane has taught us a lot about the operation of a

centrally-managed network, and it enabled us to evaluate many as-
pects of its performance and scalability, especially with respect to
the numbers of users, end-hosts, and Switches. We start by look-
ing at how Ethane performs in our network, and then, using our
measurements and data from others, we try to extrapolate the per-
formance for larger networks.

In this section, we first measure the Controller’s performance
as a function of the flow-request rate, and we then try to estimate
how many flow-requests we can expect in a network of a given
size. This allows us to answer our primary question: How many
Controllers are needed for a network of a given size? We then
examine the behavior of an Ethane network under Controller and
link failures. Finally, to help decide the practicality and cost of
Switches for larger networks, we consider the question: How big
does the flow table need to be in the Switch?

6.1 Controller Scalability
Recall that our Ethane prototype is currently used by approx-

imately 300 hosts, with an average of 120 hosts active in a 5-
minute window. From these hosts, we see 30-40 new flow requests
per second (Figure 5) with a peak of 750 flow requests per sec-
ond.9 Figure 6 shows how our Controller performs under load:
for up to 11,000 flows per second—greater than the peak laod we
observed—flows were set up in less than 1.5 milliseconds in the
worst case, and the CPU showed negligible load.

Our results suggest that a single Controller could comfortably
handle 10,000 new flow requests per second. We fully expect this
number to increase if we concentrated on optimizing the design.
With this in mind, it is worth asking to how many end-hosts this
load corresponds.

We considered two recent datasets: One from an 8,000-host net-
work at LBL [19] and one from a 22,000-host network at Stanford.
As is described in [12], the number of maximum outstanding flows

9Samples were taken every 30 seconds.

9

flow-setup times as a function of
controller load

performance — controller setup time

-<1.5ms under worst
load of 11,000 flows

 0

 200

 400

 600

 0 2 4 6 8 10

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

 0

 200

 400

 600

 800

 0 24 48 72 96

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 2000 4000 6000 8000 10000

Re
sp

on
se

 ti
m

e
(m

s)

Load (flows / s)

Figure 6: Flow-setup times as a function of Controller load.
Packet sizes were 64B, 128B and 256B, evenly distributed.

age cost of an update on a 3,000 node topology is 10ms. In the
following section we present an analysis of flow-setup times under
normal operation and during link failure.

5.3 Deployment
Our Ethane prototype is deployed in our department’s 100Mb/s

Ethernet network. We installed eleven wired and eight wireless
Ethane Switches. There are currently approximately 300 hosts on
this Ethane network, with an average of 120 hosts active in a 5-
minute window. We created a network policy to closely match—
and in most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use of
VLANs, end-host firewall configurations, NATs and router ACLs.
We found that often the existing configuration files contained rules
no longer relevant to the current state of the network, in which case
they were not included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, laptops,
and phones) are protected from outbound connections from servers,
while workstations can communicate uninhibited. Hosts that con-
nect to an Ethane Switch port must register a MAC address, but
require no user authentication. Wireless nodes protected by WPA
and a password do not require user authentication, but if the host
MAC address is not registered (in our network this means they are
a guest), they can only access a small number of services (HTTP,
HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our open wireless
access points require users to authenticate through the university-
wide system. The VoIP phones are restricted from communicating
with non-phones and are statically bound to a single access point to

 0
 200
 400
 600
 800

 1000
 1200

 0 5 10 15 20 25 30 35

A
ct

iv
e

flo
w

s

Time (hours)
Figure 7: Active flows for LBL network [19].

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30

Lo
ad

 (
flo

w
s

/ s
)

Time (days)
Figure 8: Flow-request rate for Stanford network.

prevent mobility (for E911 location compliance). Our policy file is
132 lines long.

6. PERFORMANCE AND SCALABILITY
Deploying Ethane has taught us a lot about the operation of a

centrally-managed network, and it enabled us to evaluate many as-
pects of its performance and scalability, especially with respect to
the numbers of users, end-hosts, and Switches. We start by look-
ing at how Ethane performs in our network, and then, using our
measurements and data from others, we try to extrapolate the per-
formance for larger networks.

In this section, we first measure the Controller’s performance
as a function of the flow-request rate, and we then try to estimate
how many flow-requests we can expect in a network of a given
size. This allows us to answer our primary question: How many
Controllers are needed for a network of a given size? We then
examine the behavior of an Ethane network under Controller and
link failures. Finally, to help decide the practicality and cost of
Switches for larger networks, we consider the question: How big
does the flow table need to be in the Switch?

6.1 Controller Scalability
Recall that our Ethane prototype is currently used by approx-

imately 300 hosts, with an average of 120 hosts active in a 5-
minute window. From these hosts, we see 30-40 new flow requests
per second (Figure 5) with a peak of 750 flow requests per sec-
ond.9 Figure 6 shows how our Controller performs under load:
for up to 11,000 flows per second—greater than the peak laod we
observed—flows were set up in less than 1.5 milliseconds in the
worst case, and the CPU showed negligible load.

Our results suggest that a single Controller could comfortably
handle 10,000 new flow requests per second. We fully expect this
number to increase if we concentrated on optimizing the design.
With this in mind, it is worth asking to how many end-hosts this
load corresponds.

We considered two recent datasets: One from an 8,000-host net-
work at LBL [19] and one from a 22,000-host network at Stanford.
As is described in [12], the number of maximum outstanding flows

9Samples were taken every 30 seconds.

9

flow-setup times as a function of
controller load

performance — controller setup time

-<1.5ms under worst
load of 11,000 flows

 0

 200

 400

 600

 0 2 4 6 8 10

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

 0

 200

 400

 600

 800

 0 24 48 72 96

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 2000 4000 6000 8000 10000

Re
sp

on
se

 ti
m

e
(m

s)

Load (flows / s)

Figure 6: Flow-setup times as a function of Controller load.
Packet sizes were 64B, 128B and 256B, evenly distributed.

age cost of an update on a 3,000 node topology is 10ms. In the
following section we present an analysis of flow-setup times under
normal operation and during link failure.

5.3 Deployment
Our Ethane prototype is deployed in our department’s 100Mb/s

Ethernet network. We installed eleven wired and eight wireless
Ethane Switches. There are currently approximately 300 hosts on
this Ethane network, with an average of 120 hosts active in a 5-
minute window. We created a network policy to closely match—
and in most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use of
VLANs, end-host firewall configurations, NATs and router ACLs.
We found that often the existing configuration files contained rules
no longer relevant to the current state of the network, in which case
they were not included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, laptops,
and phones) are protected from outbound connections from servers,
while workstations can communicate uninhibited. Hosts that con-
nect to an Ethane Switch port must register a MAC address, but
require no user authentication. Wireless nodes protected by WPA
and a password do not require user authentication, but if the host
MAC address is not registered (in our network this means they are
a guest), they can only access a small number of services (HTTP,
HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our open wireless
access points require users to authenticate through the university-
wide system. The VoIP phones are restricted from communicating
with non-phones and are statically bound to a single access point to

 0
 200
 400
 600
 800

 1000
 1200

 0 5 10 15 20 25 30 35

A
ct

iv
e

flo
w

s

Time (hours)
Figure 7: Active flows for LBL network [19].

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30

Lo
ad

 (
flo

w
s

/ s
)

Time (days)
Figure 8: Flow-request rate for Stanford network.

prevent mobility (for E911 location compliance). Our policy file is
132 lines long.

6. PERFORMANCE AND SCALABILITY
Deploying Ethane has taught us a lot about the operation of a

centrally-managed network, and it enabled us to evaluate many as-
pects of its performance and scalability, especially with respect to
the numbers of users, end-hosts, and Switches. We start by look-
ing at how Ethane performs in our network, and then, using our
measurements and data from others, we try to extrapolate the per-
formance for larger networks.

In this section, we first measure the Controller’s performance
as a function of the flow-request rate, and we then try to estimate
how many flow-requests we can expect in a network of a given
size. This allows us to answer our primary question: How many
Controllers are needed for a network of a given size? We then
examine the behavior of an Ethane network under Controller and
link failures. Finally, to help decide the practicality and cost of
Switches for larger networks, we consider the question: How big
does the flow table need to be in the Switch?

6.1 Controller Scalability
Recall that our Ethane prototype is currently used by approx-

imately 300 hosts, with an average of 120 hosts active in a 5-
minute window. From these hosts, we see 30-40 new flow requests
per second (Figure 5) with a peak of 750 flow requests per sec-
ond.9 Figure 6 shows how our Controller performs under load:
for up to 11,000 flows per second—greater than the peak laod we
observed—flows were set up in less than 1.5 milliseconds in the
worst case, and the CPU showed negligible load.

Our results suggest that a single Controller could comfortably
handle 10,000 new flow requests per second. We fully expect this
number to increase if we concentrated on optimizing the design.
With this in mind, it is worth asking to how many end-hosts this
load corresponds.

We considered two recent datasets: One from an 8,000-host net-
work at LBL [19] and one from a 22,000-host network at Stanford.
As is described in [12], the number of maximum outstanding flows

9Samples were taken every 30 seconds.

9

flow-setup times as a function of
controller load

how about larger networks?

flow-requests on larger networks
-LBL
-8,000 hosts
- load <1200 flow

-Standford
-22,000 hosts
- load < 9,000 new requests

per second

 0

 200

 400

 600

 0 2 4 6 8 10

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

 0

 200

 400

 600

 800

 0 24 48 72 96

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 2000 4000 6000 8000 10000

Re
sp

on
se

 ti
m

e
(m

s)

Load (flows / s)

Figure 6: Flow-setup times as a function of Controller load.
Packet sizes were 64B, 128B and 256B, evenly distributed.

age cost of an update on a 3,000 node topology is 10ms. In the
following section we present an analysis of flow-setup times under
normal operation and during link failure.

5.3 Deployment
Our Ethane prototype is deployed in our department’s 100Mb/s

Ethernet network. We installed eleven wired and eight wireless
Ethane Switches. There are currently approximately 300 hosts on
this Ethane network, with an average of 120 hosts active in a 5-
minute window. We created a network policy to closely match—
and in most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use of
VLANs, end-host firewall configurations, NATs and router ACLs.
We found that often the existing configuration files contained rules
no longer relevant to the current state of the network, in which case
they were not included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, laptops,
and phones) are protected from outbound connections from servers,
while workstations can communicate uninhibited. Hosts that con-
nect to an Ethane Switch port must register a MAC address, but
require no user authentication. Wireless nodes protected by WPA
and a password do not require user authentication, but if the host
MAC address is not registered (in our network this means they are
a guest), they can only access a small number of services (HTTP,
HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our open wireless
access points require users to authenticate through the university-
wide system. The VoIP phones are restricted from communicating
with non-phones and are statically bound to a single access point to

 0
 200
 400
 600
 800

 1000
 1200

 0 5 10 15 20 25 30 35

A
ct

iv
e

flo
w

s

Time (hours)
Figure 7: Active flows for LBL network [19].

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30

Lo
ad

 (
flo

w
s

/ s
)

Time (days)
Figure 8: Flow-request rate for Stanford network.

prevent mobility (for E911 location compliance). Our policy file is
132 lines long.

6. PERFORMANCE AND SCALABILITY
Deploying Ethane has taught us a lot about the operation of a

centrally-managed network, and it enabled us to evaluate many as-
pects of its performance and scalability, especially with respect to
the numbers of users, end-hosts, and Switches. We start by look-
ing at how Ethane performs in our network, and then, using our
measurements and data from others, we try to extrapolate the per-
formance for larger networks.

In this section, we first measure the Controller’s performance
as a function of the flow-request rate, and we then try to estimate
how many flow-requests we can expect in a network of a given
size. This allows us to answer our primary question: How many
Controllers are needed for a network of a given size? We then
examine the behavior of an Ethane network under Controller and
link failures. Finally, to help decide the practicality and cost of
Switches for larger networks, we consider the question: How big
does the flow table need to be in the Switch?

6.1 Controller Scalability
Recall that our Ethane prototype is currently used by approx-

imately 300 hosts, with an average of 120 hosts active in a 5-
minute window. From these hosts, we see 30-40 new flow requests
per second (Figure 5) with a peak of 750 flow requests per sec-
ond.9 Figure 6 shows how our Controller performs under load:
for up to 11,000 flows per second—greater than the peak laod we
observed—flows were set up in less than 1.5 milliseconds in the
worst case, and the CPU showed negligible load.

Our results suggest that a single Controller could comfortably
handle 10,000 new flow requests per second. We fully expect this
number to increase if we concentrated on optimizing the design.
With this in mind, it is worth asking to how many end-hosts this
load corresponds.

We considered two recent datasets: One from an 8,000-host net-
work at LBL [19] and one from a 22,000-host network at Stanford.
As is described in [12], the number of maximum outstanding flows

9Samples were taken every 30 seconds.

9

flow-requests on larger networks
-LBL
-8,000 hosts
- load <1200 flow

-Standford
-22,000 hosts
- load < 9,000 new requests

per second

 0

 200

 400

 600

 0 2 4 6 8 10

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

 0

 200

 400

 600

 800

 0 24 48 72 96

Lo
ad

 (
flo

w
s

/ s
)

Time (hours)

Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 2000 4000 6000 8000 10000

Re
sp

on
se

 ti
m

e
(m

s)

Load (flows / s)

Figure 6: Flow-setup times as a function of Controller load.
Packet sizes were 64B, 128B and 256B, evenly distributed.

age cost of an update on a 3,000 node topology is 10ms. In the
following section we present an analysis of flow-setup times under
normal operation and during link failure.

5.3 Deployment
Our Ethane prototype is deployed in our department’s 100Mb/s

Ethernet network. We installed eleven wired and eight wireless
Ethane Switches. There are currently approximately 300 hosts on
this Ethane network, with an average of 120 hosts active in a 5-
minute window. We created a network policy to closely match—
and in most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use of
VLANs, end-host firewall configurations, NATs and router ACLs.
We found that often the existing configuration files contained rules
no longer relevant to the current state of the network, in which case
they were not included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, laptops,
and phones) are protected from outbound connections from servers,
while workstations can communicate uninhibited. Hosts that con-
nect to an Ethane Switch port must register a MAC address, but
require no user authentication. Wireless nodes protected by WPA
and a password do not require user authentication, but if the host
MAC address is not registered (in our network this means they are
a guest), they can only access a small number of services (HTTP,
HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our open wireless
access points require users to authenticate through the university-
wide system. The VoIP phones are restricted from communicating
with non-phones and are statically bound to a single access point to

 0
 200
 400
 600
 800

 1000
 1200

 0 5 10 15 20 25 30 35

A
ct

iv
e

flo
w

s

Time (hours)
Figure 7: Active flows for LBL network [19].

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30

Lo
ad

 (
flo

w
s

/ s
)

Time (days)
Figure 8: Flow-request rate for Stanford network.

prevent mobility (for E911 location compliance). Our policy file is
132 lines long.

6. PERFORMANCE AND SCALABILITY
Deploying Ethane has taught us a lot about the operation of a

centrally-managed network, and it enabled us to evaluate many as-
pects of its performance and scalability, especially with respect to
the numbers of users, end-hosts, and Switches. We start by look-
ing at how Ethane performs in our network, and then, using our
measurements and data from others, we try to extrapolate the per-
formance for larger networks.

In this section, we first measure the Controller’s performance
as a function of the flow-request rate, and we then try to estimate
how many flow-requests we can expect in a network of a given
size. This allows us to answer our primary question: How many
Controllers are needed for a network of a given size? We then
examine the behavior of an Ethane network under Controller and
link failures. Finally, to help decide the practicality and cost of
Switches for larger networks, we consider the question: How big
does the flow table need to be in the Switch?

6.1 Controller Scalability
Recall that our Ethane prototype is currently used by approx-

imately 300 hosts, with an average of 120 hosts active in a 5-
minute window. From these hosts, we see 30-40 new flow requests
per second (Figure 5) with a peak of 750 flow requests per sec-
ond.9 Figure 6 shows how our Controller performs under load:
for up to 11,000 flows per second—greater than the peak laod we
observed—flows were set up in less than 1.5 milliseconds in the
worst case, and the CPU showed negligible load.

Our results suggest that a single Controller could comfortably
handle 10,000 new flow requests per second. We fully expect this
number to increase if we concentrated on optimizing the design.
With this in mind, it is worth asking to how many end-hosts this
load corresponds.

We considered two recent datasets: One from an 8,000-host net-
work at LBL [19] and one from a 22,000-host network at Stanford.
As is described in [12], the number of maximum outstanding flows

9Samples were taken every 30 seconds.

9

Ethane can comfortably handle

controller failure
link failure

performance during failures

controller failure
-Ethane implements cold-standby failure recovery (replica has

no binding state)
- interruption of service for active flows and a delay with re-

establishing

performance during controller failure

penalty for each failure
-10% increase in overall completion time

performance during controller failure
 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
T

T
 (

m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

10

performance during link failure
require all outstanding flows re-contact the
controller and re-establish the path

performance during link failure

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
T

T
 (

m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

10

require all outstanding flows re-contact the
controller and re-establish the path

flow table sizing
observation #1
-flow table size bound by

of active flows

flow table sizing
observation #1
-flow table size bound by

of active flows
-<500 active flows 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
T

T
 (

m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

10

flow table sizing
observation #1
-flow table size bound by

of active flows
-<500 active flows
-recall
-LBL: < 1,200 flows for 8,000

hosts

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
T

T
 (

m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

10

flow table sizing
observation #1
-flow table size bound by

of active flows
 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
T

T
 (

m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

10

flow table sizing
observation #1
-flow table size bound by

of active flows

observation #2
-# of active flows depend

on switch location
-edge: bound by connected

hosts
-core: more

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
T

T
 (

m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

10

flow table sizing
observation #1
-flow table size bound by

of active flows

observation #2
-# of active flows depend

on switch location

observation #3
-Ethernet switch:
-1million Ethernet addresses
-1million IP addresses
-thousands of ACLs

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
T

T
 (

m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

10

flow table sizing
observation #1
-flow table size bound by

of active flows

observation #2
-# of active flows depend

on switch location

observation #3
-Ethernet switch:
-1million Ethernet addresses
-1million IP addresses
-thousands of ACLs

memory requirements on Ethane switch are modest

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

 0

 80

 160

 240

 320

 400

 480

 0 5 10 15 20

A
ct

iv
e

flo
w

s

Time (hours)

Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
T

T
 (

m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

10

Ethane — recap

 43

controller

Ethane policy

secure channel

high-level
principals

Ethane
switches

Ethane and Ravel

 44

controller

Ethane policy

secure channel

high-level
principals

Ethane
switches

database controller

app

OpenFlow

orchestrated
diverse
views

OpenFlow
switches

view1 view1 view1…

app app

further reading:
Ravel: A Database-Defined Network

http://anduowang.github.io/docs/sosr16.pdf

http://anduowang.github.io/docs/sosr16.pdf

