centralized control — separating
data- and control- planes

5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

some materials in this slide are based on lectures by
Jennifer Rexford https://www.cs.princeton.edu/courses/archive/fall | 3/cos597E/

Nick Feamster http://noise.gatech.edu/classes/cs8803sdn/fall2014/

https://www.cs.princeton.edu/courses/archive/fall13/cos597E/
http://noise.gatech.edu/classes/cs8803sdn/fall2014/

data, control, and
management planes

management
scripts and tools

vendor
lock-in

control

ENE
control

ENE

data plane
control ontrol A
plane lane % ~

data plane data plane ‘

control

ENE

management

scripts and tools

vendor
lock-in

b 4
=

control
ENE <
control data plane
ENE

AN

data plane

control
ENE

»

data plane
e control control e
__ plane plane %\ |

data plane ‘

management plane

control plane

data plane

defines network composition, control plane

configuration, and monitoring schemes
example: CLI, scripts

generates forwarding tables and filters for
the data plane
example: distributed routing protocols

handles packets

example: forwarding

management plane

control plane

data plane

defines network composition, control plane

configuration, and monitoring schemes .‘

\
example: CLI, scripts ‘

generates forwarding tables and filters for
the data plane
example: distributed routing protocols

handles packets

example: forwarding

defines network composition, control plane

management plane configuration, and monitoring schemes .‘

\
example: CLI, scripts ‘

generates forwarding tables and filters for
control plane the data plane
example: distributed routing protocc

control plane
data plane Processor 4_/

Line card Line card pus

Switching
Fabric

Line card —

Line card —

handles packets
data plane example: forwarding

timescales

Data Control Management
Time- | Packet Event (10 Human (min
scale (nsec) msec to sec) |to hours)
Tasks Forwarding, | Routing, Analysis,
buffering, |circuit configuration
filtering, set-up
scheduling
Location | Line-card |Router Humans or
hardware |software scripts

data and control planes

data plane

N

<€ Line card
<€ Line card
<€ Line card

Processor

Switching
Fabric

control plane

P

Line card

Line card

Line card

€

data plane

streaming algorithms on packets

= matching on some bits
= perform some actions

wide range of functionality

= forwarding
=access control

= traffic monitoring
= packet inspection

distributed control plane

example: distance-vector routing: RIP

= each node computes path cost

= ...based on neighbor’s path cost
= Bellman-Ford algorithm

v 9 v d,(z) = min{c(u,v) + d (z),

AN c(uw) + dy(2))
u \2 1 5 Z

P

S

management plane

example: set weights for traffic engineering

management plane

Aaron Gember-Jacobson,, et al.“Management Plane Analytics” IMC 2015

management plane

diverse management practice

= design practice
= set physical network composition (heterogeneity), logical structure
(spanning tree)
= operation practice
= change network for diverse purposes (router, middle-box)

= tedious, error-prone

Aaron Gember-Jacobson., et al.“Management Plane Analytics” IMC 2015

management plane

diverse management practice

= design practice
= set physical network composition (heterogeneity), logical structure
(spanning tree)

= operation practice
= change network for diverse purposes (router, middle-box)

= tedious, error-prone

lacking principled understanding of management

practice

= how practice impacts network health (performance,
availability)?

Aaron Gember-Jacobson., et al.“Management Plane Analytics” IMC 2015

network management today:
mastering complexity

management plane

control plane
data plane

complexity

management plane

control plane
data plane

complexity

control logic and packet handling

=bundled in distributed switching element
= management objectives implicitly embedded

C O m P I eXit)’ management plane

control logic and packet handling
=bundled in distributed switching element
: : : .. control plane
= management objectives implicitly embedded
i data plane
tension

= ever-evolving management requirement

=incremental point solutions to control plane, and complex
management tools “coax’” the control plane

C O m P I eXit)’ management plane

control logic and packet handling
=bundled in distributed switching element
: : : .. control plane
= management objectives implicitly embedded
i data plane
tension

= ever-evolving management requirement

=incremental point solutions to control plane, and complex
management tools “coax’” the control plane

challenge

= indirect, coordinated control
= interacting protocols and mechanisms

further reading:

A clean slate 4D approach to network control and management
https://dl.acm.org/doi/10.1145/1096536.109654 |

https://dl.acm.org/doi/10.1145/1096536.1096541

4D goals

hetwork wide objectives - network-wide objectives
= observe and control

= network-wide views
= complete visibility

= direct control
= direct, sole control

network wide views
|0J3UOD 323.Ip

4D architecture

network wide objectives = refacto ring network

v

functionality
= decoupled, centralized control

diSseminatio

discovery

network wide views
|0J3UOD 323.Ip

data

4D by example

network wide objectives

* br.nyc.as2

" ”‘1:;;;
ISION
Sl br.nyc.asi AN

(%]
3 o
.g | § M \br.nyc.aSS
v N é
Ry discover S
= Y o T WJ
3 br.atl.as1
5 br.atl.as3
= data

4D and SDN

decision

control application T higher-level

abstractions
controller

dissemination
OpenFlow, P4

discovery

programmable

switches
data

2005 2020

Ethane:
a realization of 4D for
secure enterprise network

further reading:
Ethane: Taking Control of the Enterprise
http://www.sigcomm.org/node/2620

19

http://www.sigcomm.org/node/2620

Ethane goals

enterprise networks
= strict reliability and security constraints
= operated by non-experts
goals
= policy over principals
= direct path selection
=binding packets and its origin

20

Ethane goals

enterprise networks

= strict reliability and security constraints

= operated by non-experts

goals
= policy over principals
= direct path selection
= binding packets and its origin

20

network wide views

net-wide objectives

\ 4

e |

|0J3UOD 3231

Ethane goals

enterprise networks

= strict reliability and security constraints
= operated by non-experts

goals
= policy over principals
= policy directs path
= binding packets and its origin

network wide views

21

net-wide objectives

v

—>
S
O

—

|OJ3UO0D 323.4Ip

from 4D to Ethane

: policy
decision Ethane policy T language
controller over
principals

dissemination
secure channel

discovery

data

registered
Ethane
switches

22

Groups —

desktops = ["griffin","r00"];

laptops = ["glaptop", "rlaptop"];

phones = ["gphone","rphone"];

server = ["http_server","nfs_server"];

private = ["desktops","laptops"];

computers = ["private"”,"server"];

students = ["bob","bill","pete"];

profs = ["plum"];

group = ["students","profs"];

waps = ["wapl1","wap2"];

%0 %

Rules —

(hsrc=in("server")A(hdst=in("private"))] : deny;

Do not allow phones and private computers to communicate
(hsrc=in("phones")A(hdst=in("computers"))] : deny;
(hsrc=in("computers")A(hdst=in("phones"))] : deny;

NAT-like protection for laptops

(hsrc=in("laptops")] : outbound-only;

No restrictions on desktops communicating with each other
(hsrc=in("desktops")A(hdst=in("desktops"))] : allow;

For wireless, non-group members can use http through

a proxy. Group members have unrestricted access.
(apsrc=in("waps"))A(user=in("group"))] :allow;
(apsrc=in("waps"))A(protocol="http)] : waypoints("http-proxy");
(apsrc=in("waps"))] : deny;

|: allow; # Default-on: by default allow flows

three examples

= bootstrapping
= link failure
= replicating controller

Controller

Network
Policy Imlﬂ

host

switch 2

user sWitchl ™ o= — ==

Stanford CS department

= |00Mb/s Ethernet network: 300 hosts, several hundred users,
|9 switches

= policy: looking at the use of VLANs, end-host firewall
configurations, NATs, and router ACLs

= controller: standard Linux PC (1.6GHz, 512MB)

performance and scalability

how Ethane performs in the campus network

= controller performance as a function of flow-requests
= performance under (controller/link) failures
- flow table size

extrapolate for larger networks
= using measurement from two more data sets

performance

how Ethane performs in the campus network

= controller performance as a function of flow-requests
= performance under (controller/link) failures

performance

how Ethane performs in the campus network

= controller performance as a function of flow=requests
= performance under (controller/link) failures

600 | | | . = 30-40 new flow
requests per second

= peak: 750 requests

400 | _

200 n
0

0 2 4 6 8 10
Time (hours)

800 | | | |

Load (flows / s)

600 - -
400 - -

200 -

Load (flows / s)

0 24 48 72 96
Time (hours)

Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).

performance — controller setup time

1.6 | | | | |
1.4
1.2

’
0.8
0.6 .
0.4

02]]]]]
0 2000 4000 6000 8000 10000

Load (flows / s)

%ﬁ‘/"l | | | |
:

Response time (ms)

flow-setup times as a function of
controller load

performance — controller setup time

1.6
1.4
1.2
’
0.8
0.6
0.4 P+

02]]]]]
0 2000 4000 6000 8000 10000

Load (flows / s)

= <|.5ms under worst
load of | 1,000 flows

%ﬁ‘/"l | | | |

Response time (ms)

flow-setup times as a function of
controller load

= <|.5ms under worst
load of | 1,000 flows

Response time (ms)

02]]]]]
0 2000 4000 6000 8000 10000

Load (flows / s)

flow-setup times as a function of
controller load

how about larger networks?

1200

g 1000 = |BL

S - 8,000 hosts

£ 400 =load <1200 flow
<

200

0 5 10 15 20 25 30 35

Time (hours)
Figure 7: Active flows for LBL network [19].

10000 -
2 8000 I - Standford

g r I =22,000 hosts

E :ggg \ ' =load < 9,000 new requests
- per second

0

0 5 10 15 20 25 30
Time (days)
Figure 8: Flow-request rate for Stanford network.

1200

. 1000 = | BL

S -8,000 hosts

Z 400 =|oad <1200 flow
< 200

0 5 10 15 20 25 30 35

Time (hours)
Figure 7: Active flows for LBL network [19].

10000 -
2 8000 I - Standford

g r I =22,000 hosts

§ :ggg \ ' =load < 9,000 new requests
- per second

0 5 10 15 20 25 30
Time (days)

Ethane can comfortably handle

performance during failures

controller failure
link failure

performance during controller failure

controller failure

= Ethane implements cold-standby failure recovery (replica has
no binding state)

= interruption of service for active flows and a delay with re-
establishing

performance during controller failure

penalty for each failure
= 10% increase in overall completion time

Failures 0 1 2 3 4
Completion time | 26.17s | 27.44s | 30.45s | 36.00s | 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over S runs.

performance during link failure

require all outstanding flows re-contact the
controller and re-establish the path

performance during link failure

require all outstanding flows re-contact the
controller and re-establish the path

1400 . | | | ,

100 flows —
1200 - " 200 flows > -

T :-T "TF. 400 flows ------
1000 - i 800 flows &

n Lol i T 1600 flows -
£ 80F Lo -
— L ‘| : ‘.]

= 600 - a,
400 i Ty _
i A
200 i P ‘\.\ -
O A O) w : a1 I | 1 ‘ h I

0 0.5 1 15 2 2.5 3 3.5

Time since link failure (s)

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

flow table sizing

observation #l1

- flow table size bound by
of active flows

480 F | ' | T Observation #I

400 i

320 | 1 =flow table size bound by

240 - i

160 |- - # of active flows
80 | 1
= <500 active flows

Active flows

Time (hours)

480 F ' ' ' LT
400 | i
320 | i
240 | i
160 |]

Active flows

0 5 10 15 20
Time (hours)
Figure 9: Active flows through two of our deployed switches

480 F | ' | T Observation #I

400 7
g of 1 =flow table size bound by
5 160 | - # of active flows
80 7] .
0 = <500 active flows
0 5 10 15 20
Time (hours) - reca”
480 F ' ' | S = BL: < |,200 flows for 8,000
400 | -
2 |] hosts
© 240 | .
8 160 - .
80 7]
0
0 5 10 15 20
Time (hours)

Figure 9: Active flows through two of our deployed switches

480 F | ' | T Observation #I

400 i

320 | 1 =flow table size bound by

240
160 # of active flows

Active flows

Time (hours)

480 F ' ' ' LT
400 | i
320 | i
240 | i
160 |]
80 |- i

Active flows

0 5 10 15 20
Time (hours)
Figure 9: Active flows through two of our deployed switches

450 F ' ' ' —1 observation #I

400 |- -
g of 1 =flow table size bound by
3 160 : # of active flows
80 _
° 4 g ulluwd observation #2
Time (hours) .
rao - , | | ~ =# of active flows depend
400 | : on switch location
= N _
5 Z’iﬁ i] = edge: bound by connected
S 160 - - hosts
88 I) = core: more
0 5 10 15 20
Time (hours)

Figure 9: Active flows through two of our deployed switches

flow table sizing

0 observation #|
g %20 - flow table size bound by
3 160 # of active flows

80

0 observation #2

- = # of active flows depend
g 40 oh switch location
3 320 .
2 o observation #3

80 = Ethernet switch:

0
0 5 10 15 20 = | million Ethernet addresses

Time (hours)

Figure 9: Active flows through two of our deployed switches — | million |P addresses
=thousands of ACLs

480
400
320
240
160

80

observation #|

- flow table size bound by
of active flows

observation #2

= # of active flows depend
on switch location

observation #3

= Ethernet switch:
0 5 10 15 20 = | million Ethernet addresses

Time (hours)

Figure 9: Active flows through two of our deployed switches — | million |P addresses
=thousands of ACLs

Active flows

480
400
320
240
160
80
0

Active flows

memory requirements on Ethane switch are modest

Ethane — recap

Ethane policy T high-level

controller principals

secure channel

Ethane
switches

43

Ethane and Ravel

app I app app

Ethane policy high-level view| .vieW| -view| prehestratec
principals database controller diverse
views
secure channel OpenFlow
\/
/
Ethane OpenFlow
switches switches

further reading:
Ravel: A Database-Defined Network
http://anduowang.github.io/docs/sosr | 6.pdf

44

http://anduowang.github.io/docs/sosr16.pdf

