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some materials in this slide are based on lectures by
Jennifer Rexford https://www.cs.princeton.edu/courses/archive/fall | 3/cos597E/

Nick Feamster http://noise.gatech.edu/classes/cs8803sdn/fall2014/
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management plane

control plane

data plane

defines network composition, control plane

configuration, and monitoring schemes
example: CLI, scripts

generates forwarding tables and filters for
the data plane
example: distributed routing protocols

handles packets

example: forwarding
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defines network composition, control plane

management plane configuration, and monitoring schemes .‘

\
example: CLI, scripts ‘

generates forwarding tables and filters for
control plane the data plane
example: distributed routing protocc
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handles packets
data plane example: forwarding



timescales

Data Control Management
Time- | Packet Event (10 Human (min
scale (nsec) msec to sec) |to hours)
Tasks Forwarding, | Routing, Analysis,
buffering, |circuit configuration
filtering, set-up
scheduling
Location | Line-card  |Router Humans or
hardware |software scripts




data and control planes
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data plane

streaming algorithms on packets

= matching on some bits
= perform some actions

wide range of functionality

= forwarding
=access control

= traffic monitoring
= packet inspection




distributed control plane

example: distance-vector routing: RIP

= each node computes path cost

= ...based on neighbor’s path cost
= Bellman-Ford algorithm

v 9 v d,(z) = min{c(u,v) + d (z),

AN c(uw) + dy(2))
u \2 1 5 Z

P
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management plane

example: set weights for traffic engineering




management plane

Aaron Gember-Jacobson,, et al.“Management Plane Analytics” IMC 2015



management plane

diverse management practice

= design practice
= set physical network composition (heterogeneity), logical structure
(spanning tree)
= operation practice
= change network for diverse purposes (router, middle-box)

= tedious, error-prone

Aaron Gember-Jacobson., et al.“Management Plane Analytics” IMC 2015



management plane

diverse management practice

= design practice
= set physical network composition (heterogeneity), logical structure
(spanning tree)

= operation practice
= change network for diverse purposes (router, middle-box)

= tedious, error-prone

lacking principled understanding of management

practice

= how practice impacts network health (performance,
availability)?

Aaron Gember-Jacobson., et al.“Management Plane Analytics” IMC 2015



network management today:
mastering complexity
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management plane

control plane
data plane

complexity

control logic and packet handling

=bundled in distributed switching element
= management objectives implicitly embedded




C O m P I eXit)’ management plane

control logic and packet handling
=bundled in distributed switching element
: : : .. control plane
= management objectives implicitly embedded
i data plane
tension

= ever-evolving management requirement

=incremental point solutions to control plane, and complex
management tools “coax’” the control plane




C O m P I eXit)’ management plane

control logic and packet handling
=bundled in distributed switching element
: : : .. control plane
= management objectives implicitly embedded
i data plane
tension

= ever-evolving management requirement

=incremental point solutions to control plane, and complex
management tools “coax’” the control plane

challenge

= indirect, coordinated control
= interacting protocols and mechanisms




further reading:

A clean slate 4D approach to network control and management
https://dl.acm.org/doi/10.1145/1096536.109654 |



https://dl.acm.org/doi/10.1145/1096536.1096541

4D goals

hetwork wide objectives - network-wide objectives
= observe and control

= network-wide views
= complete visibility

= direct control
= direct, sole control

network wide views
|0J3UOD 323.Ip



4D architecture

network wide objectives = refacto ring network

v

functionality
= decoupled, centralized control

diSseminatio

discovery

network wide views
|0J3UOD 323.Ip

data




4D by example

network wide objectives
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4D and SDN

decision

control application T higher-level

abstractions
controller

dissemination
OpenFlow, P4

discovery

programmable

switches
data

2005 2020



Ethane:
a realization of 4D for
secure enterprise network

further reading:
Ethane: Taking Control of the Enterprise
http://www.sigcomm.org/node/2620

19
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Ethane goals

enterprise networks
= strict reliability and security constraints
= operated by non-experts
goals
= policy over principals
= direct path selection
=binding packets and its origin

20
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enterprise networks

= strict reliability and security constraints

= operated by non-experts

goals
= policy over principals
= direct path selection
= binding packets and its origin

20
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Ethane goals

enterprise networks

= strict reliability and security constraints
= operated by non-experts

goals
= policy over principals
= policy directs path
= binding packets and its origin

network wide views

21
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from 4D to Ethane

: policy
decision Ethane policy T language
controller over
principals

dissemination
secure channel

discovery

data

registered
Ethane
switches

22



# Groups —

desktops = ["griffin","r00"];

laptops = ["glaptop", "rlaptop"];

phones = ["gphone","rphone"];

server = ["http_server","nfs_server"];

private = ["desktops","laptops"];

computers = ["private"”,"server"];

students = ["bob","bill","pete"];

profs = ["plum"];

group = ["students","profs"];

waps = ["wapl1","wap2"];

%0 %

# Rules —

(hsrc=in("server")A(hdst=in("private"))] : deny;

# Do not allow phones and private computers to communicate
(hsrc=in("phones")A(hdst=in("computers"))] : deny;
(hsrc=in("computers")A(hdst=in("phones"))] : deny;

# NAT-like protection for laptops

(hsrc=in("laptops")] : outbound-only;

# No restrictions on desktops communicating with each other
(hsrc=in("desktops")A(hdst=in("desktops"))] : allow;

# For wireless, non-group members can use http through

# a proxy. Group members have unrestricted access.
(apsrc=in("waps"))A(user=in("group"))] :allow;
(apsrc=in("waps"))A(protocol="http)] : waypoints("http-proxy");
(apsrc=in("waps"))] : deny;

|: allow; # Default-on: by default allow flows




three examples

= bootstrapping
= link failure
= replicating controller

Controller

Network
Policy Imlﬂ

host

switch 2

user sWitchl ™ o= — ==



Stanford CS department

= |00Mb/s Ethernet network: 300 hosts, several hundred users,
|9 switches

= policy: looking at the use of VLANs, end-host firewall
configurations, NATs, and router ACLs

= controller: standard Linux PC (1.6GHz, 512MB)



performance and scalability

how Ethane performs in the campus network

= controller performance as a function of flow-requests
= performance under (controller/link) failures
- flow table size

extrapolate for larger networks
= using measurement from two more data sets



performance

how Ethane performs in the campus network

= controller performance as a function of flow-requests
= performance under (controller/link) failures



performance

how Ethane performs in the campus network

= controller performance as a function of flow=requests
= performance under (controller/link) failures



600 | | | . = 30-40 new flow
requests per second

= peak: 750 requests
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Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).



performance — controller setup time
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performance — controller setup time
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= <|.5ms under worst
load of | 1,000 flows

Response time (ms)

02 ] ] ] ] ]
0 2000 4000 6000 8000 10000

Load (flows / s)

flow-setup times as a function of
controller load

how about larger networks?
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Figure 7: Active flows for LBL network [19].
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Figure 8: Flow-request rate for Stanford network.
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Figure 7: Active flows for LBL network [19].
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Ethane can comfortably handle




performance during failures

controller failure
link failure



performance during controller failure

controller failure

= Ethane implements cold-standby failure recovery (replica has
no binding state)

= interruption of service for active flows and a delay with re-
establishing



performance during controller failure

penalty for each failure
= 10% increase in overall completion time

Failures 0 1 2 3 4
Completion time | 26.17s | 27.44s | 30.45s | 36.00s | 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over S runs.



performance during link failure

require all outstanding flows re-contact the
controller and re-establish the path



performance during link failure

require all outstanding flows re-contact the
controller and re-establish the path

1400 . | | | ,
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Time since link failure (s)

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.



flow table sizing

observation #l1

- flow table size bound by
# of active flows
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Figure 9: Active flows through two of our deployed switches
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Figure 9: Active flows through two of our deployed switches



flow table sizing
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Figure 9: Active flows through two of our deployed switches — | million |P addresses
=thousands of ACLs
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= Ethernet switch:
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Figure 9: Active flows through two of our deployed switches — | million |P addresses
=thousands of ACLs
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memory requirements on Ethane switch are modest




Ethane — recap

Ethane policy T high-level

controller principals

secure channel

Ethane
switches
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Ethane and Ravel

app I app app

Ethane policy high-level view| .vieW| -view| prehestratec
principals database controller diverse
views
secure channel OpenFlow
\/
/
Ethane OpenFlow
switches switches

further reading:
Ravel: A Database-Defined Network
http://anduowang.github.io/docs/sosr | 6.pdf
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