
composing controllers
5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

Pyretic: composing policies

2

controller platform

load
balancer monitor routingfirewallapplications

runtime

switch API

switches

OpenFlow

Pyreticprogramming API

hardware-
oriented

modular
creation of
apps built
from high-

level
abstractions

composing controllers

3

hypervisor

load
balancer monitor routingfirewallcontrollers

switches

administrator
config

multiple
controllers

cooperate on
shared traffic

OpenFlow

OpenFlow

CoVisor

4

CoVisor

5

CoVisor

load
balancer monitor routingfirewallcontrollers

switches

administrator
config

multiple
controllers

cooperate on
shared traffic

challenges and technical contribution
-efficient algorithms

CoVisor
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-

CoVisor

GE I$G I$

OpenFlow

G I$E

OpenFlow

Compose

Devirtualize

MAC$
Learner$ Monitor$$ IP$Router$Firewall$ Gateway$

Admin
Config

1

2

4

3

1

2
3 2 1 3

2

1

Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-

2

CoVisor
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-

CoVisor

GE I$G I$

OpenFlow

G I$E

OpenFlow

Compose

Devirtualize

MAC$
Learner$ Monitor$$ IP$Router$Firewall$ Gateway$

Admin
Config

1

2

4

3

1

2
3 2 1 3

2

1

Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-

2

assemble multiple controllers
-parallel, sequential, override

CoVisor
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-

CoVisor

GE I$G I$

OpenFlow

G I$E

OpenFlow

Compose

Devirtualize

MAC$
Learner$ Monitor$$ IP$Router$Firewall$ Gateway$

Admin
Config

1

2

4

3

1

2
3 2 1 3

2

1

Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-

2

abstract topology
-customer virtual topology to each controller

CoVisor
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-

CoVisor

GE I$G I$

OpenFlow

G I$E

OpenFlow

Compose

Devirtualize

MAC$
Learner$ Monitor$$ IP$Router$Firewall$ Gateway$

Admin
Config

1

2

4

3

1

2
3 2 1 3

2

1

Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-

2

protection
-fine-grained control over how a controller can operate

CoVisor
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-

CoVisor

GE I$G I$

OpenFlow

G I$E

OpenFlow

Compose

Devirtualize

MAC$
Learner$ Monitor$$ IP$Router$Firewall$ Gateway$

Admin
Config

1

2

4

3

1

2
3 2 1 3

2

1

Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-

2

weakness?

administrator role

administrator role
configure CoVisor to compose policies

administrator role
configure CoVisor to compose policies
-manual spec: T1+T2, T1>T2, T1 ⊳ T2

administrator role
configure CoVisor to compose policies
-manual spec: T1+T2, T1>T2, T1 ⊳ T2

-proactive incremental compilation, optimization

administrator role
configure CoVisor to compose policies
-manual spec: T1+T2, T1>T2, T1 ⊳ T2

-proactive incremental compilation, optimization

virtualize the network, sets packet-processing
constraints

administrator role
configure CoVisor to compose policies
-manual spec: T1+T2, T1>T2, T1 ⊳ T2

-proactive incremental compilation, optimization

virtualize the network, sets packet-processing
constraints
-virtual topo: many-to-one, one-to-many (physical-to-virtual)

administrator role
configure CoVisor to compose policies
-manual spec: T1+T2, T1>T2, T1 ⊳ T2

-proactive incremental compilation, optimization

virtualize the network, sets packet-processing
constraints
-virtual topo: many-to-one, one-to-many (physical-to-virtual)
-packet handling: match, action

the “efficiency” challenge
to host tens of controllers
-each installs tens of thousands rules
-constantly updated rules

naive approach — prohibitively expensive
-time to recompile new policy
-time to install new rules on switches

efficient CoVisor algorithms
incrementally composing controller policies
-priorities form a convenient algebra, obviating recompiling

from scratch

devirtualization
-one(physical)-to-many(virtual)

optimizing composition
-smart data structure accelerate compilation

incremental composition
stream of member
policy updates CoVisor updates to the

composed policy
frequently and fast

update (OF rule) r = (m; a)

r.action

r.match, r.mSet

r.priority

p; m a

policy composition revisit
comp+(R1, R2)
-for every (r1, r2) in (R1 X R2)
-generate new r if r1.mSet intersects with r2.mSet
- r.match = intersection of r1.mSet and r2.mSet
- r.action = union of r1.action and r2.action

14

policy composition revisit
comp»(R1, R2)
-for every (r1, r2) in (R1 X R2)
-generate new r if packets produced by r1.action intersects

with r2.mSet
- r.match = ?
- r.action = ?

15

policy composition revisit
comp⊳(R1, R2)
-stacking R1 on top of R2 with higher priority

16

role of priority
ideally (goal)
-single rule addition in a member policy will NOT
- recomputing entire composed policy
- cleaning the physical switch’s flow tables

i.e., reduce update overhead
-computation
- # of rule pairs comp needs to iterate
-rule update
- # of flowmods to update a switch

17

strawman priority assignment

18

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

strawman priority assignment

18

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

add position of the rule indicates
relative priority
affecting all boldfaced rules

strawman priority assignment

19

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

rules in bold count toward rule
update overhead

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

add

strawman priority assignment

19

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

rules in bold count toward rule
update overhead

Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp�(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp�(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp�(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp�(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of

5

add

smartly set priority
-to make updates incremental

incremental update and priority algebra

r is computed from r1 and r2

-r.priority ⟵ r1.priority, r2.priority

- incremental update without modifying existing priorities

20

incremental update and priority algebra

r is computed from r1 and r2

-r.priority ⟵ r1.priority, r2.priority

comp+

-r.priority = r1.priority + r2.priority

comp<<

-r.priority = r1.priority X MAX2 + r2.priority

21

incremental update and priority algebra

r is computed (comp⊳) from R1 and R2

-r.priority = r.priority + MAX2 if r in R1
-r.priority = r.priority if r in R2

22

algebra properties
identify and prove properties
-the assignment schema ensures newly generated priority
- leaves existing priority unchanged
- together, the new and existing priorities are compliant with the straw

man scheme

23

devirtualization
topology transformation for one-to-many
-generate symbolic path (from the virtual ingress to egress)
-on each virtual path, sequentially compose virtual policies

into a single (physical) rule

24

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

on the virtual topology, find symbolic paths
-inject wildcard packet * at ingress
-at each hop
- evaluate the virtual policy, resulting in new packets
-until all packets reach egress

25

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

devirtualization

on the virtual topology, find symbolic paths

26

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

p1A(R1)*

*
p1

devirtualization

on the virtual topology, find symbolic paths

27

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

p1A(R1)*

*
p1

p2A(R2)* p21B(R1)

p2

p21

devirtualization

on the virtual topology, find symbolic paths

28

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

p1A(R1)*

*
p1

p2A(R2)* p21B(R1)

p2

p21

p22

p22

p2A(R2)* p22B(R2) p22C(R1)

devirtualization

sequentially compose policies on each path

29

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

p1A(R1)*

*
p1

p2A(R2)* p21B(R1)

p2

p21

p22

p22

p2A(R2)* p22B(R2) p22C(R1)

devirtualization

priority

4

sequentially compose policies on each path

30

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

p1A(R1)*

*
p1

p2A(R2)* p21B(R1)

p2

p21

p22

p22

p2A(R2)* p22B(R2) p22C(R1)

devirtualization

priority

4

1 ◦ 6 (=14)

sequentially compose policies on each path

31

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

p1A(R1)*

*
p1

p2A(R2)* p21B(R1)

p2

p21

p22

p22

p2A(R2)* p22B(R2) p22C(R1)

devirtualization

priority (assuming priority space for each switch is [0.8))

4

1 ◦ 6 (=14)

1 ◦ 1 ◦ 4 (=76)

sequentially compose policies on each path

32

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

p1A(R1)*

*
p1

p2A(R2)* p21B(R1)

p2

p21

p22

p22

p2A(R2)* p22B(R2) p22C(R1)

devirtualization

priority

4 ◦ 0 ◦ 0 (=256)

1 ◦ 6 ◦ 0 (=112)

1 ◦ 1 ◦ 4 (=76)

sequentially compose policies on each path

33

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3
S"1 5

4

2

B"1 3

2
A"1 3 1 C" 3

2

Physical
Virtual

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2

1 1 1

2 2

3 3 3

A B C

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp�(AR2,BR1) and comp�

�
comp�(AR2,BR2),CR1

�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

*
p1

p2

p21

p22

p22

devirtualization

256; inport = 1,dstip = 2.0.0.0/16;
; fwd(2)

112; inport = 1,dstip = 1.0.0.0/24
; fwd(3)

76; inport = 1,dstip = 1.0.0.0/8;
dstip = 2.0.0.0, fwd(4)

p1A(R1)*

p2A(R2)* p21B(R1)

p2A(R2)* p22B(R2) p22C(R1)

flow table of S

optimization: indexing rules
accelerate complication with smart data structure

34

R1 R2comp(,)

+r

△comp

optimization: indexing rules
accelerate complication with smart data structure

35

R1 R2comp(,)

multi-layer
index of

rules

+r

quickly search
rules in R1

“relevant” to r

△comp

optimization: indexing rules
accelerate complication with smart data structure

36

R1 R2comp(,)

multi-layer
index of

rules

+r

quickly search
rules in R1

“relevant” to r

△comp

Flow table of S�
256; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
�
112; inport = 1,dstip = 1.0.0.0/24; f wd(3)

�
�
76; inport = 1,dstip = 1.0.0.0/8; dstip = 2.0.0.0, f wd(4)

�

Figure 7: Flow table of switch S in Figure 6.

priorities calculated in this manner. We repeat the above
procedure for all ingress ports of the virtual topology to
get the final policy for S.

4.3 Incremental Update
By storing all the symbolic paths we generate when com-
piling a policy and partially modifying them upon a rule
insertion or deletion, we can incrementally update a pol-
icy. This strategy obviates the need to compile the whole
policy from scratch upon every rule update. In partic-
ular, when virtual switch V receives a rule update, we
reevaluate V ’s policy on all symbolic packets that enter
V . As a result, we may generate new symbolic packets,
which we then follow until they reach egress ports. V ’s
policy update may also modify the headers of or elimi-
nate existing symbolic packets. Accordingly, we update
the paths of modified symbolic packets and remove the
paths of deleted packets. Then, we add and remove rules
from the physical switch as described in §4.2. Our prior-
ity assignment algorithm ensures that these rule additions
and deletions do not affect existing rules generated from
symbolic paths that have not changed.

5 Exploiting Policy Structures

CoVisor imposes fine-grained access control on how
each controller can match and modify packets. These
restrictions both enhance security and provide hints that
allow CoVisor to further optimize the compilation pro-
cess. First, by knowing which fields individual poli-
cies match on and modify, we can build custom data
structures to index rules, instead of resorting to general
R-tree-based data structures for multi-dimensional clas-
sifiers as in [22, 23, 24]. Second, by correlating the
matched or modified fields of two policies being com-
posed, we can simplify their indexing data structures by
only considering the fields they both care about.

We first describe the optimization problem, and then
we show how to use the above two insights to solve it.
For ease of explanation, we first assume that member
policies are connected by the parallel operator. Later,
we’ll describe how to handle the sequential and override
operators. Now suppose we have a parallel composition
T1 +T2 with implementation comp+(R1,R2), and a new
rule, r⇤1, is inserted into R1. With our incremental update
algorithm (§3.2), we need to iterate over all (r⇤1,r2 j) pairs

0" 1"

1"0"

*"

*" 0" 2"1" ……"Hash Map
(proto)

Trie
(srcip) A

(a) Example rule index.

dstip srcip, dstip,
srcprt, dstprt,
proto

srcip,
proto R1

R3

R2

+1

+2

(b) Example syntax tree.

Figure 8: Example of exploiting policy structures.

where r2 j 2R2. The iteration processes |R2| pairs in total,
where |R2| denotes the number of rules in R2. However,
if we know the structure of R2, we can index its rules in
a way that allows us to skip the rules that don’t intersect
with r⇤1, thereby further reducing computation overhead.

Index policies based on structure hints: Our goal is to
reduce the number of rule pairs to iterate in compilation.
A policy’s structure indicates which fields should be in-
dexed and how. For example, if R2 is permitted only to
do exact-match on destination MAC, then we can store
its rules in a hash map keyed on destination MAC. If r⇤1
also does exact-match on destination MAC, we simply
use the destination MAC as key to search for rules in
R2’s hash map. No rules in R2 besides those stored un-
der this key can intersect with r⇤1, because they differ on
destination MAC. If r⇤1 wildcards destination MAC, we
return all rules in R2, as they all intersect with r⇤1.

The preceding example is a simple case in which R2
matches on one field. In general, a policy may match on
multiple fields. We use single-field indexes (hash table
for exact-match, trie for prefix-match, list for arbitrary
wildcard-match) as building blocks to build a multi-layer
index for multiple fields. Specifically, we first choose
one field f1 the policy can match and index the policy on
this field. We store all rules with the same value in f1 in
the same bucket of the index. This forms the first layer
of the index. Then we choose the second field f2 and
index rules in each f1 bucket on f2. We repeat this pro-
cess for all the fields on which the policy can match. We
choose the order of fields according to simple heuristics
like preferring exact-match fields to prefix-match fields.
In practice, a policy normally matches on a small number
of fields, which means the number of layers is small.

Consider a policy that does exact-match on proto (pro-
tocol number) and prefix-match on srcip. We first index
the policy based on proto. All rules with the same value
in proto go to the same bucket, as shown in Figure 8(a).
Note that the hash map contains a bucket keyed on ⇤ for
rules that do not match on proto. Then, we index all the
rules that contain the same proto value on srcip. Be-
cause our example policy does prefix match on srcip, the
second level of our multi-layer index comprises a trie for
each bucket in the hash map. Figure 8(a) shows this sec-

9

example multi-layer index
• hash table for exact match
• trie for prefix match
• list for arbitrary wildcard-match

optimization: indexing rules

37

R1 R2comp(,)

+r

quickly search
rules in R1

“relevant” to r

△comp

reduce index size by policy correlation

only index the “correlated” info
R1.index = R2.index
 = R1.fields ∩ R2.fields

evaluation
three evaluation scenarios
-composition (compilation, update) efficiency
-devirtualization efficiency
-stress policy size

38

evaluation — L2 monitor + L2 router

setup
-initialize L2 monitor

policy with 1000 rules
-add 10 rules to measure

overhead
-vary policy size from 1k

to 32k

39

compilation efficiency
-smart priority

assignment (Incremental,
IncreOpt) achieves
orders of magnitude
faster compilation

40

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

1k 2k 4k 8k 16k32k

Ti
m

e
(m

s)

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(a) Compilation Time

 0.1
 1

 10
 100

 1000
 10000

1k 2k 4k 8k 16k32k

of

 F
lo

wm
od

s
L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(b) Rule Update Overhead

 0.001
 0.01

 0.1
 1

 10
 100

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(c) Total Update Time (Hardware)

 0.0001
 0.001

 0.01
 0.1

 1
 10

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(d) Total Update Time (Software)

Figure 9: Per-rule update overhead of L2 Monitor + L2 Router (log-log scale).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 1 100 10000

CD
F

Time (ms)

Strawman
Incremental

IncreOpt

(a) Compilation Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 100 10000 1000000

CD
F

of Flowmods

Strawman
Incremental

IncreOpt

(b) Rule Update Overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.1 10 1000
CD

F
Time (s)

Strawman
Incremental

IncreOpt

(c) Total Update Time (Hardware)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.01 1 100

CD
F

Time (s)

Strawman
Incremental

IncreOpt

(d) Total Update Time (Software)

Figure 10: Per-rule update overhead of L3-L4 Firewall � L3 Router (log-log scale).

• Total update time: The sum of compilation time,
rule update time, and additional system overhead
like OpenFlow message (un)marshalling. Since
hardware switches and software switches takes very
different time in rule updates, we show both of
them. As the software switches in Mininet do not
mimic the rule update latency of hardware switches
and do not give accurate timing on the actual rule
installation in software switches, we use the rule up-
date latency in [29] for hardware switches and that
in [30] for software switches when calculating rule
update times.

Comparison: We compare the following approaches.
• Strawman: Recompile the new policy from scratch

for every policy update.
• Incremental: Incrementally compile the new policy

using our algebra of rule priorities for policy com-
position (§3) and keeping symbolic path informa-
tion for topology devirtualization (§4).

• IncreOpt: Further optimize Incremental by exploit-
ing the structures of policies (§5).

7.2 Composition Efficiency
Figure 9 shows the result of L2 Monitor + L2 Router. In
this experiment, we initialize the L2 Monitor policy with
1000 rules, and then add 10 rules to measure the over-
head for each. We repeat this process 10 times. We vary
the size N of L2 Router policy from 1000 to 32,000 to
show how overhead increases with larger policies. Fig-
ure 9(a) shows the compilation time. As expected, the
compilation time of Strawman and Incremental increases
with the policy size, because larger policies force our al-

gorithm to consider more rule pairs. Since Strawman re-
compiles the whole policy, it is by far the slowest. On
the other hand, IncreOpt has almost constant compilation
time, because it indexes L2 Router’s rules in a hash table
keyed on destination MAC. When a rule is inserted to
L2 Monitor’s policy, the algorithm simply uses the rule’s
destination MAC to look up rules in the hash table.

Figure 9(b) shows the rule update overhead in terms
of number of rules (same for hardware and software
switches). Because of its naive priority assignment
scheme, Strawman unnecessarily changes priorities of
many existing rules and thus generates more flowmods
than Incremental and IncreOpt. Incremental and Incre-

Opt generate the same policy, and therefore they have
the same rule update overhead. We also observe that the
rule update overhead does not increase with the size of L2

Router’s policy. This is because the size of L2 Monitor’s
policy is fixed, and each monitor rule only intersects with
one rule in L2 Router, since they both do exact-match on
destination MAC.

Finally, Figures 9(c) and 9(d) show the total time. No-
tably, Incremental and IncreOpt are significantly faster
than Strawman, and the gap between Incremental and In-

creOpt is larger when using software switches. This is
because software switches update rules faster than hard-
ware switches, and therefore the compilation time ac-
counts for a larger fraction of the total time for software
switches.

Figure 10 shows the result of L3-L4 Firewall � L3

Router. As before, we initialize L3-L4 Firewall’s policy
with 1000 rules and add 10 rules. Since the trend is simi-
lar to Figure 9 when we vary the size N of L3 Router, we
instead show the CDF when L3 Router policy has 8,000

11

evaluation — L2 monitor + L2 router

update efficiency
-why Incremental/

IncreOpt not much
difference?

41

 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000

1k 2k 4k 8k 16k32k

Ti
m

e
(m

s)

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(a) Compilation Time

 0.1
 1

 10
 100

 1000
 10000

1k 2k 4k 8k 16k32k

of

 F
lo

wm
od

s

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(b) Rule Update Overhead

 0.001
 0.01
 0.1

 1
 10

 100

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)
L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(c) Total Update Time (Hardware)

 0.0001
 0.001
 0.01
 0.1

 1
 10

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(d) Total Update Time (Software)

Figure 9: Per-rule update overhead of L2 Monitor + L2 Router (log-log scale).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 1 100 10000

CD
F

Time (ms)

Strawman
Incremental

IncreOpt

(a) Compilation Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 100 10000 1000000

CD
F

of Flowmods

Strawman
Incremental

IncreOpt

(b) Rule Update Overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.1 10 1000

CD
F

Time (s)

Strawman
Incremental

IncreOpt

(c) Total Update Time (Hardware)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.01 1 100
CD

F
Time (s)

Strawman
Incremental

IncreOpt

(d) Total Update Time (Software)

Figure 10: Per-rule update overhead of L3-L4 Firewall � L3 Router (log-log scale).

• Total update time: The sum of compilation time,
rule update time, and additional system overhead
like OpenFlow message (un)marshalling. Since
hardware switches and software switches takes very
different time in rule updates, we show both of
them. As the software switches in Mininet do not
mimic the rule update latency of hardware switches
and do not give accurate timing on the actual rule
installation in software switches, we use the rule up-
date latency in [29] for hardware switches and that
in [30] for software switches when calculating rule
update times.

Comparison: We compare the following approaches.
• Strawman: Recompile the new policy from scratch

for every policy update.
• Incremental: Incrementally compile the new policy

using our algebra of rule priorities for policy com-
position (§3) and keeping symbolic path informa-
tion for topology devirtualization (§4).

• IncreOpt: Further optimize Incremental by exploit-
ing the structures of policies (§5).

7.2 Composition Efficiency
Figure 9 shows the result of L2 Monitor + L2 Router. In
this experiment, we initialize the L2 Monitor policy with
1000 rules, and then add 10 rules to measure the over-
head for each. We repeat this process 10 times. We vary
the size N of L2 Router policy from 1000 to 32,000 to
show how overhead increases with larger policies. Fig-
ure 9(a) shows the compilation time. As expected, the
compilation time of Strawman and Incremental increases
with the policy size, because larger policies force our al-

gorithm to consider more rule pairs. Since Strawman re-
compiles the whole policy, it is by far the slowest. On
the other hand, IncreOpt has almost constant compilation
time, because it indexes L2 Router’s rules in a hash table
keyed on destination MAC. When a rule is inserted to
L2 Monitor’s policy, the algorithm simply uses the rule’s
destination MAC to look up rules in the hash table.

Figure 9(b) shows the rule update overhead in terms
of number of rules (same for hardware and software
switches). Because of its naive priority assignment
scheme, Strawman unnecessarily changes priorities of
many existing rules and thus generates more flowmods
than Incremental and IncreOpt. Incremental and Incre-

Opt generate the same policy, and therefore they have
the same rule update overhead. We also observe that the
rule update overhead does not increase with the size of L2

Router’s policy. This is because the size of L2 Monitor’s
policy is fixed, and each monitor rule only intersects with
one rule in L2 Router, since they both do exact-match on
destination MAC.

Finally, Figures 9(c) and 9(d) show the total time. No-
tably, Incremental and IncreOpt are significantly faster
than Strawman, and the gap between Incremental and In-

creOpt is larger when using software switches. This is
because software switches update rules faster than hard-
ware switches, and therefore the compilation time ac-
counts for a larger fraction of the total time for software
switches.

Figure 10 shows the result of L3-L4 Firewall � L3

Router. As before, we initialize L3-L4 Firewall’s policy
with 1000 rules and add 10 rules. Since the trend is simi-
lar to Figure 9 when we vary the size N of L3 Router, we
instead show the CDF when L3 Router policy has 8,000

11

evaluation — L2 monitor + L2 router

total completion time
-additional OpenFlow

overhead

42

evaluation — L2 monitor + L2 router

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

1k 2k 4k 8k 16k32k

Ti
m

e
(m

s)

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(a) Compilation Time

 0.1
 1

 10
 100

 1000
 10000

1k 2k 4k 8k 16k32k

of

 F
lo

wm
od

s

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(b) Rule Update Overhead

 0.001
 0.01

 0.1
 1

 10
 100

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)

L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(c) Total Update Time (Hardware)

 0.0001
 0.001

 0.01
 0.1

 1
 10

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)
L2 Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(d) Total Update Time (Software)

Figure 9: Per-rule update overhead of L2 Monitor + L2 Router (log-log scale).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 1 100 10000

CD
F

Time (ms)

Strawman
Incremental

IncreOpt

(a) Compilation Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 100 10000 1000000

CD
F

of Flowmods

Strawman
Incremental

IncreOpt

(b) Rule Update Overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.1 10 1000

CD
F

Time (s)

Strawman
Incremental

IncreOpt

(c) Total Update Time (Hardware)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.01 1 100

CD
F

Time (s)

Strawman
Incremental

IncreOpt

(d) Total Update Time (Software)

Figure 10: Per-rule update overhead of L3-L4 Firewall � L3 Router (log-log scale).

• Total update time: The sum of compilation time,
rule update time, and additional system overhead
like OpenFlow message (un)marshalling. Since
hardware switches and software switches takes very
different time in rule updates, we show both of
them. As the software switches in Mininet do not
mimic the rule update latency of hardware switches
and do not give accurate timing on the actual rule
installation in software switches, we use the rule up-
date latency in [29] for hardware switches and that
in [30] for software switches when calculating rule
update times.

Comparison: We compare the following approaches.
• Strawman: Recompile the new policy from scratch

for every policy update.
• Incremental: Incrementally compile the new policy

using our algebra of rule priorities for policy com-
position (§3) and keeping symbolic path informa-
tion for topology devirtualization (§4).

• IncreOpt: Further optimize Incremental by exploit-
ing the structures of policies (§5).

7.2 Composition Efficiency
Figure 9 shows the result of L2 Monitor + L2 Router. In
this experiment, we initialize the L2 Monitor policy with
1000 rules, and then add 10 rules to measure the over-
head for each. We repeat this process 10 times. We vary
the size N of L2 Router policy from 1000 to 32,000 to
show how overhead increases with larger policies. Fig-
ure 9(a) shows the compilation time. As expected, the
compilation time of Strawman and Incremental increases
with the policy size, because larger policies force our al-

gorithm to consider more rule pairs. Since Strawman re-
compiles the whole policy, it is by far the slowest. On
the other hand, IncreOpt has almost constant compilation
time, because it indexes L2 Router’s rules in a hash table
keyed on destination MAC. When a rule is inserted to
L2 Monitor’s policy, the algorithm simply uses the rule’s
destination MAC to look up rules in the hash table.

Figure 9(b) shows the rule update overhead in terms
of number of rules (same for hardware and software
switches). Because of its naive priority assignment
scheme, Strawman unnecessarily changes priorities of
many existing rules and thus generates more flowmods
than Incremental and IncreOpt. Incremental and Incre-

Opt generate the same policy, and therefore they have
the same rule update overhead. We also observe that the
rule update overhead does not increase with the size of L2

Router’s policy. This is because the size of L2 Monitor’s
policy is fixed, and each monitor rule only intersects with
one rule in L2 Router, since they both do exact-match on
destination MAC.

Finally, Figures 9(c) and 9(d) show the total time. No-
tably, Incremental and IncreOpt are significantly faster
than Strawman, and the gap between Incremental and In-

creOpt is larger when using software switches. This is
because software switches update rules faster than hard-
ware switches, and therefore the compilation time ac-
counts for a larger fraction of the total time for software
switches.

Figure 10 shows the result of L3-L4 Firewall � L3

Router. As before, we initialize L3-L4 Firewall’s policy
with 1000 rules and add 10 rules. Since the trend is simi-
lar to Figure 9 when we vary the size N of L3 Router, we
instead show the CDF when L3 Router policy has 8,000

11

setup
-MAC learner
- Ethernet island connecting

100 hosts
- initialize MAC learner

with 1000 rules
- vary size from 1k to 32k
-add new hosts to

measure overhead

43

evaluation — devirtualization

compilation

44

evaluation — devirtualization

 1
 10

 100
 1000

 10000
 100000

1k 2k 4k 8k 16k32k

Ti
m

e
(m

s)

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(a) Compilation Time

1e2
1e3
1e4
1e5
1e6
1e7

1k 2k 4k 8k 16k32k

of

 F
lo

wm
od

s
IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(b) Rule Update Overhead

 1
 10

 100
 1000

 10000
 100000

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(c) Total Update Time (Hardware)

 0.1
 1

 10
 100

 1000
 10000

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(d) Total Update Time (Software)

Figure 11: The switch connecting an Ethernet island to the IP core is virtualized to switches that operate as MAC
learner, gateway, and IP router. Figures show the overhead of adding a host to the Ethernet island (log-log scale).

rules. Figure 10(a) shows the compilation time. Again,
Strawman is several orders of magnitude slower than In-

cremental and IncreOpt. However, unlike in our previous
experiment, we see a stepwise behavior of Incremental,
and the difference between Incremental and IncreOpt also
disappears after 80th percentile. This is an artifact of the
content of L3-L4 Firewall from ClassBench. The firewall
policy comprises approximately 80% rules matching on
very specific destination IP prefix (/31, /32) and around
20% rules matching very general destination IP prefix
(/1, /0). A firewall rule with a very specific destination
IP prefix only composes with a few router rules, in which
case IncreOpt processes fewer rule pairs in compilation
than Incremental. On the other hand, a firewall rule with
a very general destination IP prefix like /1 or /0 composes
with half or all rules in the router policy, in which case In-

cremental and IncreOpt process a similar number of rule
pairs and have similar compilation time. This reasoning
also explains the shape of Incremental and IncreOpt in
Figures 10(b), 10(c) and 10(d).

7.3 Devirtualization Efficiency

We use the gateway scenario to evaluate the efficiency of
the devirtualization phase of compilation. In this exper-
iment, we have 100 hosts in the Ethernet island. The
MAC learner installs forwarding rules for connections
between host pairs. To the Ethernet island, switch G sim-
ply appears as another host; hosts use G’s MAC as des-
tination MAC when they want to reach hosts across the
IP core. We initialize the MAC learner policy with 1000
rules in switch E. Then, we add a new host to the Eth-
ernet island. When the new host tries to talk to another
host across the IP core, the MAC learner adds two rules
to establish a bidirectional connection between the host
and switch G. To compile this update, we compose the
two new rules with the existing rules in switches G and
I. The gateway policy at G is simply a MAC-rewriting
repeater and ARP server. The IP router forwards packets
based on destination IP prefix. We vary the size of the
IP router policy at I from 1000 to 32,000 to evaluate how
the overhead increases with larger policies.

Figure 11 shows the overhead. Strawman exhibits a
long compilation time, as it has to recompile the policy
from scratch. Strawman also generates more flowmods
than necessary, because its priority assignment scheme
may change the priorities of existing rules. In contrast,
Incremental and IncreOpt incur significantly less over-
head, because they keep all the symbolic paths and only
need to change a few upon receiving the new rules. Fi-
nally, we notice that Incremental and IncreOpt do not
show much difference in this experiment and the abso-
lute values of total update time are high. This is because
the MAC learner policy in switch E and the IP router
policy in switch I match on different fields. Thus, when
we do sequential composition on virtual paths, Incremen-

tal and IncreOpt iterate over a similar number of rule
pairs and the result policy is almost a cross-product of the
two policies at E and I. The cross-product is inevitable
when compiling to a single flow table as the two poli-
cies match on different fields. Finally, we note that the
multi-table support in OpenFlow 1.3 and newer hardware
platforms like P4 [31] can make devirtualization more ef-
ficient. If multiple tables in a switch can be configured to
in a pipeline to mirror the virtual network topology, then
updating virtual switch tables can be directly mapped to
updating physical tables. This can dramatically reduce
compilation and rule update overhead. A complete ex-
ploration of this direction is part of our future work.

8 Related Work

Slicing: Existing network hypervisors mostly focus on
slicing; they target multi-tenancy scenarios in which each
tenant operates on a disjoint subset, or slice, of the traf-
fic [3, 4, 32, 33]. In contrast, CoVisor allows multiple
controllers to collaborate on processing the same traffic.
Topology abstraction: Many projects studied the many-
to-one case [15, 19, 20, 34]. Pyretic [15] explored the
one-to-many case, but its implementation reactively in-
stalls micro-flow rules. CoVisor provides the first proac-
tive compilation algorithm by leveraging symbolic anal-
ysis to build symbolic paths [21] and applying incremen-
tal sequential composition to generate the rules.

12

update
-why is the absolute

values of delays large?

45

evaluation — devirtualization

 1
 10

 100
 1000

 10000
 100000

1k 2k 4k 8k 16k32k

Ti
m

e
(m

s)

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(a) Compilation Time

1e2
1e3
1e4
1e5
1e6
1e7

1k 2k 4k 8k 16k32k

of

 F
lo

wm
od

s

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(b) Rule Update Overhead

 1
 10

 100
 1000

 10000
 100000

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)
IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(c) Total Update Time (Hardware)

 0.1
 1

 10
 100

 1000
 10000

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(d) Total Update Time (Software)

Figure 11: The switch connecting an Ethernet island to the IP core is virtualized to switches that operate as MAC
learner, gateway, and IP router. Figures show the overhead of adding a host to the Ethernet island (log-log scale).

rules. Figure 10(a) shows the compilation time. Again,
Strawman is several orders of magnitude slower than In-

cremental and IncreOpt. However, unlike in our previous
experiment, we see a stepwise behavior of Incremental,
and the difference between Incremental and IncreOpt also
disappears after 80th percentile. This is an artifact of the
content of L3-L4 Firewall from ClassBench. The firewall
policy comprises approximately 80% rules matching on
very specific destination IP prefix (/31, /32) and around
20% rules matching very general destination IP prefix
(/1, /0). A firewall rule with a very specific destination
IP prefix only composes with a few router rules, in which
case IncreOpt processes fewer rule pairs in compilation
than Incremental. On the other hand, a firewall rule with
a very general destination IP prefix like /1 or /0 composes
with half or all rules in the router policy, in which case In-

cremental and IncreOpt process a similar number of rule
pairs and have similar compilation time. This reasoning
also explains the shape of Incremental and IncreOpt in
Figures 10(b), 10(c) and 10(d).

7.3 Devirtualization Efficiency

We use the gateway scenario to evaluate the efficiency of
the devirtualization phase of compilation. In this exper-
iment, we have 100 hosts in the Ethernet island. The
MAC learner installs forwarding rules for connections
between host pairs. To the Ethernet island, switch G sim-
ply appears as another host; hosts use G’s MAC as des-
tination MAC when they want to reach hosts across the
IP core. We initialize the MAC learner policy with 1000
rules in switch E. Then, we add a new host to the Eth-
ernet island. When the new host tries to talk to another
host across the IP core, the MAC learner adds two rules
to establish a bidirectional connection between the host
and switch G. To compile this update, we compose the
two new rules with the existing rules in switches G and
I. The gateway policy at G is simply a MAC-rewriting
repeater and ARP server. The IP router forwards packets
based on destination IP prefix. We vary the size of the
IP router policy at I from 1000 to 32,000 to evaluate how
the overhead increases with larger policies.

Figure 11 shows the overhead. Strawman exhibits a
long compilation time, as it has to recompile the policy
from scratch. Strawman also generates more flowmods
than necessary, because its priority assignment scheme
may change the priorities of existing rules. In contrast,
Incremental and IncreOpt incur significantly less over-
head, because they keep all the symbolic paths and only
need to change a few upon receiving the new rules. Fi-
nally, we notice that Incremental and IncreOpt do not
show much difference in this experiment and the abso-
lute values of total update time are high. This is because
the MAC learner policy in switch E and the IP router
policy in switch I match on different fields. Thus, when
we do sequential composition on virtual paths, Incremen-

tal and IncreOpt iterate over a similar number of rule
pairs and the result policy is almost a cross-product of the
two policies at E and I. The cross-product is inevitable
when compiling to a single flow table as the two poli-
cies match on different fields. Finally, we note that the
multi-table support in OpenFlow 1.3 and newer hardware
platforms like P4 [31] can make devirtualization more ef-
ficient. If multiple tables in a switch can be configured to
in a pipeline to mirror the virtual network topology, then
updating virtual switch tables can be directly mapped to
updating physical tables. This can dramatically reduce
compilation and rule update overhead. A complete ex-
ploration of this direction is part of our future work.

8 Related Work

Slicing: Existing network hypervisors mostly focus on
slicing; they target multi-tenancy scenarios in which each
tenant operates on a disjoint subset, or slice, of the traf-
fic [3, 4, 32, 33]. In contrast, CoVisor allows multiple
controllers to collaborate on processing the same traffic.
Topology abstraction: Many projects studied the many-
to-one case [15, 19, 20, 34]. Pyretic [15] explored the
one-to-many case, but its implementation reactively in-
stalls micro-flow rules. CoVisor provides the first proac-
tive compilation algorithm by leveraging symbolic anal-
ysis to build symbolic paths [21] and applying incremen-
tal sequential composition to generate the rules.

12

total completion time

46

evaluation — devirtualization

 1
 10

 100
 1000

 10000
 100000

1k 2k 4k 8k 16k32k

Ti
m

e
(m

s)

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(a) Compilation Time

1e2
1e3
1e4
1e5
1e6
1e7

1k 2k 4k 8k 16k32k

of

 F
lo

wm
od

s

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(b) Rule Update Overhead

 1
 10

 100
 1000

 10000
 100000

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)

IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(c) Total Update Time (Hardware)

 0.1
 1

 10
 100

 1000
 10000

1k 2k 4k 8k 16k32k

Ti
m

e
(s

)
IP Router Policy Size (# of Rules)

Strawman [10, 50, 90 perc.]
Incremental [10, 50, 90 perc.]

IncreOpt [10, 50, 90 perc.]

(d) Total Update Time (Software)

Figure 11: The switch connecting an Ethernet island to the IP core is virtualized to switches that operate as MAC
learner, gateway, and IP router. Figures show the overhead of adding a host to the Ethernet island (log-log scale).

rules. Figure 10(a) shows the compilation time. Again,
Strawman is several orders of magnitude slower than In-

cremental and IncreOpt. However, unlike in our previous
experiment, we see a stepwise behavior of Incremental,
and the difference between Incremental and IncreOpt also
disappears after 80th percentile. This is an artifact of the
content of L3-L4 Firewall from ClassBench. The firewall
policy comprises approximately 80% rules matching on
very specific destination IP prefix (/31, /32) and around
20% rules matching very general destination IP prefix
(/1, /0). A firewall rule with a very specific destination
IP prefix only composes with a few router rules, in which
case IncreOpt processes fewer rule pairs in compilation
than Incremental. On the other hand, a firewall rule with
a very general destination IP prefix like /1 or /0 composes
with half or all rules in the router policy, in which case In-

cremental and IncreOpt process a similar number of rule
pairs and have similar compilation time. This reasoning
also explains the shape of Incremental and IncreOpt in
Figures 10(b), 10(c) and 10(d).

7.3 Devirtualization Efficiency

We use the gateway scenario to evaluate the efficiency of
the devirtualization phase of compilation. In this exper-
iment, we have 100 hosts in the Ethernet island. The
MAC learner installs forwarding rules for connections
between host pairs. To the Ethernet island, switch G sim-
ply appears as another host; hosts use G’s MAC as des-
tination MAC when they want to reach hosts across the
IP core. We initialize the MAC learner policy with 1000
rules in switch E. Then, we add a new host to the Eth-
ernet island. When the new host tries to talk to another
host across the IP core, the MAC learner adds two rules
to establish a bidirectional connection between the host
and switch G. To compile this update, we compose the
two new rules with the existing rules in switches G and
I. The gateway policy at G is simply a MAC-rewriting
repeater and ARP server. The IP router forwards packets
based on destination IP prefix. We vary the size of the
IP router policy at I from 1000 to 32,000 to evaluate how
the overhead increases with larger policies.

Figure 11 shows the overhead. Strawman exhibits a
long compilation time, as it has to recompile the policy
from scratch. Strawman also generates more flowmods
than necessary, because its priority assignment scheme
may change the priorities of existing rules. In contrast,
Incremental and IncreOpt incur significantly less over-
head, because they keep all the symbolic paths and only
need to change a few upon receiving the new rules. Fi-
nally, we notice that Incremental and IncreOpt do not
show much difference in this experiment and the abso-
lute values of total update time are high. This is because
the MAC learner policy in switch E and the IP router
policy in switch I match on different fields. Thus, when
we do sequential composition on virtual paths, Incremen-

tal and IncreOpt iterate over a similar number of rule
pairs and the result policy is almost a cross-product of the
two policies at E and I. The cross-product is inevitable
when compiling to a single flow table as the two poli-
cies match on different fields. Finally, we note that the
multi-table support in OpenFlow 1.3 and newer hardware
platforms like P4 [31] can make devirtualization more ef-
ficient. If multiple tables in a switch can be configured to
in a pipeline to mirror the virtual network topology, then
updating virtual switch tables can be directly mapped to
updating physical tables. This can dramatically reduce
compilation and rule update overhead. A complete ex-
ploration of this direction is part of our future work.

8 Related Work

Slicing: Existing network hypervisors mostly focus on
slicing; they target multi-tenancy scenarios in which each
tenant operates on a disjoint subset, or slice, of the traf-
fic [3, 4, 32, 33]. In contrast, CoVisor allows multiple
controllers to collaborate on processing the same traffic.
Topology abstraction: Many projects studied the many-
to-one case [15, 19, 20, 34]. Pyretic [15] explored the
one-to-many case, but its implementation reactively in-
stalls micro-flow rules. CoVisor provides the first proac-
tive compilation algorithm by leveraging symbolic anal-
ysis to build symbolic paths [21] and applying incremen-
tal sequential composition to generate the rules.

12

Kinetic

47

dynamics
network conditions are dynamic, but current
approaches to (re)configure the network are NOT

48

example: dynamic net config
University of Illinois
-an instructed class, 4 restricted classes
-downgrade a user’s traffic to a different class based on past

usage

current approach
-complex instrumentation
-“wrapper” that dynamically change low-level net config

49

Kinetic
goals
-capture dynamics, automatically verifies temporal properties

Kinetic language
-dynamic policy as finite state machine (FSM)
-states: distinct forwarding behavior
-transition: triggering network events

Kinetic handler listens to events
-triggers transition in a policy
-updates the data plane

50

dynamic policy as FSM
FSM specifies how a (Pyretic) policy evolves in
response to events
-FSM state contains a policy
-FSM transition corresponds to net events

51

62 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

	����������
���
�
	���	����	���

��������	��������������

��������	����������
����

	�������������
�
	�������

Figure 1: Intrusion detection FSM.

�
������������
�����
��������
���
���
	��

���
��
�������
��������

���
��
���	�����������

�
���
	�

���
����	�����������

����� ���	
�
������������
�����
�������
���
���
���
���

�����
�
�����������
�����
��������
���
���
	��

Figure 2: Stateful firewall FSM.

tion. Finally, to show Kinetic’s generality, we present a
MAC learning switch implementation.

3.1 Capturing Dynamics
We begin with a simple dynamic policy involving intru-
sion detection. Suppose that a network operator wants
the network to drop all packets to and from a host once
it receives an event indicating that the host is infected
(e.g., from an intrusion detection system). Kinetic allows
operators to concisely express these dynamics with finite
state machines that determine how a policy should evolve
in response to events such as intrusions. We chose FSMs
as the basic abstraction for expressing Kinetic programs
because (1) they intuitively and concisely capture control
dynamics in response to network events; and (2) their
structure makes them amenable to verification.

In this example, each host would have a single state
variable, infected. When infected is false, the
controller applies Pyretic’s identity (allow) policy for
traffic from that host; when it is true, the controller ap-
plies Pyretic’s drop policy for the host’s traffic. Figure 1
shows this logical FSM. To support verification, the actual
specification of the FSM for this policy is slightly more
complicated; we expand on this example in Section 4.2.

3.2 Capturing State for Groups of Packets
Defining FSMs in Kinetic has the potential to create state
explosion, since dynamic policies must be defined over
a state space that is exponential in the number of hosts
and flows (and possibly other aspects of the network). For
example, consider the previous example, a two-state FSM
indicating whether a host is infected. If the network has N
hosts, then representing the state of the network requires
an FSM with 2N states, which is intractable, particularly
as the size of the network and the complexity of policies
grow. Instead of directly encoding an FSM that explic-
itly encodes all variable values, Kinetic encodes a single
generic FSM that can be applied to any given group of

	������
�������
�

������

	������
���	�����
�

������

	������
����	�����
�

������

�

������
�
�������

�
�

������
�
�������

����
�

������

��������

	��

�����
�
������

������
�
�������

������
�
�������

��

�
��������

������
�
�������

������
�
�������

Figure 3: Data usage-based rate limiter FSM.

packets (e.g., all packets from the same host, in the case of
the previous example). Each group of packets has a sepa-
rate FSM instance; packets in the same group will always
be in the same state. We call such a group of packets a
located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the imple-
mentation of a stateful firewall that implements a common
security policy. Figure 2 shows the Kinetic representa-
tion of the policy. This program always allows outbound
traffic, but blocks inbound traffic unless the traffic flow
is in response to corresponding outbound traffic for that
flow. For example, if internal host ih1 pings external host
eh2 then packets sent from eh2 should be allowed back
through the firewall until a certain timeout occurs, but only
if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows
the policy, ihs, which is a filter policy matching all traffic
whose source address in the set of internal hosts. A Pyretic-
encoded query collects outbound packets from hosts in
ihs and produces (outgoing,True) event. This trig-
gers the update of the policy variable to identity
(indicating that traffic is now allowed), and outgoing is
reset. The timeout event is provided by Kinetic event
driver. After certain amount of time (e.g., five seconds), a
(timeout,True) event is invoked unless another outgo-
ing packet is seen within the timeout. The program should
regard inbound and outbound flows between the same
pairs of endpoints with the same state, and the program-
mer should not have to explicitly encode state for every
pair of endpoints. To implement such a policy, the pro-
grammer can define an LPEC to correspond to a distinct
source-destination IP address pair:

def l p e c (p k t) :
h1 = p k t [’srcip’]
h2 = p k t [’dstip’]
r e t u r n (match (s r c i p =h1 , d s t i p =h2) |

match (s r c i p =h2 , d s t i p =h1))

3.3 Composing Independent Policies
Many aspects of network state are logically independent.
For example, whether a host has authenticated is indepen-
dent of whether it is infected or whether it has exceeded

4

intrusion detection FSM

dynamic policy as FSM

52

stateful firewall FSM

62 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

	����������
���
�
	���	����	���

��������	��������������

��������	����������
����

	�������������
�
	�������

Figure 1: Intrusion detection FSM.

�
������������
�����
��������
���
���
	��

���
��
�������
��������

���
��
���	�����������

�
���
	�

���
����	�����������

����� ���	
�
������������
�����
�������
���
���
���
���

�����
�
�����������
�����
��������
���
���
	��

Figure 2: Stateful firewall FSM.

tion. Finally, to show Kinetic’s generality, we present a
MAC learning switch implementation.

3.1 Capturing Dynamics
We begin with a simple dynamic policy involving intru-
sion detection. Suppose that a network operator wants
the network to drop all packets to and from a host once
it receives an event indicating that the host is infected
(e.g., from an intrusion detection system). Kinetic allows
operators to concisely express these dynamics with finite
state machines that determine how a policy should evolve
in response to events such as intrusions. We chose FSMs
as the basic abstraction for expressing Kinetic programs
because (1) they intuitively and concisely capture control
dynamics in response to network events; and (2) their
structure makes them amenable to verification.

In this example, each host would have a single state
variable, infected. When infected is false, the
controller applies Pyretic’s identity (allow) policy for
traffic from that host; when it is true, the controller ap-
plies Pyretic’s drop policy for the host’s traffic. Figure 1
shows this logical FSM. To support verification, the actual
specification of the FSM for this policy is slightly more
complicated; we expand on this example in Section 4.2.

3.2 Capturing State for Groups of Packets
Defining FSMs in Kinetic has the potential to create state
explosion, since dynamic policies must be defined over
a state space that is exponential in the number of hosts
and flows (and possibly other aspects of the network). For
example, consider the previous example, a two-state FSM
indicating whether a host is infected. If the network has N
hosts, then representing the state of the network requires
an FSM with 2N states, which is intractable, particularly
as the size of the network and the complexity of policies
grow. Instead of directly encoding an FSM that explic-
itly encodes all variable values, Kinetic encodes a single
generic FSM that can be applied to any given group of

	������
�������
�

������

	������
���	�����
�

������

	������
����	�����
�

������

�

������
�
�������

�
�

������
�
�������

����
�

������

��������

	��

�����
�
������

������
�
�������

������
�
�������

��

�
��������

������
�
�������

������
�
�������

Figure 3: Data usage-based rate limiter FSM.

packets (e.g., all packets from the same host, in the case of
the previous example). Each group of packets has a sepa-
rate FSM instance; packets in the same group will always
be in the same state. We call such a group of packets a
located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the imple-
mentation of a stateful firewall that implements a common
security policy. Figure 2 shows the Kinetic representa-
tion of the policy. This program always allows outbound
traffic, but blocks inbound traffic unless the traffic flow
is in response to corresponding outbound traffic for that
flow. For example, if internal host ih1 pings external host
eh2 then packets sent from eh2 should be allowed back
through the firewall until a certain timeout occurs, but only
if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows
the policy, ihs, which is a filter policy matching all traffic
whose source address in the set of internal hosts. A Pyretic-
encoded query collects outbound packets from hosts in
ihs and produces (outgoing,True) event. This trig-
gers the update of the policy variable to identity
(indicating that traffic is now allowed), and outgoing is
reset. The timeout event is provided by Kinetic event
driver. After certain amount of time (e.g., five seconds), a
(timeout,True) event is invoked unless another outgo-
ing packet is seen within the timeout. The program should
regard inbound and outbound flows between the same
pairs of endpoints with the same state, and the program-
mer should not have to explicitly encode state for every
pair of endpoints. To implement such a policy, the pro-
grammer can define an LPEC to correspond to a distinct
source-destination IP address pair:

def l p e c (p k t) :
h1 = p k t [’srcip’]
h2 = p k t [’dstip’]
r e t u r n (match (s r c i p =h1 , d s t i p =h2) |

match (s r c i p =h2 , d s t i p =h1))

3.3 Composing Independent Policies
Many aspects of network state are logically independent.
For example, whether a host has authenticated is indepen-
dent of whether it is infected or whether it has exceeded

4

dynamic policy as FSM

53

data usage based rate limiter

62 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

	����������
���
�
	���	����	���

��������	��������������

��������	����������
����

	�������������
�
	�������

Figure 1: Intrusion detection FSM.

�
������������
�����
��������
���
���
	��

���
��
�������
��������

���
��
���	�����������

�
���
	�

���
����	�����������

����� ���	
�
������������
�����
�������
���
���
���
���

�����
�
�����������
�����
��������
���
���
	��

Figure 2: Stateful firewall FSM.

tion. Finally, to show Kinetic’s generality, we present a
MAC learning switch implementation.

3.1 Capturing Dynamics
We begin with a simple dynamic policy involving intru-
sion detection. Suppose that a network operator wants
the network to drop all packets to and from a host once
it receives an event indicating that the host is infected
(e.g., from an intrusion detection system). Kinetic allows
operators to concisely express these dynamics with finite
state machines that determine how a policy should evolve
in response to events such as intrusions. We chose FSMs
as the basic abstraction for expressing Kinetic programs
because (1) they intuitively and concisely capture control
dynamics in response to network events; and (2) their
structure makes them amenable to verification.

In this example, each host would have a single state
variable, infected. When infected is false, the
controller applies Pyretic’s identity (allow) policy for
traffic from that host; when it is true, the controller ap-
plies Pyretic’s drop policy for the host’s traffic. Figure 1
shows this logical FSM. To support verification, the actual
specification of the FSM for this policy is slightly more
complicated; we expand on this example in Section 4.2.

3.2 Capturing State for Groups of Packets
Defining FSMs in Kinetic has the potential to create state
explosion, since dynamic policies must be defined over
a state space that is exponential in the number of hosts
and flows (and possibly other aspects of the network). For
example, consider the previous example, a two-state FSM
indicating whether a host is infected. If the network has N
hosts, then representing the state of the network requires
an FSM with 2N states, which is intractable, particularly
as the size of the network and the complexity of policies
grow. Instead of directly encoding an FSM that explic-
itly encodes all variable values, Kinetic encodes a single
generic FSM that can be applied to any given group of

	������
�������
�

������

	������
���	�����
�

������

	������
����	�����
�

������

�

������
�
�������

�
�

������
�
�������

����
�

������

��������

	��

�����
�
������

������
�
�������

������
�
�������

��

�
��������

������
�
�������

������
�
�������

Figure 3: Data usage-based rate limiter FSM.

packets (e.g., all packets from the same host, in the case of
the previous example). Each group of packets has a sepa-
rate FSM instance; packets in the same group will always
be in the same state. We call such a group of packets a
located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the imple-
mentation of a stateful firewall that implements a common
security policy. Figure 2 shows the Kinetic representa-
tion of the policy. This program always allows outbound
traffic, but blocks inbound traffic unless the traffic flow
is in response to corresponding outbound traffic for that
flow. For example, if internal host ih1 pings external host
eh2 then packets sent from eh2 should be allowed back
through the firewall until a certain timeout occurs, but only
if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows
the policy, ihs, which is a filter policy matching all traffic
whose source address in the set of internal hosts. A Pyretic-
encoded query collects outbound packets from hosts in
ihs and produces (outgoing,True) event. This trig-
gers the update of the policy variable to identity
(indicating that traffic is now allowed), and outgoing is
reset. The timeout event is provided by Kinetic event
driver. After certain amount of time (e.g., five seconds), a
(timeout,True) event is invoked unless another outgo-
ing packet is seen within the timeout. The program should
regard inbound and outbound flows between the same
pairs of endpoints with the same state, and the program-
mer should not have to explicitly encode state for every
pair of endpoints. To implement such a policy, the pro-
grammer can define an LPEC to correspond to a distinct
source-destination IP address pair:

def l p e c (p k t) :
h1 = p k t [’srcip’]
h2 = p k t [’dstip’]
r e t u r n (match (s r c i p =h1 , d s t i p =h2) |

match (s r c i p =h2 , d s t i p =h1))

3.3 Composing Independent Policies
Many aspects of network state are logically independent.
For example, whether a host has authenticated is indepen-
dent of whether it is infected or whether it has exceeded

4

FSM specifies how a (Pyretic) policy evolves in
response to events
-FSM state contains a policy
-FSM transition corresponds to net events

54

62 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

	����������
���
�
	���	����	���

��������	��������������

��������	����������
����

	�������������
�
	�������

Figure 1: Intrusion detection FSM.

�
������������
�����
��������
���
���
	��

���
��
�������
��������

���
��
���	�����������

�
���
	�

���
����	�����������

����� ���	
�
������������
�����
�������
���
���
���
���

�����
�
�����������
�����
��������
���
���
	��

Figure 2: Stateful firewall FSM.

tion. Finally, to show Kinetic’s generality, we present a
MAC learning switch implementation.

3.1 Capturing Dynamics
We begin with a simple dynamic policy involving intru-
sion detection. Suppose that a network operator wants
the network to drop all packets to and from a host once
it receives an event indicating that the host is infected
(e.g., from an intrusion detection system). Kinetic allows
operators to concisely express these dynamics with finite
state machines that determine how a policy should evolve
in response to events such as intrusions. We chose FSMs
as the basic abstraction for expressing Kinetic programs
because (1) they intuitively and concisely capture control
dynamics in response to network events; and (2) their
structure makes them amenable to verification.

In this example, each host would have a single state
variable, infected. When infected is false, the
controller applies Pyretic’s identity (allow) policy for
traffic from that host; when it is true, the controller ap-
plies Pyretic’s drop policy for the host’s traffic. Figure 1
shows this logical FSM. To support verification, the actual
specification of the FSM for this policy is slightly more
complicated; we expand on this example in Section 4.2.

3.2 Capturing State for Groups of Packets
Defining FSMs in Kinetic has the potential to create state
explosion, since dynamic policies must be defined over
a state space that is exponential in the number of hosts
and flows (and possibly other aspects of the network). For
example, consider the previous example, a two-state FSM
indicating whether a host is infected. If the network has N
hosts, then representing the state of the network requires
an FSM with 2N states, which is intractable, particularly
as the size of the network and the complexity of policies
grow. Instead of directly encoding an FSM that explic-
itly encodes all variable values, Kinetic encodes a single
generic FSM that can be applied to any given group of

	������
�������
�

������

	������
���	�����
�

������

	������
����	�����
�

������

�

������
�
�������

�
�

������
�
�������

����
�

������

��������

	��

�����
�
������

������
�
�������

������
�
�������

��

�
��������

������
�
�������

������
�
�������

Figure 3: Data usage-based rate limiter FSM.

packets (e.g., all packets from the same host, in the case of
the previous example). Each group of packets has a sepa-
rate FSM instance; packets in the same group will always
be in the same state. We call such a group of packets a
located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the imple-
mentation of a stateful firewall that implements a common
security policy. Figure 2 shows the Kinetic representa-
tion of the policy. This program always allows outbound
traffic, but blocks inbound traffic unless the traffic flow
is in response to corresponding outbound traffic for that
flow. For example, if internal host ih1 pings external host
eh2 then packets sent from eh2 should be allowed back
through the firewall until a certain timeout occurs, but only
if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows
the policy, ihs, which is a filter policy matching all traffic
whose source address in the set of internal hosts. A Pyretic-
encoded query collects outbound packets from hosts in
ihs and produces (outgoing,True) event. This trig-
gers the update of the policy variable to identity
(indicating that traffic is now allowed), and outgoing is
reset. The timeout event is provided by Kinetic event
driver. After certain amount of time (e.g., five seconds), a
(timeout,True) event is invoked unless another outgo-
ing packet is seen within the timeout. The program should
regard inbound and outbound flows between the same
pairs of endpoints with the same state, and the program-
mer should not have to explicitly encode state for every
pair of endpoints. To implement such a policy, the pro-
grammer can define an LPEC to correspond to a distinct
source-destination IP address pair:

def l p e c (p k t) :
h1 = p k t [’srcip’]
h2 = p k t [’dstip’]
r e t u r n (match (s r c i p =h1 , d s t i p =h2) |

match (s r c i p =h2 , d s t i p =h1))

3.3 Composing Independent Policies
Many aspects of network state are logically independent.
For example, whether a host has authenticated is indepen-
dent of whether it is infected or whether it has exceeded

4

N hosts 2N states

the state explosion challenge

the state explosion challenge
dynamic policy defined over a state space
exponential in the number of
-hosts, flows, …
-N hosts ⟶ 2N FSM states

a monolithic FSM
-break into N smaller FMSs, each with ai states
-∏ai states

55

Kinetic — technical contribution
introduce located packet equivalence class (LPEC)
-divide the state space into isolated FSMs

use Pyretic composition
-express large FSMs as smaller ones
-prevent FSM state explosion

56

Kinetic architecture

57

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 63

������
��
���	������

���������
�

�
������

��
���	���
��������

�

� �
������

��
���	���
���������

�

�����
�
	�����

�����
����������

�������� �����������

���������������

Figure 4: MAC learner FSM.

a usage cap. This independence allows a programmer to
represent the overall network state as a product automaton
that can be decomposed in terms of simpler tasks, where
each task has simpler (and smaller) FSMs. This example
shows the composition of four independent network tasks.

In our survey of campus network policies, we found
nearly 20 university campuses [22] that implemented some
form of usage-based rate-limiting (e.g., [7]). Network op-
erators currently implement these policies using low-level
scripts that interact with monitoring devices. Kinetic pro-
vides intuitive mechanisms for implementing such a policy.
Figure 3 illustrates the FSM for a usage-based rate limiter,
which forward traffic with different delays depending on
the user’s historical data usage patterns. By default, traffic
is forwarded with no delay; depending on the events that
the controller receives concerning usage, the controller
may institute a policy that introduces additional delay on
user traffic. (OpenFlow 1.0 does not support traffic shap-
ing, so we use variable delay as an illustrative example;
Kinetic could be coupled with controllers that support later
versions of OpenFlow that can do traffic shaping.)

Naturally, a real network would not only have policies
involving quality-of-service, but also other policies, such
as those relating to authentication and security. For exam-
ple, a control program might first check whether a host is
authenticated, either through a Web login or via 802.1X
mechanism. Subsequently, the host’s traffic might be sub-
ject to an intrusion detection policy that allows traffic by
default but blocks the traffic if an infection event occurs.
Finally, it might be sequentially composed with the rate-
limiting policy above, yielding the resulting policy:

(web au th + 802 .1 X auth) >> i d s >>
r a t e l i m i t e r

To verify this program, Kinetic generates a single FSM
model for input to a model checker. Thus, programmers
can write CTL specifications for the resulting composed
policy, not only for individual policies. For example, a
logic statement involving the combination of policies such
as “If a host is authenticated either by the web authen-
tication system or with 802.1X and is not infected, the
resulting policy should never drop packets” can be ver-
ified with a single CTL assertion, as shown in Table 3.
(Section 4.4 discusses verification in more detail.)

����	������	
��

�!�������������#��������!�������!����

�	���	��
����	
��

�	���	��
����
�

��
�
�!�������� ��

��
���������� ����	����
� ���������
�

�����!�����
�"�����!�����

������� ���
������� ����� ���"�����

�#�������
�!�����

����������
������������

����	������	
��

�!�������������#��������!�������!���

��
��
�!�������� ��

��
����������� ����	�����
 ����������

����� �� � �

	�������������������

Figure 5: Kinetic architecture.

3.4 Handling General Event Types
Figure 4 shows a Kinetic FSM for a MAC learner that
responds to both packets from hosts and topology changes.
Although the implementation of a MAC learning switch is
just as simple in other languages (indeed, it is the “canoni-
cal” reference program for SDN controllers), we present
this example to illustrate that Kinetic programs can handle
a variety of event types, including packet arrivals.

This program responds to two different types of events:
TC (topo change) and port events. The TC event is a
built-in event that is invoked automatically whenever a
topology change occurs. In Kinetic, programs can register
and react to this built-in event. The port events are
generated by a Pyretic query that collects the first packet
for each (switch,srcmac) pair. The values of policy
are defined by that of port: the value is flood when
port is 0, and fwd(n) when port=n. Initially port
is 0 (indicating the port has not yet been learned), and TC
is False. When a (port,n) event arrives, which is
invoked by the Pyretic runtime when it sees a packet from
an unseen host, a transition occurs, setting the port to the
value learned and the policy to unicast out that port. The
MAC learner then unicasts packets to the appropriate hosts
until a topology change occurs, triggering the transition
to the right-most state in which TC is True, resulting
in flooding for packets corresponding to that LPEC (i.e.,
switch-source MAC address pair).

4 Kinetic Design & Implementation
We describe the details of Kinetic’s architecture, language,
runtime, and verification engine.

4.1 Architecture
We now describe the Kinetic system architecture, includ-
ing the design of the Kinetic programming language. Fig-
ure 5 shows the Kinetic architecture, which is built on the
Pyretic runtime. At the highest level, a Kinetic program

5

located packet equivalence class

58

64 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

K ::= P | ���������"L�M# | K + K | K '' K
L ::= 	���������� '�F
M ::= �����"$�������&W%#
W ::= 	
���"�����
�
������T#�
T ::= $�
�"S�D#%�
S ::= D==D | S & S | (S | S) | ! S�
D ::= �"�����#�!�	"�������#�!������
�

P ::= ���
���"# | N | P + P | P '' P

N ::= B | F | ������"�&�#�| N + N | N '' N

F ::= A | F & F | (F | F) | ~F

A ::= ��������!������!��
���"�&�#
B ::= ��������"# | ����������"#�

�����
��

����
��
�����
��

�
���
��

N ::= B | F | ������"�&�#�| N + N | N '' N

F ::= A | F & F | (F | F) | ~F
A ::= ��������!������!��
���"�&�#
B ::= ��������"# | ����������"#�

����
��
�����
��

K ::= P | ���������"L�M# | K + K | K '' K
L ::= 	���	 ������ '�� F
M ::= �����"$�������&W%#
W ::= 	
���"�����
�
������T#�
T ::= $�
�"S�D#%�
S ::= D==D | S & S | (S | S) | ! S
D ::= �"�����#�!�	"�������#�!������

P ::= ���
���"# | N | P + P | P '' P �����
��

�
���
��

Figure 6: The Kinetic language grammar.

has three parts: (1) a finite state machine (FSM) specifi-
cation; (2) a specification of portions of flow space that
are always in the same state in any given FSM (an LPEC);
and (3) mechanisms for incorporating external events that
could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified
FSMs (one per LPEC); the Kinetic event handler sends
incoming events, which can arrive either from external
event hookups or from the Pyretic runtime (e.g., in the
case of certain types of events such as incoming packets),
to the appropriate FSMs. Kinetic FSMs register with one
or more event drivers and update their states when new
events arrive, responding to incoming events that may be
processed by those drivers. Kinetic supports both native
events and generic JSON events. Because Kinetic is em-
bedded in Pyretic, these functions can be executed using
Pyretic’s runtime. We use the Pyretic runtime to exchange
OpenFlow messages with the network switches; we also
use the Pyretic runtime to handle certain types of events,
such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then
discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends
Pyretic (P). Pyretic has bucket policies (notated by B)
which collect packets and count packet statistics, respec-
tively; primitive filters (A) and derived filters (F) that
allow only matching packets through; and static policies
(N). Static policies include buckets, filters, the modify
policy, and the combination of these via parallel and se-
quential composition. Dynamic generates a stream of
static policies and can be combined with other policies in
parallel or sequence.

����
	������	
�
���
	�������	��

��
���
	�������	��

���
	�������	��
���
	�������	��

��
���
	�������	��

����
	�������	��
���
	�������	��

��
���
	������	
�

����

���
	������	
�
���
	������	
�

��
���
	������	
�

��
��

��
��

���	��������	�������� ���	��������	��������������
��������������
��	����������

�������������

��
��
��
��
��
��
�

���
	������	
�
���
	�������	��

��
���
	������	
�

����
����

(a) Explicit encoding is exponential in N.

���	��
���	��
���	��

������

�����

������

�����

������

�����

�������

���	��

������

�����

��

���������������������� ���

��������������

(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of
Dynamic—FSMPolicy—which takes two arguments:
an LPEC projection map (L) and an FSM description (M).
The LPEC projection map takes a packet and returns a
filter policy. The FSM description is set of assignments
from a variable name to a variable definition (W). Each
variable is defined by its type, initial value, and associated
transition function (T). Each transition function is a list of
cases, each of which contains a test (S) and an associated
basic value (D) to which this corresponding state variable
will be set, should this case be the first one in which the
test is true. Tests are the logical combination of other tests
(using and, or, not) or equality comparison between basic
values. Finally, basic values are constants (C(value)),
state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator
to encode a generic FSM for groups of packets (e.g., all
packets with the same source MAC address). Each distinct
LPEC will have its own FSM instance, and the group of
packets in each LPEC will be in the same state. Because
each LPEC refers disjoint sets of packets, their FSMs (and
corresponding policies) can be maintained independently,
thus allowing their policies to be encoded in parallel. This
mechanism allows the programmer to avoid explicit en-
coding of all combinations of network states (as shown
in Figure 7a) and instead express each LPEC’s FSM in-

6

2N states

64 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

K ::= P | ���������"L�M# | K + K | K '' K
L ::= 	���������� '�F
M ::= �����"$�������&W%#
W ::= 	
���"�����
�
������T#�
T ::= $�
�"S�D#%�
S ::= D==D | S & S | (S | S) | ! S�
D ::= �"�����#�!�	"�������#�!������
�

P ::= ���
���"# | N | P + P | P '' P

N ::= B | F | ������"�&�#�| N + N | N '' N

F ::= A | F & F | (F | F) | ~F

A ::= ��������!������!��
���"�&�#
B ::= ��������"# | ����������"#�

�����
��

����
��
�����
��

�
���
��

N ::= B | F | ������"�&�#�| N + N | N '' N

F ::= A | F & F | (F | F) | ~F
A ::= ��������!������!��
���"�&�#
B ::= ��������"# | ����������"#�

����
��
�����
��

K ::= P | ���������"L�M# | K + K | K '' K
L ::= 	���	 ������ '�� F
M ::= �����"$�������&W%#
W ::= 	
���"�����
�
������T#�
T ::= $�
�"S�D#%�
S ::= D==D | S & S | (S | S) | ! S
D ::= �"�����#�!�	"�������#�!������

P ::= ���
���"# | N | P + P | P '' P �����
��

�
���
��

Figure 6: The Kinetic language grammar.

has three parts: (1) a finite state machine (FSM) specifi-
cation; (2) a specification of portions of flow space that
are always in the same state in any given FSM (an LPEC);
and (3) mechanisms for incorporating external events that
could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified
FSMs (one per LPEC); the Kinetic event handler sends
incoming events, which can arrive either from external
event hookups or from the Pyretic runtime (e.g., in the
case of certain types of events such as incoming packets),
to the appropriate FSMs. Kinetic FSMs register with one
or more event drivers and update their states when new
events arrive, responding to incoming events that may be
processed by those drivers. Kinetic supports both native
events and generic JSON events. Because Kinetic is em-
bedded in Pyretic, these functions can be executed using
Pyretic’s runtime. We use the Pyretic runtime to exchange
OpenFlow messages with the network switches; we also
use the Pyretic runtime to handle certain types of events,
such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then
discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends
Pyretic (P). Pyretic has bucket policies (notated by B)
which collect packets and count packet statistics, respec-
tively; primitive filters (A) and derived filters (F) that
allow only matching packets through; and static policies
(N). Static policies include buckets, filters, the modify
policy, and the combination of these via parallel and se-
quential composition. Dynamic generates a stream of
static policies and can be combined with other policies in
parallel or sequence.

����
	������	
�
���
	�������	��

��
���
	�������	��

���
	�������	��
���
	�������	��

��
���
	�������	��

����
	�������	��
���
	�������	��

��
���
	������	
�

����

���
	������	
�
���
	������	
�

��
���
	������	
�

��
��

��
��

���	��������	�������� ���	��������	��������������
��������������
��	����������

�������������

��
��
��
��
��
��
�

���
	������	
�
���
	�������	��

��
���
	������	
�

����
����

(a) Explicit encoding is exponential in N.

���	��
���	��
���	��

������

�����

������

�����

������

�����

�������

���	��

������

�����

��

���������������������� ���

��������������

(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of
Dynamic—FSMPolicy—which takes two arguments:
an LPEC projection map (L) and an FSM description (M).
The LPEC projection map takes a packet and returns a
filter policy. The FSM description is set of assignments
from a variable name to a variable definition (W). Each
variable is defined by its type, initial value, and associated
transition function (T). Each transition function is a list of
cases, each of which contains a test (S) and an associated
basic value (D) to which this corresponding state variable
will be set, should this case be the first one in which the
test is true. Tests are the logical combination of other tests
(using and, or, not) or equality comparison between basic
values. Finally, basic values are constants (C(value)),
state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator
to encode a generic FSM for groups of packets (e.g., all
packets with the same source MAC address). Each distinct
LPEC will have its own FSM instance, and the group of
packets in each LPEC will be in the same state. Because
each LPEC refers disjoint sets of packets, their FSMs (and
corresponding policies) can be maintained independently,
thus allowing their policies to be encoded in parallel. This
mechanism allows the programmer to avoid explicit en-
coding of all combinations of network states (as shown
in Figure 7a) and instead express each LPEC’s FSM in-

6

N LPECs

N
LPEC

located packet equivalence class

59

64 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

K ::= P | ���������"L�M# | K + K | K '' K
L ::= 	���������� '�F
M ::= �����"$�������&W%#
W ::= 	
���"�����
�
������T#�
T ::= $�
�"S�D#%�
S ::= D==D | S & S | (S | S) | ! S�
D ::= �"�����#�!�	"�������#�!������
�

P ::= ���
���"# | N | P + P | P '' P

N ::= B | F | ������"�&�#�| N + N | N '' N

F ::= A | F & F | (F | F) | ~F

A ::= ��������!������!��
���"�&�#
B ::= ��������"# | ����������"#�

�����
��

����
��
�����
��

�
���
��

N ::= B | F | ������"�&�#�| N + N | N '' N

F ::= A | F & F | (F | F) | ~F
A ::= ��������!������!��
���"�&�#
B ::= ��������"# | ����������"#�

����
��
�����
��

K ::= P | ���������"L�M# | K + K | K '' K
L ::= 	���	 ������ '�� F
M ::= �����"$�������&W%#
W ::= 	
���"�����
�
������T#�
T ::= $�
�"S�D#%�
S ::= D==D | S & S | (S | S) | ! S
D ::= �"�����#�!�	"�������#�!������

P ::= ���
���"# | N | P + P | P '' P �����
��

�
���
��

Figure 6: The Kinetic language grammar.

has three parts: (1) a finite state machine (FSM) specifi-
cation; (2) a specification of portions of flow space that
are always in the same state in any given FSM (an LPEC);
and (3) mechanisms for incorporating external events that
could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified
FSMs (one per LPEC); the Kinetic event handler sends
incoming events, which can arrive either from external
event hookups or from the Pyretic runtime (e.g., in the
case of certain types of events such as incoming packets),
to the appropriate FSMs. Kinetic FSMs register with one
or more event drivers and update their states when new
events arrive, responding to incoming events that may be
processed by those drivers. Kinetic supports both native
events and generic JSON events. Because Kinetic is em-
bedded in Pyretic, these functions can be executed using
Pyretic’s runtime. We use the Pyretic runtime to exchange
OpenFlow messages with the network switches; we also
use the Pyretic runtime to handle certain types of events,
such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then
discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends
Pyretic (P). Pyretic has bucket policies (notated by B)
which collect packets and count packet statistics, respec-
tively; primitive filters (A) and derived filters (F) that
allow only matching packets through; and static policies
(N). Static policies include buckets, filters, the modify
policy, and the combination of these via parallel and se-
quential composition. Dynamic generates a stream of
static policies and can be combined with other policies in
parallel or sequence.

����
	������	
�
���
	�������	��

��
���
	�������	��

���
	�������	��
���
	�������	��

��
���
	�������	��

����
	�������	��
���
	�������	��

��
���
	������	
�

����

���
	������	
�
���
	������	
�

��
���
	������	
�

��
��

��
��

���	��������	�������� ���	��������	��������������
��������������
��	����������

�������������

��
��
��
��
��
��
�

���
	������	
�
���
	�������	��

��
���
	������	
�

����
����

(a) Explicit encoding is exponential in N.

���	��
���	��
���	��

������

�����

������

�����

������

�����

�������

���	��

������

�����

��

���������������������� ���

��������������

(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of
Dynamic—FSMPolicy—which takes two arguments:
an LPEC projection map (L) and an FSM description (M).
The LPEC projection map takes a packet and returns a
filter policy. The FSM description is set of assignments
from a variable name to a variable definition (W). Each
variable is defined by its type, initial value, and associated
transition function (T). Each transition function is a list of
cases, each of which contains a test (S) and an associated
basic value (D) to which this corresponding state variable
will be set, should this case be the first one in which the
test is true. Tests are the logical combination of other tests
(using and, or, not) or equality comparison between basic
values. Finally, basic values are constants (C(value)),
state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator
to encode a generic FSM for groups of packets (e.g., all
packets with the same source MAC address). Each distinct
LPEC will have its own FSM instance, and the group of
packets in each LPEC will be in the same state. Because
each LPEC refers disjoint sets of packets, their FSMs (and
corresponding policies) can be maintained independently,
thus allowing their policies to be encoded in parallel. This
mechanism allows the programmer to avoid explicit en-
coding of all combinations of network states (as shown
in Figure 7a) and instead express each LPEC’s FSM in-

6

N isolated
FSMs

LPEC: packets always in the same FSM state
-dynamics for each LPEC defined by an isolated FSM
-for each LPEC:
-events ⟶ FSM transition ⟶ Pyretic recompilation ⟶

switch update

FSM (sequential) composition

60

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 65

	����������
���
�
	���	����	���

	�������������
�
	�������

	�������������
�
	���	����	���

	����������
���
�
	�������

��������	��������������

��������	����������
����

�����

��	��

(a) Actual implementation of the Kinetic FSM.

1 @ t r a n s i t i o n
2 def i n f e c t e d (s e l f) :
3 s e l f . c a s e (o c c u r r e d (s e l f . e v e n t) , s e l f . e v e n t)
4
5 @ t r a n s i t i o n
6 def p o l i c y (s e l f) :
7 s e l f . c a s e (i s t r u e (V(’infected’)) ,C(drop))
8 s e l f . d e f a u l t (C(i d e n t i t y))
9

10 s e l f . f s m d e f = FSMDef (
11 i n f e c t e d =FSMVar (t y p e =BoolType () ,
12 i n i t = F a l s e ,
13 t r a n s = i n f e c t e d) ,
14 p o l i c y =FSMVar (t y p e =Type (P o l i c y ,{ drop , i d e n t i t y }) ,
15 i n i t = i d e n t i t y ,
16 t r a n s = p o l i c y))
17
18 def l p e c (p k t) :
19 r e t u r n match (s r c i p = p k t [’srcip’])
20
21 f s m p o l = FSMPolicy (lpec , s e l f . f s m d e f)

(b) Kinetic code that implements the Kinetic FSM.

Figure 8: Logical FSM for an IDS in Kinetic, and the Kinetic
code that implements the policy.

dependently and compose them in parallel, as shown in
Figure 7b.

Each LPEC has an FSM, which has a set of states,
where each state has a Pyretic policy; and a set of tran-
sitions between those states, where transitions occur in
response to events that the operators defines. When
events arrive, the respective LPEC FSMs may transi-
tion between states, ultimately inducing the Pyretic run-
time to recompile the policy and push updated rules to
the switches. In Kinetic, a programmer can specify an
LPEC in terms of a Pyretic filter policy. For example,
match(srcip=pkt[’srcip’]) defines an LPEC
FSM for each unique source IP address.

Returning to our IDS example from Section 3 (Figure 1),
Figure 8b shows the code for the Kinetic program that
implements the simple intrusion detection example from
Section 3. Each host (i.e., source IP address) can have
a distinct state, so we need an LPEC FSM per source IP
address; lines 18–19 define the LPEC. To define an FSM
that is amenable to model checking, we must separate the
infected variable and the corresponding policy vari-
able into two separate states, as shown in Figure 8a. Exoge-
nous events trigger transitions between the infected
variable states; a change in this variable’s value in turn
triggers an endogenous transition of the policy variable,
which ultimately causes the Pyretic runtime to recompile

������� ������� ������� �������

������� ������� ������� �������

� � � � � � � � � ��� �� � � �� ��

��� ����� � ��� ����� ���� ���

�� � �� �� � � �

A0:Authenticated�
A1:Unauthenticated�
�
�

I0:Infected�
I1:Clean�
�
�

C0:Capped�
C1:Uncapped�
�
�

��� ��� ���

��� ��� ���

� � ��

��� ���

�����	��������
��	�	��� �����	�����
��	�	���

Figure 9: Composing independent tasks in sequence.

W0:Web-Authenticated � �X0: 802.1X-Authenticated�
W1:Web-Unauthenticated � �X1: 802.1X-Unauthenticated�

����� �����

����� �����

� � ��� �� � �

� �

��� ���

��� ���

� ��

�

�������
��	�����
���

�������
��	�����
���

����������
���
���

����������
���
���

����������
���
���

�������
��	��
���
���

�����	��������
��	�	��� �����	�����
��	�	���

Figure 10: Composing multiple authentication tasks in parallel.
Any successful authentication would result in allowing the host’s
traffic.

flow-table entries for the network switches. Lines 1–3 in
Figure 8b define the exogenous transition for infected;
lines 5–8 defined the endogenous transition for policy
(note that the value of policy is defined in terms of the
value of infected). Finally, lines 10–16 define the FSM
itself, in terms of the two variables; the FSM definition is
simply a set of FSM variables, each of which has a type,
an initial value, and a transition function.

4.2.3 FSM Composition

In Section 3, we showed an example of a campus network
policy that composed FSMs for independent network tasks
to control state explosion. Without FSM composition, a
programmer would need to define FSMs for ΠN

i=1ai pos-
sible states, where ai is the number of possible states for
task i and N is the total number of tasks. Decomposing the
product automaton reduces state complexity from expo-
nential to linear in the number of independent tasks. For
example, given ten tasks, each with two states, a mono-
lithic program would require 1,024 states, as opposed to
just 20.

Pyretic allows policies to be composed either in parallel
(i.e., on independent copies of the same packet) or in
sequence (i.e., where the second policy is applied to the
output from the first). It turns out that these operators
are also useful for reducing state explosion. Figure 9
illustrates how sequential composition can reduce state

7

∏Ni=1 ai ∑Ni=1 ai

FSM (parallel) composition

61

∏Ni=1 ai ∑Ni=1 ai

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 65

	����������
���
�
	���	����	���

	�������������
�
	�������

	�������������
�
	���	����	���

	����������
���
�
	�������

��������	��������������

��������	����������
����

�����

��	��

(a) Actual implementation of the Kinetic FSM.

1 @ t r a n s i t i o n
2 def i n f e c t e d (s e l f) :
3 s e l f . c a s e (o c c u r r e d (s e l f . e v e n t) , s e l f . e v e n t)
4
5 @ t r a n s i t i o n
6 def p o l i c y (s e l f) :
7 s e l f . c a s e (i s t r u e (V(’infected’)) ,C(drop))
8 s e l f . d e f a u l t (C(i d e n t i t y))
9

10 s e l f . f s m d e f = FSMDef (
11 i n f e c t e d =FSMVar (t y p e =BoolType () ,
12 i n i t = F a l s e ,
13 t r a n s = i n f e c t e d) ,
14 p o l i c y =FSMVar (t y p e =Type (P o l i c y ,{ drop , i d e n t i t y }) ,
15 i n i t = i d e n t i t y ,
16 t r a n s = p o l i c y))
17
18 def l p e c (p k t) :
19 r e t u r n match (s r c i p = p k t [’srcip’])
20
21 f s m p o l = FSMPolicy (lpec , s e l f . f s m d e f)

(b) Kinetic code that implements the Kinetic FSM.

Figure 8: Logical FSM for an IDS in Kinetic, and the Kinetic
code that implements the policy.

dependently and compose them in parallel, as shown in
Figure 7b.

Each LPEC has an FSM, which has a set of states,
where each state has a Pyretic policy; and a set of tran-
sitions between those states, where transitions occur in
response to events that the operators defines. When
events arrive, the respective LPEC FSMs may transi-
tion between states, ultimately inducing the Pyretic run-
time to recompile the policy and push updated rules to
the switches. In Kinetic, a programmer can specify an
LPEC in terms of a Pyretic filter policy. For example,
match(srcip=pkt[’srcip’]) defines an LPEC
FSM for each unique source IP address.

Returning to our IDS example from Section 3 (Figure 1),
Figure 8b shows the code for the Kinetic program that
implements the simple intrusion detection example from
Section 3. Each host (i.e., source IP address) can have
a distinct state, so we need an LPEC FSM per source IP
address; lines 18–19 define the LPEC. To define an FSM
that is amenable to model checking, we must separate the
infected variable and the corresponding policy vari-
able into two separate states, as shown in Figure 8a. Exoge-
nous events trigger transitions between the infected
variable states; a change in this variable’s value in turn
triggers an endogenous transition of the policy variable,
which ultimately causes the Pyretic runtime to recompile

������� ������� ������� �������

������� ������� ������� �������

� � � � � � � � � ��� �� � � �� ��

��� ����� � ��� ����� ���� ���

�� � �� �� � � �

A0:Authenticated�
A1:Unauthenticated�
�
�

I0:Infected�
I1:Clean�
�
�

C0:Capped�
C1:Uncapped�
�
�

��� ��� ���

��� ��� ���

� � ��

��� ���

�����	��������
��	�	��� �����	�����
��	�	���

Figure 9: Composing independent tasks in sequence.

W0:Web-Authenticated � �X0: 802.1X-Authenticated�
W1:Web-Unauthenticated � �X1: 802.1X-Unauthenticated�

����� �����

����� �����

� � ��� �� � �

� �

��� ���

��� ���

� ��

�

�������
��	�����
���

�������
��	�����
���

����������
���
���

����������
���
���

����������
���
���

�������
��	��
���
���

�����	��������
��	�	��� �����	�����
��	�	���

Figure 10: Composing multiple authentication tasks in parallel.
Any successful authentication would result in allowing the host’s
traffic.

flow-table entries for the network switches. Lines 1–3 in
Figure 8b define the exogenous transition for infected;
lines 5–8 defined the endogenous transition for policy
(note that the value of policy is defined in terms of the
value of infected). Finally, lines 10–16 define the FSM
itself, in terms of the two variables; the FSM definition is
simply a set of FSM variables, each of which has a type,
an initial value, and a transition function.

4.2.3 FSM Composition

In Section 3, we showed an example of a campus network
policy that composed FSMs for independent network tasks
to control state explosion. Without FSM composition, a
programmer would need to define FSMs for ΠN

i=1ai pos-
sible states, where ai is the number of possible states for
task i and N is the total number of tasks. Decomposing the
product automaton reduces state complexity from expo-
nential to linear in the number of independent tasks. For
example, given ten tasks, each with two states, a mono-
lithic program would require 1,024 states, as opposed to
just 20.

Pyretic allows policies to be composed either in parallel
(i.e., on independent copies of the same packet) or in
sequence (i.e., where the second policy is applied to the
output from the first). It turns out that these operators
are also useful for reducing state explosion. Figure 9
illustrates how sequential composition can reduce state

7

