1. End systems, packet switches, and other pieces of the Internet *all* run protocols that control the sending and receiving of information within the Internet.

A. true B. false

- 2. All activity in the Internet that involves two or more communicating remote entities is governed by a protocol.
 - A. true B. false
- 3. Which of the following protocol(s) define today's Internet architecture?
 - A. SMTP, DNS
 - B. TCP, UDP
 - C. routing protocols
 - D. IP
- 4. Which of the following protocol(s) is (are) not defined by some RFC?
 - A. TCP
 - B. IP
 - C. HTTP
 - D. Skype
- 5. The network edge of the Internet is often referred to as end systems or hosts.
 - A. true B. false
- 6. The network core is the mesh of packet switches and links that interconnects the Internet's edge.
 - A. true B. false
- 7. Among packet-switching and circuit-switching, packet-switching turns out to be the winning principle that powers the Internet because packet-switching is always better than circuit-switching.
 - A. true B. false
- 8. In store-and-forward transmission, a switch must buffer a packet's bits because the packet switch must receive the entire packet before it can begin to send the first bit of the packet.
 - A. true B. false
- 9. Telephone company often uses packet switching for the expensive overseas portion of a telephone call.
 - A. true B. false
- 10. Google, by creating its private network, bypasses the upper tiers of the Internet, reduces its payment, and achieves greater control of how its servies are delivered.
 - A. true B. false

11. Traffic intensity (La/R) is the ratio of traffic arrival rate (La) and transmission rate (R). The golden rule of traffic engineering is: Design your system so that the traffic intensity is no greater than 1.

A. true B. false

- 12. If packets arrive periodically (not bursts), then every packet will arrive at an empty queue without incurring any queueing delay.
 - A. true B. false
- 13. Consider a network of N links, with the transmission rates of the N links being R_1, R_2, \dots, R_N . The throughput for a file transfer in the network will be $min\{R_1, R_2, \dots, R_N\}$
 - A. true B. false
- 14. *traceroute* is a program that can run in any Internet host. Given a certain destination host, it probes all the routers along the path to that desitination, generating round-trip delays for all those intermediary routers. The round-trip delay to the *n*th router, however, can be greater than the n + 1th router. This is because the ______ can be varying with time.
 - A. transmission delay
 - B. processing delay
 - C. queueing delay
 - D. propagation delay
- 15. A layered architecture enables a networked system to remain unchanged when a layer's implementation is changed.
 - A. true B. false
- 16. Which layer(s) in the Internet protocol stack does a router *not* process?
 - A. application layer
 - B. physical layer
 - C. transport layer
 - D. all of the above