Chapter 4 Network Layer: The Data Plane

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we' d like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

C All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

4.4 Generalized Forward and SDN

- match
- action
- OpenFlow examples of match-plus-action in action

Chapter 4: network layer

chapter goals:

- understand principles behind network layer services, focusing on data plane:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - generalized forwarding
- instantiation, implementation in the Internet

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two key network-layer functions

network-layer functions:

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to destination

Network layer: data plane, control plane

Data plane

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function

Control plane

- network-wide logic
- determines how datagram is routed among routers along end-end path from source host to destination host
- two control-plane approaches:
 - *traditional routing algorithms*: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components *in each and every router* interact in the control plane

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models:

Ν	Network hitecture	Service Model	Guarantees ?				Congestion
Arch			Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
-	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
-	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

4.4 Generalized Forward and SDN

- match
- action
- OpenFlow examples of match-plus-action in action

Router architecture overview

high-level view of generic router architecture:

Destination-based forwarding

forwarding table						
Destination Address Range	Link Interface					
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 1111111	0					
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1					
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 111111	2					
otherwise	3					

Q: but what happens if ranges don't divide up so nicely?

Longest prefix matching

- longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface	
11001000 00010111 00010*** *******	0	
11001000 00010111 00011000 ********	1	
11001000 00010111 00011*** ********	2	
otherwise	3	

examples:

DA: 11001000 00010111 00010110 10100001 DA: 11001000 00010111 00011000 10101010 which interface? which interface?

Network Layer: Data Plane 4-16

Longest prefix matching

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: can up ~IM routing table entries in TCAM

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

 datagram from input port memory to output port memory via a shared bus

bus contention: switching speed limited by bus bandwidth

 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Switching via interconnection network

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco I2000: switches 60 Gbps through the interconnection network

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention: only one red datagram can be transferred. *lower red packet is blocked* one packet time later: green packet experiences HOL blocking

switch

fabric/

This slide in HUGELY important!

- buffering required from fabric faster rate
 Datagram (packets) can be lost due to congestion, lack of buffers
- scheduling Priority scheduling who gets best datagrams performance, network neutrality

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

Scheduling mechanisms

- scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy: if packet arrives to full queue: who to discard?
 - *tail drop:* drop arriving packet
 - *priority*: drop/remove on priority basis
 - *random*: drop/remove randomly

Scheduling policies: priority

- priority scheduling: send highest priority queued packet
- multiple *classes*, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.
 - real world example?

Scheduling policies: still more

Round Robin (RR) scheduling:

- multiple classes
- cyclically scan class queues, sending one complete packet from each class (if available)
- real world example?

Scheduling policies: still more

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class gets weighted amount of service in each cycle
- real-world example?

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

4.4 Generalized Forward and SDN

- match
- action
- OpenFlow examples of match-plus-action in action

The Internet network layer

host, router network layer functions:

IP datagram format

IP fragmentation, reassembly

- network links have MTU (max.transfer size) largest possible link-level frame
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP fragmentation, reassembly

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

4.4 Generalized Forward and SDN

- match
- action
- OpenFlow examples of match-plus-action in action

IP addressing: introduction

- IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

IP addressing: introduction

Subnets

IP address:

- subnet part high order bits
- host part low order bits

what's a subnet ?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet

subnet mask: /24

how many?

