A TOP-DOWN APPROACH

TransEo rt Laxer

KUROSE * ROSS

A note on the use of these Powerpoint slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a /ot of work on our part. In return for use, we only

ask the following: Computer
= If you use these slides (e.g., in a class) that you mention their source Networking: A Top

(after all, we’ d like people to use our book!)

= |f you post any slides on a www site, that you note that they are adapted DO Wn Approach

from (or perhaps identical to) our slides, and note our copyright of this

material. .
7th edition
Thanks and enjoy! JFK/KWR Jim Ku rose, Keith Ross
All material copyright 1996-2016 Pearson/Addison Wesley
© | F Kurose and K.W. Ross, All Rights Reserved April 2016

Transport Layer 2-1

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-2

Connection Management

before exchanging data, sender/receiver “handshake”:

= agree to establish connection (each knowing the other willing
to establish connection)

" agree on connection parameters

application application

o
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

ZV/ network network
- |
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-3

Agreeing to establish a connection

2-way handshake:
Q: will 2-way handshake

gg% 3 ;‘.'-'."-én-.:_ .
%; L-:ﬁ:',-‘i{ always work in
|)
~ etk network!?
oK)‘ ESTAB = variable delays
ESTAB & " retransmitted messages (e.g.
req_conn(x)) due to
message loss
= E " message reordering
choose X |~z conn(Q) " can t see other side
—® ESTAB

acc_conn(x)
ESTAB &—

Transport Layer 3-4

Agreeing to establish a connection

2-way handshake failure scenarios:

e ——

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\req_conn(>_<L

D

% ESTAB

acc_conn(x)

req_conn(x)

\

_ connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

g B

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

—
req_conn(x
> ESTAB

acc_conn(x)

client
terminates

data(x+1)
™
_ _ connection _ |
X completes server
\
req__conn(x) forgets x
ESTAB
data(x+1)___ accept
data(x+1)

Transport Layer 3-5

TCP 3-way handshake

client state q E server state
LISTEN h

LISTEN
choose init seq num, x

send TCP SYN msg \
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

/ msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

v received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |~
this segment may contain ACKbit=1, ACKnum=y+1

client-to-server data
T~ received ACK(y)
indicates client is live v
ESTAB

Transport Layer 3-6

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;
A .
Socket clientSocket =
SYN(X) v newSocket ("hostname", "port
SYNACK(seq=y,ACKnum=x+1) number?) ;
create new socket for SYN(seq =X)
communication back to client
l v
‘ ‘ SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Transport Layer 3-7

TCP: closing a connection

= client, server each close their side of connection
* send TCP segment with FIN bit = |

* respond to received FIN with ACK

* on receiving FIN, ACK can be combined with own FIN
= simultaneous FIN exchanges can be handled

Transport Layer 3-8

TCP: closing a connection

client state
ESTAB

clientSocket.close ()

FIN_WAIT_1

|

FIN_WAIT_2

TIMED_WAIT

CLOSED

can no longer
send but can
receive data

wait for server
close

timed wait
for 2*max
segment lifetime

|

g

‘“‘s!l/

T Fibit=1
it=1, Seq=X\‘

/
ACKbit=1; ACKnum=x+1
—

/
‘/FLNbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

can still
send data

can no longer
send data

server state
ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-9

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-10

Principles of congestion control

congestion:

= informally: “too many sources sending too much
data too fast for network to handle

= different from flow control!
" manifestations:
* lost packets (buffer overflow at routers)

* long delays (queueing in router buffers)
= 3 top-10 problem!

Transport Layer 3-11

Causes/costs of congestion: scenario |

original data: }\in

two senders, two
receivers Host A

one router, infinite buffers

throughput: }"out

\' 1

unlimited shared

output link capacity: R ~
no retransmission

oY 30 .
5 |
P :
< |
|
N, R/2

" maximum per-connection
throughput: R/2

=)
|
output link buffers I' E

delay

N, R/2

» large delays as arrival rate,
A\, approaches capacity

in?

X/

Transport Layer 3-12

Causes/costs of congestion: scenario 2

" one router, finite buffers

" sender retransmission of timed-out packet

* application-layer input = application-layer output: A;, =
A

out
* transport-layer input includes retransmissions : A, > A,

A, : original data

A | A

A'..: original data, plus
retransmitted data

finite shared output — n
Host B link buffers

Transport Layer 3-13

Causes/costs of congestion: scenario 2

R/2-----nmmmmm- ,
idealization: perfect |
knowledge 3 i
<L .

= sender sends only when 5
router buffers available .

BB-— A\, : original data
[P

out

A'..: original data, plus
retransmitted data

free buffer space!

finite shared output — n
link buffers
Transport Layer 3-14

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

= sender only resends if
packet known to be lost

W{— A, : original data

< ' . . A4_:_
copy Il @< M., original data, plus Mou

retransmitted data

no buffer space!

Transport Layer 3-15

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,

dropped at router due
to full buffers

= sender only resends if
packet known to be lost

I: i
- M., original data, plus
retransmitted data

free buffer space!

7 e

when gending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

}\'out

}\' R/2

original data

Transport Layer 3-16

Causes/costs of congestion: scenario 2

Readlistic: duplicates

Y7 S — oo
= packets can be lost, dropped at A
router due to full buffers . Whensending at R/2,
. *g i some pagke_ts are
= sender times out prematurely, < . retransmissions
. . : including duplicated
which are delivered ; R/

in
cig
(&I !
. oy Min A——\
N ‘<)\‘"n out
|

free buffer space!

Transport Layer 3-17

Causes/costs of congestion: scenario 2

Readlistic: duplicates

= 7] S e
= packets can be lost, dropped at A
router due to full buffers _ when ;22‘&22 Atz
. O | .
= sender times out prematurely, < . retransmissions
. . : including duplicated
which are delivered 7 o

in

11 77 o
costs of congestion:
* more work (retrans) for given “goodput”
" unneeded retransmissions: link carries multiple copies of pkt

* decreasing goodput

Transport Layer 3-18

Causes/costs of congestion: scenario 3

Q: what happens as A, and A
increase !

A:asred A _ increases,all arriving
blue pkts at upper queue are
dropped, blue throughput = 0

= four senders
" multihop paths
= timeout/retransmit

A, : original data Aout Host B
*** \'..: original data, plus 39
retransmitted data

finite shared output
lipk buffers

Host D
+' Host C
49 |
¢
|
. N\
B e —Hp

Transport Layer 3-19

Causes/costs of congestion: scenario 3

C/2

}‘out

13 77 o
another "cost of congestion:

= when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-20

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-21

TCP congestion control: additive increase

multiplicative decrease
* approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

* additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 3-22

TCP Congestion Control: details

sender sequence number space

«— cwnd —! TCP sending rate:
""" " roughly: send cwnd
_ bytes, wait RTT for
Red R acied o more bytes
(“in-
flight™) cwnd
= sender limits transmission: rate =~ bytes/sec
LastByteSent- < cwnd
LastByteAcked

* cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-23

TCP Slow Start

* when connection begins,
Increase rate
exponentially until first
loss event:

* initially cwnd = | MSS
* double cwnd every RTT

* done by incrementing
cwnd for every ACK
received

" summary: initial rate is
slow but ramps up
exponentially fast

Host A Host B

time

Transport Layer 3-24

TCP: detecting, reacting to loss

" |oss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

" loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

" TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-25

TCP: switching from slow start to CA

Q: when should the

exponential
increase switch to 145 TCP Reno
linear? s 4
S o 10—
A: when cwnd gets SE g|ssthresh -7
to |/2 of its value -
before timeout. - et
S , TCP Tahoe
. 0
Implementat|0n- 0 1 2 34 56 7 8 910111213 14 15

Transmission round

= variable ssthresh

= on loss event, ssthresh

is set to |/2 of cwnd just
before loss event

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-26

S

u

mmary: TCP Congestion Control

. % new ACF
duplicate ACK i I'l i cwnd = cwnd + MSS « (MSS/cwnd)

newACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

dupACKcount++

!

A

cwnd =1 MSS
ssthresh = 64 KB

_dupACKcount =0 A -
) (9’;0\ timeout
'\ $))'ssthresh = cwnd/2 ,
IR </ cwnd = 1 MSS duplicate ACK
{2y timeout dupACKcount =0 dupACKcount++
4’ ssthresh = ownd/2 A retransmit missing segment 4
cwnd =1 MSS
dupACKcount =0 zZa
retransmit missing segment ((c s)
timeout ‘N> /
ssthresh = cwnd/2
cwnd = 1 New ACK
dupACKcount =0 m
dupACKcount == retransmit missing segment ng&]C}chs)i " triso dupACKcount ==
nd 2 sethresh '+ 3 oG < Ssthresh - 3
cwnd = ssthresh + wnd =
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-27

TCP throughput

= avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume always data to send

= W: window size (measured in bytes) Where loss occurs
* avg. window size (# in-flight bytes) is ¥4 W
* avg. thruput is 3/4W per RTT

avg TCP thruput = W

RTT bytes/sec

N14444%4

INT®

Transport Layer 3-28

TCP Futures: TCP over “long, fat pipes”

= example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

" requires W = 83,333 in-flight segments

" throughput in terms of segment loss probability, L
[Mathis 1997];

_1.22-MSS
TCP throughput = RTTJE

=?» to achieve 10 Gbps throughput, need a loss rate of L
= 2-10-'% — a very small loss rate!

= new versions of TCP for high-speed

Transport Layer 3-29

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

N

TCP connection 2

e

bottleneck
router
capacity R

Transport Layer 3-30

Why is TCP fair!?

two competing sessions:
= additive increase gives slope of |, as throughout increases
* multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 20

Connection 1 throughput R

Transport Layer 3-31

Fairness (more)

Fairness and UDP

* multimedia apps often
do not use TCP

 do not want rate
throttled by congestion
control

= instead use UDP:

e send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

" application can open
multiple parallel
connections between
two hosts

= web browsers do this

" e.g, link of rate R with 9

existing connections:

* new app asks for | TCP, gets
rate R/10

* new app asks for || TCPs,
gets R/2

Transport Layer 3-32

Explicit Congestion Notification (ECN)

network-assisted congestion control:

= two bits in IP header (ToS field) marked by network router
to indicate congestion

" congestion indication carried to receiving host

" receiver (seeing congestion indication in IP datagram))
sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

TCP ACK segment Ny
source P destination

S
ECN=00
/
IP datagram

Transport Layer 3-33

Chapter 3: summary

= principles behind transport

layer services: next:

U Ieaving the network
edge (application,

* multiplexing,
demultiplexing

* reliable data transfer transport layers)
* flow control " into the network
* congestion control “core”
" instantiation, = two network layer
implementation in the chapters:
Internet * data plane
« UDP * control plane

+ TCP

Transport Layer 3-34

