
Computer
Networking: A Top
Down Approach

A note on the use of these Powerpoint slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only
ask the following:

§  If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
§  If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2016
 J.F Kurose and K.W. Ross, All Rights Reserved

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 3
Transport Layer

Transport Layer 2-1

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
•  segment structure
•  reliable data transfer
•  flow control
•  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Connection Management
before exchanging data, sender/receiver “handshake”:
§  agree to establish connection (each knowing the other willing

to establish connection)
§  agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

Socket clientSocket =
 newSocket("hostname","port

number");

Socket connectionSocket =
welcomeSocket.accept();

Transport Layer 3-4

Q: will 2-way handshake
always work in
network?

§  variable delays
§  retransmitted messages (e.g.

req_conn(x)) due to
message loss

§  message reordering
§  can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
 req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer 3-5

Agreeing to establish a connection
2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
 req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
 req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Transport Layer 3-6

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Transport Layer 3-7

TCP 3-way handshake: FSM

closed

Λ

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =
 newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)

 ACK(ACKnum=y+1)

ACK(ACKnum=y+1)

Λ

Transport Layer 3-8

TCP: closing a connection

§  client, server each close their side of connection
•  send TCP segment with FIN bit = 1

§  respond to received FIN with ACK
•  on receiving FIN, ACK can be combined with own FIN

§  simultaneous FIN exchanges can be handled

Transport Layer 3-9

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=x can no longer
send but can
 receive data

clientSocket.close()

client state

server state

ESTAB ESTAB

Transport Layer 3-10

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
•  segment structure
•  reliable data transfer
•  flow control
•  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-11

congestion:
§  informally: “too many sources sending too much

data too fast for network to handle”
§  different from flow control!
§ manifestations:

•  lost packets (buffer overflow at routers)
•  long delays (queueing in router buffers)

§  a top-10 problem!

Principles of congestion control

Transport Layer 3-12

Causes/costs of congestion: scenario 1

§  two senders, two
receivers

§  one router, infinite buffers
§  output link capacity: R
§  no retransmission

§  maximum per-connection
throughput: R/2

unlimited shared
output link buffers

Host A

original data: λin

Host B

throughput: λout

R/2

R/2

λ o
ut

λin R/2
de

la
y

λin
v  large delays as arrival rate,

λin, approaches capacity

Transport Layer 3-13

§  one router, finite buffers
§  sender retransmission of timed-out packet

•  application-layer input = application-layer output: λin =
λout

•  transport-layer input includes retransmissions : λin λin

finite shared output
link buffers

Host A

λin : original data

Host B

λout λ'in: original data, plus
retransmitted data

‘

Causes/costs of congestion: scenario 2

Transport Layer 3-14

idealization: perfect
knowledge

§  sender sends only when
router buffers available

finite shared output
link buffers

λin : original data
λout λ'in: original data, plus

retransmitted data
copy

free buffer space!

R/2

R/2

λ o
ut

λin

Causes/costs of congestion: scenario 2

Host B

A

Transport Layer 3-15

λin : original data
λout λ'in: original data, plus

retransmitted data
copy

no buffer space!

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

§  sender only resends if
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B

Transport Layer 3-16

λin : original data
λout λ'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2
Idealization: known loss

packets can be lost,
dropped at router due
to full buffers

§  sender only resends if
packet known to be lost

R/2

R/2 λin

λ o
ut

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

A

Host B

Transport Layer 3-17

A

λin
λout λ'in copy

free buffer space!

timeout

R/2

R/2 λin

λ o
ut

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

Host B

Realistic: duplicates
§  packets can be lost, dropped at

router due to full buffers
§  sender times out prematurely,

sending two copies, both of
which are delivered

Causes/costs of congestion: scenario 2

Transport Layer 3-18

R/2

λ o
ut

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

“costs” of congestion:
§  more work (retrans) for given “goodput”
§  unneeded retransmissions: link carries multiple copies of pkt

•  decreasing goodput

R/2 λin

Causes/costs of congestion: scenario 2
Realistic: duplicates
§  packets can be lost, dropped at

router due to full buffers
§  sender times out prematurely,

sending two copies, both of
which are delivered

Transport Layer 3-19

§  four senders
§  multihop paths
§  timeout/retransmit

Q: what happens as λin and λin
’

increase ?

finite shared output
link buffers

Host A λout

Causes/costs of congestion: scenario 3

Host B

Host C
Host D

λin : original data
λ'in: original data, plus

retransmitted data

A: as red λin
’ increases, all arriving

blue pkts at upper queue are
dropped, blue throughput g 0

Transport Layer 3-20

another “cost” of congestion:
§  when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

λ o
ut

λin
’

Transport Layer 3-21

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
•  segment structure
•  reliable data transfer
•  flow control
•  connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-22

TCP congestion control: additive increase
multiplicative decrease

§  approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs
•  additive increase: increase cwnd by 1 MSS every

RTT until loss detected
• multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

 T
C

P
se

nd
er

co

ng
es

tio
n

w
in

do
w

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-23

TCP Congestion Control: details

§  sender limits transmission:

§  cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:
§  roughly: send cwnd

bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
 LastByteAcked

< cwnd

sender sequence number space

rate ~ ~
cwnd
RTT

bytes/sec

Transport Layer 3-24

TCP Slow Start

§ when connection begins,
increase rate
exponentially until first
loss event:

•  initially cwnd = 1 MSS
•  double cwnd every RTT
•  done by incrementing
cwnd for every ACK
received

§  summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

Transport Layer 3-25

TCP: detecting, reacting to loss

§  loss indicated by timeout:
• cwnd set to 1 MSS;
• window then grows exponentially (as in slow start)

to threshold, then grows linearly
§  loss indicated by 3 duplicate ACKs: TCP RENO

•  dup ACKs indicate network capable of delivering
some segments

• cwnd is cut in half window then grows linearly
§ TCP Tahoe always sets cwnd to 1 (timeout or 3

duplicate acks)

Transport Layer 3-26

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

 Implementation:
§  variable ssthresh
§  on loss event, ssthresh

is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-27

Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK .

dupACKcount++

duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3 cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACK dupACKcount++

duplicate ACK

Λ
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-28

TCP throughput
§  avg. TCP thruput as function of window size, RTT?

•  ignore slow start, assume always data to send
§ W: window size (measured in bytes) where loss occurs

•  avg. window size (# in-flight bytes) is ¾ W
•  avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

Transport Layer 3-29

TCP Futures: TCP over “long, fat pipes”

§  example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

§  requires W = 83,333 in-flight segments
§  throughput in terms of segment loss probability, L

[Mathis 1997]:

➜	
 to achieve 10 Gbps throughput, need a loss rate of L

= 2·10-10 – a very small loss rate!
§  new versions of TCP for high-speed

TCP throughput = 1.22 . MSS
RTT L

Transport Layer 3-30

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-31

Why is TCP fair?
two competing sessions:
§  additive increase gives slope of 1, as throughout increases
§  multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-32

Fairness (more)
Fairness and UDP
§ multimedia apps often

do not use TCP
•  do not want rate

throttled by congestion
control

§  instead use UDP:
•  send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

§  application can open
multiple parallel
connections between
two hosts

§ web browsers do this
§  e.g., link of rate R with 9

existing connections:
•  new app asks for 1 TCP, gets

rate R/10
•  new app asks for 11 TCPs,

gets R/2

Transport Layer 3-33

network-assisted congestion control:
§  two bits in IP header (ToS field) marked by network router

to indicate congestion
§  congestion indication carried to receiving host
§  receiver (seeing congestion indication in IP datagram))

sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

Explicit Congestion Notification (ECN)

source
application
transport
network

link
physical

destination
application
transport
network

link
physical

ECN=11

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer 3-34

Chapter 3: summary
§  principles behind transport

layer services:
• multiplexing,

demultiplexing
•  reliable data transfer
•  flow control
•  congestion control

§  instantiation,
implementation in the
Internet

•  UDP
•  TCP

next:
§  leaving the network
“edge” (application,
transport layers)

§  into the network
“core”

§  two network layer
chapters:

•  data plane
•  control plane

