Chapter Introduction

Computer Networking

A note on the use of these Powerpoint slides:

We' re making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR
© All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

Chapter 1: introduction

our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
- use Internet as example
overview:
- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers, service models
- history

Chapter I: roadmap

I.I what is the Internet?
I. 2 network edge

- end systems, access networks, links
I. 3 network core
- packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
I. 5 protocol layers, service models
I. 6 networks under attack: security
1.7 history

What's the Internet: "nuts and bolts" view

- billions of connected computing devices:
- hosts = end systems
- running network apps
- communication links
wireless links
wired links
- fiber, copper, radio, satellite
- transmission rate: bandwidth
- packet switches: forward packets (chunks of data)
- routers and switches

"Fun" Internet-connected devices

IP picture frame http://www.ceiva.com/

Internet refrigerator

Tweet-a-watt: monitor energy use
Web-enabled toaster + weather forecaster
 Sontrol cable TV remotely

sensorized, bed
mattress

What's the Internet: "nuts and bolts" view

- Internet: "network of networks"
- Interconnected ISPs
- protocols control sending, receiving of messages
- e.g., TCP, IP, HTTP, Skype, 802.1।
- Internet standards
- RFC: Request for comments
- IETF: Internet Engineering Task Force

What's the Internet: a service view

- infrastructure that provides services to applications:
- Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
- hooks that allow sending and receiving app programs to "connect" to Internet
- provides service options, analogous to postal service

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
... specific messages sent
... specific actions taken when messages received, or other events
network protocols:
- machines rather than humans
- all communication activity in Internet governed by protocols messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: other human protocols?

Chapter I: roadmap

I.I what is the Internet?
I. 2 network edge

- end systems, access networks, links
I. 3 network core
- packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
I. 5 protocol layers, service models
I. 6 networks under attack: security
1.7 history

A closer look at network structure:

- network edge:
- hosts: clients and servers
- servers often in data centers
- access networks, physical media: wired, wireless communication links
- network core:
- interconnected routers
- network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks
keep in mind:
- bandwidth (bits per second) of access network?
- shared or dedicated?

Access network: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
- data over DSL phone line goes to Internet
- voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < I Mbps)
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)

Access network: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Access network: cable network

- HFC: hybrid fiber coax
- asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
- homes share access network to cable headend
- unlike DSL, which has dedicated access to central office

Access network: home network

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc.
- $10 \mathrm{Mbps}, 100 \mathrm{Mbps}, \mathrm{IGbps}, 10 \mathrm{Gbps}$ transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
- via base station aka "access point"
wireless LANs:
- within building (I00 ft.)
- 802.I lb/g/n (WiFi): II, 54, 450 Mbps transmission rate

to Internet
wide-area wireless access
- provided by telco (cellular) operator, 10 ' skm
- between I and IO Mbps
- 3G, 4G: LTE

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
- link transmission rate,
 aka link capacity, aka link bandwidth

$$
\underset{\begin{array}{c}
\text { packet } \\
\text { transmission } \\
\text { delay }
\end{array}}{\text { tract }}=\underset{\substack{\text { time needed to } \\
\text { transmit } L \text {-bit } \\
\text { packet into link }}}{\text { a }}
$$

Physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between twisted pair (TP) transmitter \& receiver
- guided media:
- signals propagate in solid media: copper, fiber, coax
- unguided media:
- signals propagate freely, e.g., radio
- two insulated copper wires
- Category 5: 100 Mbps , I Gbps Ethernet
- Category 6: IOGbps

Physical media: coax, fiber

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
- multiple channels on cable
- HFC

fiber optic cable:
- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
- high-speed point-to-point transmission (e.g., 10 's-100's Gbps transmission rate)
- low error rate:
- repeaters spaced far apart
- immune to electromagnetic noise

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
- reflection
- obstruction by objects
- interference

radio link types:

- terrestrial microwave
- e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
- 54 Mbps
- wide-area (e.g., cellular)
- 4G cellular:~ 10 Mbps
- satellite
- Kbps to 45Mbps channel (or multiple smaller channels)
- 270 msec end-end delay
- geosynchronous versus low altitude

Chapter I: roadmap

I.I what is the Internet?
I. 2 network edge

- end systems, access networks, links
I. 3 network core
- packet switching, circuit switching, network structure
I. 4 delay, loss, throughput in networks
I. 5 protocol layers, service models
1.6 networks under attack: security
1.7 history

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
- forward packets from one router to the next, across links on path from source to destination
- each packet transmitted at full link capacity

Packet-switching: store-and-forward

L bits
per packet

R bps

- takes L / R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- end-end delay $=2 L / R$ (assuming zero propagation delay)
one-hop numerical example:
- L = 7.5 Mbits
- $R=1.5 \mathrm{Mbps}$
- one-hop transmission delay $=5 \mathrm{sec}$

Packet Switching: queueing delay, loss

queuing and loss:

- if arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
- packets will queue, wait to be transmitted on link
- packets can be dropped (lost) if memory (buffer) fills up

Two key network-core functions

routing: determines sourcedestination route taken by packets

- routing algorithms
forwarding: move packets from router's input to appropriate router output

Alternative core: circuit switching

end-end resources allocated to, reserved for "call"
between source \& dest:

- in diagram, each link has four circuits.
- call gets $2^{\text {nd }}$ circuit in top link and ${ }^{\text {st }}$ circuit in right link.
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

Circuit switching: FDM versus TDM

Example:
FDM
4 users $\quad \square \square \square \square$

Packet switching versus circuit switching

packet switching allows more users to use network!

example:

- | Mb/s link
- each user:
- $100 \mathrm{~kb} / \mathrm{s}$ when "active"
- active 10% of time

- circuit-switching:
- 10 users
- packet switching:

Q: how did we get value 0.0004 ?

- with 35 users, probability > 10 active at same time is less than .0004 *

Q: what happens if > 35 users ?

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Packet switching versus circuit switching

is packet switching a "slam dunk winner?"

- great for bursty data
- resource sharing
- simpler, no call setup
- excessive congestion possible: packet delay and loss
- protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
- bandwidth guarantees needed for audio/video apps
- still an unsolved problem (chapter 7)

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

Internet structure: network of networks

- End systems connect to Internet via access ISPs (Internet Service Providers)
- residential, company and university ISPs
- Access ISPs in turn must be interconnected.
- so that any two hosts can send packets to each other
- Resulting network of networks is very complex
- evolution was driven by economics and national policies
- Let's take a stepwise approach to describe current Internet structure

Internet structure: network of networks

Question: given millions of access ISPs, how to connect them together?

Introduction 1-33

Internet structure: network of networks

Option: connect each access ISP to every other access ISP?

Introduction 1-34

Internet structure: network of networks

Option: connect each access ISP to one global transit ISP?
Customer and provider ISPs have economic agreement.

Introduction 1-35

Internet structure: network of networks

But if one global ISP is viable business, there will be competitors

Introduction 1-36

Internet structure: network of networks

But if one global ISP is viable business, there will be competitors
.... which must be interconnected

Introduction 1-37

Internet structure: network of networks

... and regional networks may arise to connect access nets to ISPs

Introduction 1-38

Internet structure: network of networks

... and content provider networks (e.g., Google, Microsoft, Akamai) may run their own network, to bring services, content close to end users

Introduction 1-39

Internet structure: network of networks

- at center: small \# of well-connected large networks
- "tier-I" commercial ISPs (e.g., Level 3, Sprint, AT\&T, NTT), national \& international coverage
- content provider network (e.g., Google): private network that connects it data centers to Internet, often bypassing tier-I, regional ISPs Introduction 1-40

Tier-I ISP: e.g., Sprint

Introduction 1-41

Chapter I: roadmap

I.I what is the Internet?
I. 2 network edge

- end systems, access networks, links
I. 3 network core
- packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
I. 5 protocol layers, service models
I. 6 networks under attack: security
1.7 history

