
acmqueue | september-october 2015 73

Everything about Google is at scale, of course—a market cap
of legendary proportions, an unrivaled talent pool, enough
intellectual property to keep armies of attorneys in Guccis
for life, and, oh yeah, a private WAN (wide area network)
bigger than you can possibly imagine that also happens to be
growing substantially faster than the Internet as a whole.

Unfortunately, bigger isn’t always better, at least not
where networks are concerned, since along with massive size
come massive costs, bigger management challenges, and the
knowledge that traditional solutions probably aren’t going to
cut it. And then there’s this: specialized network gear doesn’t
come cheap.

Adding it all up, Google found itself on a cost curve it
considered unsustainable. Perhaps even worse, it saw itself
at the mercy of a small number of network equipment
vendors that have proved to be slow in terms of delivering the
capabilities requested by the company. Which is why Google
ultimately came to decide it should take more control of its
own networking destiny. That’s when being really, really big
proved to be a nice asset after all, since being at Google scale
means you can disrupt markets all on your own.

So this is the story of what Google ended up doing to get
out of the box it found itself in with its backbone network.
Spoiler alert: SDNs (software-defined networks) have played
a major role. Amin Vahdat, Google’s tech lead for networking,

A Purpose-built
 Global Network:
Google’s Move to SDN

A discussion
with
Amin Vahdat,
David Clark,
and Jennifer
Rexford

case study

1 of 26software-defined wan

acmqueue | september-october 2015 74

helps us tell the story of how that’s all played out. He’s both
a Distinguished Engineer and a Google Fellow. Somehow he
also manages to find time to teach at UC San Diego and Duke.

Jennifer Rexford, a computer science professor at
Princeton renowned for her expertise in SDN, also contributes
to the discussion, drawing on her early work designing SDN-
like architectures deployed in AT&T’s backbone network,
as well as her recent research on novel programming
abstractions for SDN controller platforms.

Finally, most of the questions that drive this discussion
come courtesy of David Clark, the Internet pioneer who
served as chief protocol architect of the network throughout
the 1980s. He is also a senior research scientist at the MIT
Computer Science and Artificial Intelligence Laboratory,
where he has been working for nearly 45 years.

DAVID CLARK I wonder if people have a full appreciation for
the scale of your private wide area network.
AMIN VAHDAT Probably not. I think our private-facing
WAN is among the biggest in the world, with growth
characteristics that actually outstrip the Internet. Some
recent external measurements indicate that our backbone
carries the equivalent of 10 percent of all the traffic on the
global Internet. The rate at which that volume is growing is
faster than for the Internet as a whole.

This means the traditional ways of building, scaling, and
managing wide area networks weren’t exactly optimized or
targeted for Google’s use case. Because of that, the amount
of money we had been allocating to our private WAN, both

2 of 26software-defined wan

acmqueue | september-october 2015 75

in terms of capital expenditures and operating expenses,
had started to look unsustainable—meaning we really
needed to get onto a different curve. So we started looking
for a different architecture that would offer us different
properties.

We actually had a number of unique characteristics to
take into account there. For one thing, we essentially run
two separate networks—a public-facing one and a private-
facing one that connects our data centers worldwide. The
growth rate on the private-facing network has exceeded
that on the public one; yet the availability requirements
weren’t as strict, and the number of interconnected sites to
support was actually relatively modest.

In terms of coming up with a new architecture, from a
traffic-engineering perspective, we quickly concluded that
a centralized view of global demand would allow us to make
better decisions more rapidly than would be possible with
a fully decentralized protocol. In other words, given that
we control all the elements in this particular network, it
would clearly be more difficult to reconstruct a view of
the system from the perspective of individual routing and
switching elements than to look at them from a central
perspective. Moreover, a centralized view could potentially
be run on dedicated servers—perhaps on a number of
dedicated servers, each possessing more processing power
and considerably more memory than you would find with the
embedded processors that run in traditional switches. So
the ability to take advantage of general-purpose hardware
became something of a priority for us as well. Those

3 of 26software-defined wan

acmqueue | september-october 2015 76

considerations, among many others, ultimately led us to an
SDN architecture.
JENNIFER REXFORD I would add that SDN offers network-
wide visibility, network-wide control, and direct control
over traffic in the network. That represents a significant
departure from the way existing distributed control planes
work, which is to force network administrators to coax
the network into doing their bidding. Basically, what I think
Google and some other companies find attractive about
SDN is the ability to affect policy more directly from a single
location with one view of the network as a whole.
DC When did you first start looking at this?
AV We started thinking about it in 2008, and the first
implementation efforts probably kicked off in 2009, with the
initial deployment coming in 2010.
DC What were the features of SDN your engineers found
most appealing as they were first trying to solve these
problems back in 2008?
AV Starting with the caveat that everything is bound to look
a lot wiser in retrospect, I think the best way to answer that
would be to talk about why we weren’t satisfied with the
prevailing architectures at the time. Our biggest frustration
was that hardware and software were typically bundled
together into a single platform, which basically left you at
the mercy of certain vendors to come up with any of the
new features you needed to meet requirements already
confronting you. So if we bought a piece of hardware from a
vendor to handle our switching and routing, we would then
also be dependent on that vendor to come up with any new

4 of 26software-defined wan

acmqueue | september-october 2015 77

protocols or software capabilities we might need later.
That was a huge issue for us since we already were

playing in a high-end, specialized environment that required
specialized platforms—meaning exorbitantly expensive
platforms since the big vendors would quite naturally want
to recoup their substantial engineering investments over the
relatively small number of units they would have any hope of
selling.

What’s more, buying a bundled solution from a vendor
meant buying all the capabilities any customer of that
vendor might want, with respect to both hardware and
software. In many cases, this was overkill for our use cases.
I should probably add we initially were looking only to
provide for high-volume but relatively low-value traffic. This
probably helps explain why we didn’t want to invest in totally
bulletproof, ironclad systems that offered state-of-the-art
fault tolerance, the most elaborate routing protocols, and
all the other bells and whistles. Over time, this evolved as we
started moving higher-value traffic to the network. Still, our
underlying philosophy remains: add support as necessary
in the simplest way possible, both from a features and a
management perspective.

Another big issue for us was that we realized
decentralized protocols wouldn’t necessarily give us
predictability and control over our network, which at the
time was already giving us fits in that convergence of the
network to some state depended on ordering events that
had already occurred across the network and from one
link to another—meaning we had little to no control over

5 of 26software-defined wan

acmqueue | september-october 2015 78

the final state the system would wind up in. Certainly, we
couldn’t get to a “global optimum,” and beyond that, we
couldn’t even predict which of the many local optimums
the system might converge to. This made network planning
substantially harder. It also forced us to overprovision much
more than we wanted. Now, mind you, I don’t think any of
these considerations are unique to Google.

And here’s another familiar pain point that really
bothered us—one I’m sure you’ll have plenty of perspective
on, Dave—and that is, we were tired of being at the mercy of
the IETF (Internet Engineering Task Force) standardization
process in terms of getting new functionality into our
infrastructure. What we really wanted was to get to where
we could write our own software so we would be able to get
the functionality we needed whenever we needed it.
JR The high-end equipment for transit providers not only
has reliability mechanisms that might be more extensive
than what was warranted for this particular network, but
also offers support for a wide range of link technologies to
account for all the different customers, peers, or providers
a transit network might ever end up linking to. That’s why
you’ll find everything in there, from serial links to Packet
over SONET. Google’s private WAN, on the other hand, is
far more homogeneous, meaning there’s really no need
to support such a wide range of line-card technologies.
Moreover, since there’s no need for a private WAN to
communicate with the global Internet, support for large
routing tables was also clearly unnecessary. So, for any
number of reasons, the sorts of boxes the big carriers might

6 of 26software-defined wan

acmqueue | september-october 2015 79

be looking to purchase clearly would have been a poor fit for
Google from the perspective of both line-card diversity and
routing scalability.
DC I can certainly see it wouldn’t be cost effective to buy
commercial high-end routers.
AV What’s interesting is that even Cisco and Juniper are now
increasingly starting to leverage commodity silicon, at least
for their lower-end data-center products.
DC Aren’t you building your own routers?
AV Well, they’re routers in the sense they provide for
external BGP (Border Gateway Protocol) peering, but they
would never be mistaken for Cisco routers. Yet we’ve found
we can achieve considerable cost savings by building just
for what we need without taking on support for every single
protocol ever invented.
DC Also, there’s that matter of centralized control. It’s my
sense that some people have an overly simplistic view of
what SDN offers there, in that they imagine you have a bunch
of routers and a centralized controller, but what you actually
have is more sophisticated than that. In fact, as I understand
it, there’s a hierarchy of control in this network, with one
controller for each site.
AV That’s correct.
DC And that’s not running a peer-to-peer distributed
algorithm either. You get conceptually centralized control,
but it’s realized in a fairly sophisticated way. So that raises
two questions. First, is that mental model generally in
keeping with the level of complexity SDN is going to
involve in practice? Also, just how much of that did you end

7 of 26software-defined wan

acmqueue | september-october 2015 80

up building yourself? My impression is you had to code a
considerable amount of the controller, which seems like
quite a price to pay to avoid getting trapped by standards.
AV Yes, we built a huge amount of the infrastructure and
wrote all the software. We also collaborated with some
people externally. But I’d say we managed to do that with a
moderate-size team—not small, but certainly nothing like a
software team at a major vendor. Again, that’s because we
purpose-built our infrastructure.

Still, I would agree it’s not a simple system. Some of the
complexity involved in maintaining hierarchical, multilevel
control is inherent, given the need to isolate failure
domains. I won’t say SDN is necessarily simpler than the
existing architectures, but I do think it offers some distinct
advantages in terms of enabling rapid evolution, greater
specialization, and increased efficiency.
JR For all the talk about where this might lead, I notice that
in the SIGCOMM paper where you describe this network
[B4: Experience with a Globally Deployed Software-Defined
WAN, 2013], you also talk about all the effort made to
incorporate IS-IS (Intermediate System to Intermediate
System) and BGP as part of the solution. That struck me
as strange, given that each of the endpoints within the
B4 network or connected to it is under Google’s control—
meaning you clearly could have chosen not to use any legacy
protocols whatsoever. What value did you see in holding
onto them?
AV That actually was a critically important decision, so
I’m glad you brought it up. We decided on an incremental

8 of 26software-defined wan

acmqueue | september-october 2015 81

deployment strategy after much consideration, and that’s
something we wanted to emphasize for the benefit of ISPs
when we were writing that SIGCOMM paper.

The question was: did we want to have a flag day where
we flipped all our data centers over to SDN in one fell
swoop? Or did we want to do it one data center at a time
while making it look like everything was just the same as
ever to all the other sites? So you could say we ended up
making huge investments just to re-create what we already
had, only with a less mature system. That took quite a while.

Also, there was a fair amount of time where we had only
baseline SDN—without any traffic engineering—deployed.
Basically, that was the case throughout the whole period we
were bringing up SDN one data center at a time. I still think
that was the right approach since it gave us an opportunity
to gain some much-needed experience with SDN.

So, while I agree that BGP and IS-IS are not where we
want to be long term, they certainly have provided us with a
critical evolution path to move from a non-SDN network to
an SDN one.
DC You’re making some really important points here. For
a large ISP like Comcast, for example, the equivalent of
doing one data center at a time might be focusing on just
one metropolitan area at a time. But even just transitioning
a single metropolitan area would be complicated enough,
so it would be good to think in terms of approaching that
incrementally such that they could always fall back to stuff
known to work, like shortest-path routing.
AV Oh, yes, I view that as critically important. You really need

9 of 26software-defined wan

acmqueue | september-october 2015 82

to have that sort of hybrid deployment model. In fact, even
now we continue to have a big red button that lets us fall back
to shortest-path routing should we ever feel the need to do
so. And that’s not even taking long-term considerations like
backward compatibility into account. It’s just that whenever
you’re deploying for any system as large and complex as the
Internet—or our private WAN for that matter—it’s really,
really important to take a hybrid approach.

A
s with any pioneering effort, Google’s push into
software-defined networking has come with a
number of risks—most notably the potential for
breaking the Internet’s time-honored fate-sharing
principle, along with its established mechanism for

distributed consensus. For any network engineer schooled
over the past few decades, this ought to be more than enough
to set off alarms, since it has been long accepted that any
scenario that could potentially lead to independent failures
of the brain and body might easily result in bizarre failure
patterns from which recovery could prove tremendously
difficult. But now, after a careful reexamination of the current
Internet landscape, it appears these are risks that could
actually be mitigated through the combination of centralized
control and a bit of clever traffic engineering.

DC In rolling out the network, what was the biggest risk you
faced?
AV Probably what most concerned me was that we were
breaking the fate-sharing principle—which is to say we were

10 of 26software-defined wan

acmqueue | september-october 2015 83

putting ourselves in a situation where either the controller
could fail without the switch failing, or the switch could
fail without the controller failing. That generally leads to
big problems in distributed computing, as many people
learned the hard way once remote procedure calls became a
dominant paradigm.
DC I find your comments about fate sharing somewhat
amusing since back when we started doing the Internet,
we were quite critical of the telephone company because it
didn’t really have a good system for dynamic routing. So it
would gold-plate all its technology and then run with these
stupid, feeble routers that crashed all the time, since that
basically was all that was available back then. Dynamic
routing was supposed to give us the network resilience we
would need to get away with running those crappy routers.
But I think what we’ve learned is that dynamic routing might
have been a good idea had the protocols actually proved
responsive enough to let people make timely compensating
engineering decisions.

In the early days of routing, however, we didn’t know how
to do any of that. We went with the distributed protocols
for the simple reason that they were the only ones we knew
how to build. What I mean is that this idea of breaking fate
sharing was absolutely terrifying to us since we knew a
partition in the network might separate the controller from
the switches that needed to be managed.

Basically, if the controller were to lose its view of the
network, then there would be no way to reach into the
network and put it back together again. Back in those days

11 of 26software-defined wan

acmqueue | september-october 2015 84

we just didn’t have any idea how to deal with that. That got
us started down the road to the original Internet religious
holding that we don’t have to make the switches expensively
robust if we have a strategy for rebuilding the network once
something breaks, assuming that can be done fast enough
and effectively enough to let us restore the necessary
services.
JR We should also note that in addition to fate sharing, SDN is
criticized for breaking distributed consensus, which is where
the routers talk amongst themselves to reach agreement on
a common view of network state. Anyway, the perception is
that distributed consensus might end up getting broken since
one or more controllers could get in the way.

But I would just like to say I think both of those battles
have already been lost anyway—even before SDN became
particularly prominent. That is, I think if you look closely at
a current high-end router from Cisco or Juniper, you’ll find
they also employ distributed-system architectures, where
the control plane might be running in a separate blade from
the one where the data plane is running. That means those
systems, too, are subject to these same problems where the
brain and the body might fail independently.
DC Another concern from the old days is that whenever you
have to rely on distributed protocols essentially to rebuild
the network from the bottom up, you have to realize you
might end up with a network that’s not exactly the way you
would want it once you’ve taken into account anything other
than just connectivity. Basically, that’s because we’ve never
been very good at building distributed protocols capable of

12 of 26software-defined wan

acmqueue | september-october 2015 85

doing anything more than simply restoring shortest-path
connectivity.

There was always this concern that knowledge of a
failure absolutely had to be propagated to the controller
so the controller could then respond to it. Mind you, this
concern had nothing to do with unplanned transient failures,
which I think just goes to show how little we anticipated the
problems network managers would actually face down the
road. But when you think about it, knowledge of unplanned
transient failures really does need to be propagated. Part of
what worried us was that, depending on the order in which
things failed in the network, the controller might end up not
being able to see all that had failed until it actually started
repairing things.

That, of course, could lead to some strange failure
patterns, caused perhaps by multiple simultaneous failures
or possibly just by the loss of a component responsible for
controlling several other logical components—leaving you
with a Baltimore tunnel fire or something along those lines,
where the controller has to construct the net over and
over and over again to obtain the topological information
required to fix the network and restore it to its previous
state. Is that an issue you still face with the system you now
have running?
AV Failure patterns like these were exactly what we were
trying to take on. As you were saying, the original Internet
protocols were focused entirely on connectivity, and the
traditional rule of thumb said you needed to overprovision
all your links by a factor of three to meet the requirements

13 of 26software-defined wan

acmqueue | september-october 2015 86

of a highly available “network fabric.” But at the scale of this
particular network, multiplying all the provisioning by three
simply was not a sustainable model. We had to find a way out
of that box.
DC That gets us back to the need to achieve higher network
utilization. One of the things I find really interesting
and distinctive is how you’ve managed to exploit traffic
engineering to achieve some very high link loadings. I’ve
always had it in the back of my mind that by identifying
classes of traffic, some of which are more tolerant of being
slowed down than others, and then employing a bit of
traffic engineering and quality of service, you ought to be
able to get some higher link loadings just by knowing which
traffic can be slowed down. To what extent is SDN actually
necessary to accomplish that? Prior to this, it seemed that
Google was using DiffServ tags, so I just assumed DiffServ
tags could be used to increase link loading by ensuring
that latency-sensitive traffic didn’t get disrupted. To what
extent is traffic engineering dependent on moving to an SDN
architecture or at least the SDN approach?
AV That isn’t dependent on SDN. There’s nothing in that
respect that couldn’t have been achieved by some other
means. I think it really comes down to efficiency and iteration
speed. I should add that you were absolutely right in your
supposition: DiffServ can indeed be used to increase link
loading. Our main concern, though, had to do with failures,
and we had no way of predicting how the system would
converge. So the overprovisioning was always to protect
the latency-sensitive—or, if you will, revenue-generating—

14 of 26software-defined wan

acmqueue | september-october 2015 87

traffic. Basically, for us to hit our SLAs (service-level
agreements), that meant overprovisioning to cover worst-
case convergence scenarios in a decentralized environment.
Upon moving to a centralized environment, however, we
found we could actually predict how things were going to
converge under failure conditions, which meant we could
get away with substantially less overprovisioning across our
global network while still managing to hit our SLAs.
JR Plus, you could control exactly what intermediate stage
the network goes through when it transitions from one
configuration to another, whereas if you let the distributed
protocols do it, then all bets are off as to which router ends
up going first.
AV Exactly. So I think the total amount of improvement
we realized through our centralized scheme relative to
a decentralized scheme in steady state actually proved
to be relatively modest—let’s say a 10, maybe 15, percent
improvement in the best case. What proved to be far more
important was the predictability under failure, the improved
ability to analyze failure conditions, and the means for
transitioning the system from one state to another—again
in a predictable manner that allowed for the protection of
latency-sensitive traffic. That’s what really made it possible
for us to get away with less overprovisioning.
JR Also, if you’re using legacy protocols, even to the extent
you can predict what they’re going to do, the network
management tools you use to make that prediction need
essentially to invert the control plane so you can model
what it’s likely to do once it’s poked and prodded in various

15 of 26software-defined wan

acmqueue | september-october 2015 88

ways. But with a centralized network, if you want to be
able to predict what’s going to happen when you perform
planned maintenance or need to deal with some particular
failure scenario, you can just run the exact same code the
controller is going to run so you’ll know exactly what’s going
to happen.
AV To put this in some perspective, what we’ve really
managed to accomplish is to lay some important
groundwork. That is, I think we still have a long road ahead
of us, but the traffic-engineering aspect is an important
early step on that journey. It’s one that drives a lot of capital-
expenditure savings, and it’s now also an architecture on
top of which we’ll be able to deliver new functionality more
rapidly and under software control—which is to say, we’ll be
able to deliver that functionality under our control. We’ll
no longer have to wait for someone else to deliver critical
functionality to us. Working in small teams, we should be
able to deliver substantial functionality in just a matter of
months in a tested, reproducible environment and then roll
out that functionality globally. Ultimately, I think that’s going
to be the biggest win of all—and the first demonstration of
that is traffic engineering.

I
ncreased autonomy isn’t the only win, of course.
Significantly improved link loadings and the ability to
scale quickly in response to increased demand are two
other obvious advantages Google has already managed
to realize with its private backbone WAN. In fact, the

experience so far with both SDN and centralized management

16 of 26software-defined wan

acmqueue | september-october 2015 89

has been encouraging enough that efforts are under way to
take much the same approach in retooling Google’s public-
facing network. The challenges that will be encountered there,
however, promise to be much greater.
DC Getting right to the punch line, what do you see as the
biggest improvements you’ve managed to achieve by going
with SDN?
AV Well, as we were saying earlier, through a combination
of centralized traffic engineering and quality-of-service
differentiation, we’ve managed to distinguish high-value
traffic from the bulk traffic that’s not nearly as latency-
sensitive. That has made it possible to run many of our links
at near 100 percent utilization levels.
DC I think that comment is likely to draw some attention.
AV Of course, our experience with this private-facing
WAN hasn’t been uniformly positive. We’ve certainly had
our hiccups and challenges along the way. But, overall, it
has exceeded all of our initial expectations, and it’s being
used in ways we hadn’t anticipated for much more critical
traffic than we had initially considered. What’s more, the
growth rate has been substantial—larger than what we’ve
experienced with our public-facing network, in fact.

Now, given that we have to support all the different
protocol checkbox features and line cards on our public-
facing network, our cost structures there are even worse,
which is why we’re working to push this same approach—not
the exact same techniques, but the general approach—into
our public-facing network as well. That work is already
ongoing, but it will surely be a long effort.

17 of 26software-defined wan

acmqueue | september-october 2015 90

DC What are some of the key differences between the
public-facing net and the private net that you’ll need to take
into account?
AV For one thing, as you can imagine, we have many more
peering points in our public-facing network. Our availability
requirements are also much higher. The set of protocols
we have to support is larger. The routing tables we have to
carry are substantially larger—certainly more than a million
Internet prefixes and millions of different advertisements
from our peers, just for starters. So, basically, as we move
from the private net to the public one, the overall number
of sites, the size of the traffic exchanges, the robustness
required to talk to external peers, and the sorts of
interfaces we have to support will all change substantially.
That means the public net is clearly a harder problem, but
given the understanding we’ve gained from our experience
with the private net, I’d say that undertaking now looks far
less daunting than it did a few years ago.
DC Does this suggest any similar sort of transition for the
big carriers?
AV What I personally find exciting in that respect are
the possibilities for what I call SDN peering. BGP takes a
distrustful view of the world, but what if individual ISPs—or
peers, if you will—decide they want to at least selectively
open up some additional information about their networks
dynamically? Looking at it naively, I think if they were
to share some information about downstream traffic
patterns, they would be able to make end-to-end transit
times a lot faster and basically improve the user experience

1 of 2618 of 26software-defined wan

acmqueue | september-october 2015 91

tremendously. By making it possible for the ISPs to use their
more lightly loaded paths better, the carriers themselves
would also benefit.
JR In general, current routing is strictly destination-based
and doesn’t consider the nature of applications. You can
imagine, then, that SDN might be a great way to let the
recipient of traffic reach upstream to say, “No, drop this
traffic,” or “Rate limit this traffic,” or “Route this traffic
differently because I can tell you something about the best
paths to reach me that the upstream party doesn’t know
about.” Similarly, I might say, “Hey, I want this video traffic to
take this other path,” or “I want it to pass through this other
box,” which again is something that’s hard to accomplish with
today’s destination-based forwarding.
AV We’ve already talked to some customers who are
interested in SDN-based peering, and I can tell you they’re
particularly interested in application-specific peering. They
would like to be able to say, “Hey, I want my video traffic
to go through this peer, while my non-video traffic goes
through this other peer,” either for performance or pricing
reasons. And that’s just awkward to do right now.
DC I think some evidence of how a different technology
might enable a win-win here between what are otherwise
adversarial interests would actually go a long way toward
clarifying some of the business conversations currently
going on.
JR One of the challenges for ISPs such as Comcast or AT&T,
should they decide they want to move to SDN, is that they
have a lot fewer end nodes than Google does. A transit

19 of 26software-defined wan

acmqueue | september-october 2015 92

network really needs to carry full routes, if you will. Also,
the big ISPs tend to have tremendous heterogeneity in their
edge router equipment, and they don’t upgrade everything
at the same time either, so some of that equipment might be
four or five years old, if not older.

Therefore, SDN deployments for the large carriers are
going to be significantly more challenging than what Google
has faced. I still think it’s a promising direction they should
pursue, but for various practical reasons it’s just going to
take longer for them to get there.
DC Earlier you alluded to some of the traffic-engineering
advantages you believe SDN offers. Can you go into a bit
of detail about some of the specific challenges you were
looking to solve in order to build a more cost-effective
network, given your particular set of problems?
AV As far as I can tell, the state of the art in network
management still involves logging into individual network
switches and managing them through a CLI (command-
line interface). That just scales terribly in terms of people
costs. It also scales horribly in terms of the myriad network
interactions human beings need to keep track of inside their
heads when it comes to how some action on one box might
end up resulting in ripple effects across the whole network
fabric.
DC For somebody who hasn’t actually lived in the network
operations world, it would be really hard to understand just
how bad that can actually be. The idea that people are still
programming routers using CLIs is a little mind-boggling.
And the very idea that human beings are expected to figure

20 of 26software-defined wan

acmqueue | september-october 2015 93

out the global consequences of what might happen if they
should make one little fix here or another little fix there… it’s
like we never escaped the 1980s!

I’m sure there are some traditional network engineers
who take great pride in their ability to keep all that junk in
their heads. In fact, I imagine there has been some resistance
to moving to higher-level management tools for the same
reason some people back in the day refused to program in
higher-level programming languages—namely, they were
sure they would lose some efficiency by doing so. But when
it comes to SDN, I hear you saying the exact opposite—that
you can actually become far more efficient by moving to
centralized control.
AV True, but change is always going to meet with a certain
amount of resistance. One of the fundamental questions
to be answered here has to do with whether truth about
the network actually resides in individual boxes or in a
centrally controlled infrastructure. You can well believe it’s
a radical shift for some network operators to come around
to accepting that they shouldn’t go looking for the truth
in individual boxes anymore. But that hasn’t been an issue
for us since we’ve been fortunate enough to work with a
talented—and tolerant—operations team at Google that’s
been more than willing to take on the challenges and pitfalls
of SDN-based management.

Another interesting aspect of making the transition to
SDN is that when things break, or at least don’t work as you
expect them to, unless you have a reasonable mental model
of what the controller is trying to do, you might find it very

21 of 26software-defined wan

acmqueue | september-october 2015 94

difficult to diagnose what’s going on. In fact, I think one of
the advantages network operations people have now when
they’re working with these protocols they know so well is
that—while they may have only a very limited view and so
have difficulties diagnosing everything—they at least have
a familiar mental model they can work from when they’re
trying to debug and diagnose problems. Whereas with SDN,
whenever things go bump in the night, someone who wasn’t
involved in writing the software in the first place is probably
going to find it a lot more difficult to debug things.
DC This leads to a larger question I hear a lot of people
asking now: Do network engineers need to be trained in
computer science? Many aren’t at this point. While it’s one
thing to go through the Cisco certification process, one
might argue that in an SDN world people might need to
pop up a level to master more general computer science
concepts, particularly those having to do with distributed
systems.
AV I think that’s probably a fair comment. But I also think
there are lots of very talented network engineers out there
who are fully capable of adapting to new technologies.
DC That being said, I think most of those network engineers
probably don’t currently do a lot of software development.
More likely, they just assume they have more of a systems-
integration role. It’s possible that in the fullness of time, the
advocates of SDN will try to supply enough components
so that people with systems-integration skills, as opposed
to coding skills, will find it easier to use SDN effectively.
But I wonder whether, at that point, the complexity of

22 of 26software-defined wan

acmqueue | september-october 2015 95

SDN will have started to resemble the complexity you’ve
been trying to shed by stripping down your network. That
is, I wonder whether the tradeoff between writing your
own code or instead taking advantage of something that
already offers you plenty of bells and whistles is somehow
inherent—meaning you won’t be able to entirely escape that
by migrating to SDN.
AV I would argue that a lot of that has been driven by
management requirements. I certainly agree that the
Google model isn’t going to work for everyone. One of the
biggest reasons we’ve been able to succeed in this effort is
because we have an operations team that’s supportive of
introducing risky new functionality.

With regard to your question about whether we’ll truly
be able to shed some of the complexity, I certainly hope
so. By moving away from a box-centric view of network
management to a fabric-centric view, we should be able to
make things inherently simpler. Yet I think this also remains
the biggest open question for SDN: Just how much progress
will we actually realize in terms of simplifying operations
management?
JR I think it’s natural the two highest-profile early successes
of SDN—namely, as a platform for network virtualization and
the WAN deployment effort we’re talking about here—are
both instances where the controller platform, as well as
the application that runs on top of the controller, have been
highly integrated and developed by the same people. If SDN
is going to prove successful in a much broader context—one
where you don’t have a huge software development team

23 of 26software-defined wan

acmqueue | september-october 2015 96

at your disposal as well as a supportive organization behind
you—it’s going to be because there are reusable platforms
available, along with the ability to build applications on top
of those platforms.

Just as important, you would want to believe that many
of those apps could come from parties other than those
responsible for creating the platforms. We’re actually
starting to see a lot of innovation in this area right now, with
work happening on lots of different controller platforms and
people starting to consider abstractions that ought to make
it possible to build applications on top.

But even before that happens, there are things SDN
brings that perhaps were not critical for Google but likely
will prove useful in other settings. One is that SDN could
make it possible to scale back on much of the heterogeneity
in device interfaces. Many of the companies that work
on enterprise network management employ armies of
developers just so they can build device drivers that speak
at the CLI level with lots of different switches, routers,
firewalls, and so on, meaning that a gradual move toward
a more standard and open interface for talking to devices
ought to go far to reduce some of the low-level complexity
of automating management.

Beyond that, I think Google’s design demonstrates that
if you can separate the distributed management of state
required for your network control logic from the network
control logic itself, you can avoid reinventing the wheel
of how to do reliable distributed state management while
also separating that from every single protocol. Basically,

24 of 26software-defined wan

acmqueue | september-october 2015 97

with each new protocol we design, we reinvent how to
do distributed state management. But it turns out the
distributed-systems community already has a number of
really good reusable solutions for that.
DC Part of what I’m taking away here is that not everything
Google did with its private WAN is going to be readily
transferable into other operator contexts. There are
some good reasons why this approach was an especially
good fit for Google, both with regard to Google’s specific
requirements and the particular skills it has on hand in
abundant supply. Also, as Amin noted, it helps that Google
has a business culture that’s more tolerant when it comes to
following paths that initially put resilience and reliability at
somewhat greater risk.
JR But I think some of the same cost arguments will
ultimately apply to large carriers as well as to many large
enterprises, so that might end up serving as an impetus for
at least some of those organizations collectively subsidizing
the R&D required to develop a suitable suite of SDN
products they then could use. Otherwise, they might find
themselves on an unsustainable cost curve when it comes to
the purchase and operation of new network equipment.

For example, if you look at other domains, like the
cellular core, you again find back offices full of exorbitantly
expensive equipment that’s typically quite brittle. I think you
find much the same thing in enterprise. Changes are clearly
going to proceed more slowly in those settings since they
face much more difficult deployment challenges, far stricter
reliability requirements, and maybe even some harder

25 of 26software-defined wan

acmqueue | september-october 2015 98

scaling requirements. I mean, there’s a good reason we’re
seeing SDN surface first in data centers and private WANs.
Just the same, I think CAPEX (capital expenditure) and OPEX
(operating expense) are ultimately going to prove to be
compelling arguments in these other settings as well.
AV If you take it as inevitable, for example, that all video
content is going to be distributed across the Internet at
some point in the near future, then we’re surely looking at
some phenomenal network growth, which suggests the
large carriers will at minimum soon become quite interested
in seizing upon any CAPEX and OPEX savings they possibly
can.

LOVE IT, HATE IT? LET US KNOW feedback@queue.acm.org
Copyright 2015 held by Owner/Author

SHAPE THE FUTURE OF COMPUTING!

Join ACM today at acm.org/join

BE CREATIVE. STAY CONNECTED.
KEEP INVENTING.

26 of 26software-defined wan

