Minecraft Settlement Generation Al - Project Plan

Blake Patterson, Michael Ward

February 26, 2022



Contents

1 Abstract

2 Tasks Planned

3 Estimated Timetable

4 References

ii



1 Abstract

Minecraft is a sandbox video game, created by Mojang in 2009, where players explore
and build in a procedurally generated 3D grid-like world with infinite terrain. The main
game-play element of Minecraft consists of collecting various types of materials and using
them to build tools and structures. The world is divided into 1x1x1 blocks which can vary
in material, spawning location, and usability. Aside from the popularity of the base game,
Minecraft has become well known for it’s customization possibilities through a variety of
open source application program interfaces. These application program interfaces allow
players to change textures and color palettes, add new items, block types and enemies, and
more.

The open source nature and in-game environment of Minecraft has also caught the
attention of artificial intelligence researchers. The environment of Minecraft is ideal for
research in Al because of the endless possibilities, from training an agent on simple tasks
like searching for a specific object or material, to building complex structures or navigating
obstacle courses. Since the environment is divided into a three-dimensional grid of equal
sized cubes, it is also easy to measure and evaluate the performance of Al in Minecraft.

This project is focused on the application of Al for Procedural Content Generation
(PCG) within Minecraft. PCG is defined as the algorithmic creation of game content with
limited or indirect user input [7]. Content in the context of PCG can be described as most
of what can be contained within a game including maps, rules, textures, items, quests,
music, characters, and more [7]. Many popular games have made use of PCG including
Rogue, Dwarf Fortress, Diablo, Spore, Civilization, Spelunky, as well as Minecraft [7]. The
usage of PCG varies from game to game and can range from fully autonomous game design,
to automating routine or common aspects of game design. One major critique of PCG in
game design has to do with repetition and functionality; rule-based agents are likely to
create good looking and functional content that looks similar, and search-based agents are
likely to create more diverse content, but takes more time and resources to ensure that it
is functional for the player [2].

Most instances of PCG in video games operate from a ’clean-state’ where the generator
does not have to consider interaction with preexisting in-game elements [2]. Exploring
PCG within Minecraft opens up a new challenge within Al, in which the goal is to pro-
duce a functional and believable village settlement that adapts to different environments
within a Minecraft map [5]. Instead of generating a village on a clean slate, this prob-
lem restricts the generator with the presence of preexisting game elements and focuses on
adaptive generation of artifacts [2]. A map in Minecraft is made up of various biomes
which contain different types of terrain, elevation gradients, fauna, and bodies of water.
In order for a procedurally generated settlement to be functional and believable, it must
be adaptive and able to build on top of and in response to elements that already exist in
the Minecraft environment. The Generative Design in Minecraft (GDMC) Al settlement
generation competition initially proposed this problem in 2018 [4]. GMDC has ran a yearly



open competition for researchers and students to submit their algorithm, which is scored
by a panel in terms of the algorithms adaptability and functionality [1].

We propose to develop a Procedural Content Generation AI that is capable of gen-
erating a functional and believable Minecraft settlement, which is adaptive to varying
environmental factors. Based on our first review of literature, it is apparent that devel-
oping multiple different algorithms to handle individual pieces of the problem has led to
better outcomes in previous research. For example, iterations of the A* algorithm have
been successful in creating road networks between houses within the settlements. For other
parts of the problem such as terrain analysis and building generation, different approaches
will need to be employed that require more research. In the tasks and timetable sections,
we lay out our current expectations for what steps will be needed and the order of steps.



2 Tasks Planned

’ Assigned To ‘

Task

Blake, Michael Set up development environment
Blake, Michael Test out HTML interface framework and learn how to use it
Blake, Michael Conduct further research of possible algorithms/approaches
Blake, Michael Finalize details of decided algorithm/approach
Michael Code outline for Python script
Blake Design settlement type(s) and implement the details in Python code
Michael Implement terrain analyzer
Blake Implement house generation
Michael Implement farm generation
Blake Implement field generation
Michael Implement bridge generation
Blake Implement food production generation
Michael Implement tunnel generation
Blake Implement road generation
Blake, Michael Create project presentation




3 Estimated Timetable

’ ‘ Tasks

Week 1 Set up development environment,
Test out HTML interface framework and learn how to use it,
Conduct further research of possible algorithms/approaches

Week 2 Finalize details of decided algorithm/approach,
Code outline for Python script,
Design settlement type(s) and implement the details in Python code

Week 3 Implement terrain analyzer,
Implement house generation
Week 4 Implement farm generation,

Implement field generation

Week 5 Implement bridge generation,
Implement food production generation

Week 6 Implement tunnel generation,
Implement road generation,
Begin working on project presentation

Week 7 Finishing touches and final bug fixes on settlement generator,
Finalize project presentation




IS

=

References

Marcus Fridh and Fredrik Sy. “Settlement Generation in Minecraft”. In: (), p. 55.

Michael Cerny Green, Christoph Salge, and Julian Togelius. “Organic Building Gen-
eration in Minecraft”. In: arXivw:1906.05094 [cs] (June 11, 2019). arXiv: 1906.05094.
URL: http://arxiv.org/abs/1906.05094 (visited on 02/24/2022).

Jean-Baptiste Hervé and Christoph Salge. “Comparing PCG metrics with Human
Evaluation in Minecraft Settlement Generation”. In: arXiv:2107.02457 [cs] (July 6,
2021). arXiv: 2107 .02457. URL: http://arxiv.org/abs /2107 .02457 (visited on
02/24/2022).

Christoph Salge et al. “Generative Design in Minecraft (GDMC), Settlement Gen-
eration Competition”. In: Proceedings of the 13th International Conference on the
Foundations of Digital Games (Aug. 7, 2018), pp. 1-10. DOI: 10.1145/3235765 .
3235814. arXiv: 1803.09853. URL: http://arxiv.org/abs/1803.09853 (visited on
02/24/2022).

Christoph Salge et al. “Generative Design in Minecraft: Chronicle Challenge”. In:

arXiv:1905.05888 [cs] (May 14, 2019). arXiv: 1905.05888. URL: http://arxiv.org/
abs/1905.05888 (visited on 02/24/2022).

Christoph Salge et al. “The AI Settlement Generation Challenge in Minecraft: First
Year Report”. In: KT - Kinstliche Intelligenz 34.1 (Mar. 2020), pp. 19-31. 1SsN: 0933-
1875, 1610-1987. DOI: 10.1007/s13218-020-00635-0. URL: http://link.springer.
com/10.1007/s13218-020-00635-0 (visited on 02/24/2022).

Noor Shaker, Julian Togelius, and Mark J Nelson. Procedural content generation in
games. Springer, 2016.



