
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Particle Filter for Unordered Observations
Longin Jan Latecki, Nagesh Adluru, and Xingwei Yang

Abstract—Usually in the Particle Filter (PF) framework it is assumed that the observations arrive sequentially, e.g., the observations are
naturally ordered by their time stamps in the tracking scenario. Based on this assumption, the posterior density over the corresponding
hidden states is estimated.
In this paper we relax the assumption of having ordered observations and extend the PF framework to simultaneously estimate the
posterior density while exploring different orders of observations. This significantly broadens the scope of applications of PF methods.
We demonstrate that the proposed framework can be applied to solve a broad spectrum of challenging problems, e.g., building jigsaw
puzzles, detecting and localizing target objects in images, and inferring a globally consistent map given a set of partial maps in the task
of multi robot map merging. The provided experimental results demonstrate that the proposed framework yields comparable results to
state-of-the-art algorithms for object detection and localization in images.

Index Terms—Particle Filter, Object Detection and Recognition, Contour Grouping.

✦

1 INTRODUCTION

We illustrate the key ideas of the proposed approach with an
example of a jigsaw puzzle, where the goal is to estimate
the poses (location and the orientation) of all puzzle pieces
so that they fit according to their shape constraints and form
a meaningful image. When a puzzle is created, one usually
starts with an image on a paper or wooden board, e.g., see
Fig. 1(a). Then the board is cut into jigsaw puzzle pieces. In
our scenario, the player is only presented the jigsaw puzzle
pieces in a random arrangement (e.g., see Fig. 1(b)) and is
not shown the original image. Thus, the player has never
seen the original image. To be more precise, the player is
given m puzzle pieces described by a set of m observations
Z = {z1, . . . , zm}. Each observation zt describes piece t and
is given by a vector of features that represents the shape and
the partial image depicted on piece t. The state of piece t,
which describes its is pose, is represented by a random variable
(RV) Xt. Each value xt of Xt represents 2D coordinates
and the orientation of piece t. Our goal is to determine the
state vector (x1, . . . , xm) that solves the given puzzle, i.e., the
relative poses of the puzzle pieces that yield the original image.
In the statistical framework such a vector of poses maximizes
the posterior distribution p(X1, . . . , Xm|Z). In other words,
(x1, . . . , xm) is a vector of most likely poses of the puzzle
pieces given the observed features Z . The posterior distribu-
tion is a function of how well adjacent pieces fit together
with respect to their shape and their images, which can be
measured by similarity of their observed and derived features.
Of course, the goal is to build the original image, which
however in unknown to the player. Since the whole original
image is not observed, Z is a set of partial observations that
describe local features of each puzzle piece. Therefore, the

• L. J. Latecki and X. Yang are with the Dept. of Computer and Information
Sciences, Temple University, Philadelphia.
E-mails: latecki@temple.edu, xingwei.yang@temple.edu

• Nagesh Adluru is with ?.

posterior distribution, which we want to infer, is a function
the set of partial observations Z , i.e., we use the observations
Z to evaluate the likelihood of state vectors (x1, . . . , xm).
Then, usually, the state vector that maximizes the posterior
distribution is selected as the solution. We observe that the
initial poses are irrelevant, since the player is initially given
a random configuration of the puzzle pieces. We also observe
that the posterior distribution p(X1, . . . , Xm|Z) usually is very
complicated and has many local maxima. This is particulary
the case when the local information of the puzzle pieces is not
very descriptive. Therefore, it is often important to estimate
the whole posterior distribution.

It is possible to apply the classical particle filter (PF)
framework as stochastic optimization to solve this problem
by utilizing a fix order of observations Z = {z1, . . . , zm},
e.g., by following a given numbering of the puzzle pieces.
However, by doing so, we would have selected an arbitrary
order, and the puzzle construction may fail because of the
selected order. Would we have selected a different order, the
localization task could have been successful. Moreover, the
observations Z = {z1, . . . , zm} are given simultaneously at
the same time. Consequently, there is no reason to favor any
particular order without utilizing this fact.

The classical particle filter (PF) framework has been de-
veloped for sequential state estimation like tracking or robot
localization. There, the observations arrive sequentially and are
indexed by their time stamps. In the proposed framework we
extend PF to handle the situations where we have unordered
set of observations that are given simultaneously like in our
example of jigsaw puzzle. One of our key observations is
the fact that it is possible to extend the importance sampling
from the proposal distribution so that the particle resampling
automatically determines most informative orders of observa-
tions allowing us to simultaneously consider different orders of
observation in the process estimating the posterior distribution.
If our goal is maximizing the posterior distribution, we can
view the order of observations that led to the global maximum
as a most informative. Of course, this order does not have to

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

(a) (b) (c)

Fig. 1. The goal is to build the original image (a) given the jigsaw puzzle pieces (b). The original image is not known,
thus, it needs to be estimated given the observations shown in (b). Even if the puzzle pieces were numbered (c),
following their numbering may not be helpful in solving the puzzle.

be unique, since it is possible that other orders of observations
lead to the same global maximum.

2 BASIC FACTS ABOUT PARTICLE FILTERS

In this section we summarize basic facts about Particle Filters
(PFs). They will be utilized in the next section when we
introduce the proposed framework.

Our goal is to compute a posterior distribution
p(X1, . . . , Xm | Z), where (X1, . . . , Xm) is a vector
of random variables (RVs) and Z = {z1, . . . , zm} is a set of
observations. This will allow us to find value assignments
Xt = x̂t for t = 1, . . . , m to RVs that maximize this
posterior:

x̂1:m = argmax
x1:m

p(X1 = x1, . . . , Xm = xm | Z), (1)

where x1:m = (x1, . . . , xm) ∈ Xm is a state space vector. As
it is commonly the case, we will abbreviate

p(X1 = x1, . . . , Xm = xm | Z) = p(x1:m | Z).

We will achieve our goal by approximating the posterior
distribution with a finite number of samples in the framework
of Bayesian Importance Sampling (BIS). Since it is usually
difficult to draw samples from the pdf p(x1:m|Z), we will
draw samples x

(i)
1:m ∼ q(x1:m|Z) for i = 1, . . . , N from a

proposal pdf q, form which samples are easily generated. Then
approximation to the density p is given by

p(x1:m|Z) ≈
N∑

i=1

w(i)δ(x1:m − x
(i)
1:m), (2)

where δ is the Dirac delta function and

w(i) =
p(x(i)

1:m|Z)

q(x(i)
1:m|Z)

(3)

are normalized weights (so that they sum to one).
Since it is still hard to draw samples from q due to high

dimensionality of x1:m, Sequential Importance Sampling (SIS)
is usually utilized. In the classical PF approaches, samples are
generated recursively following the order of dimensions in the
vector of RVs X = (X1, . . . , Xt):

x
(i)
t ∼ qt(x|x1:t−1, Z) = qt(x|x1:t−1, z1:t) (4)

for t = 1, . . .m, and the particles are built sequentially
x

(i)
1:t = (x(i)

1:t−1, x
(i)
t) for i = 1, . . . , N . The subscript t in qt

indicates from which dimension of the state space the samples

are generated, i.e., from which RV. We use this notation to
stress that qt is a pdf from which we sample. (For t = 1,
x1:t−1 = x1:0 denotes an empty vector, thus, we sample
x

(i)
1 ∼ q1(x|Z).) Since q factorizes as

q(x1:m|Z) = q(x1|Z)
m∏

t=2

q(xt|x1:t−1, Z), (5)

we obtain that x
(i)
1:m ∼ q(x1:m|Z). In over words, by sampling

recursively x
(i)
t from each dimension t according to (4) and

appending the samples to a vector x
(i)
1:m we obtain a sample

from q(x1:m|Z)
Since at a given iteration we have a partial sample vector

x
(i)
1:t for t < m, we also need an evaluation procedure of this

partial sample vector. For this we observe that the weights can
be recursively updated according to

w(x(i)
1:t) =

p(zt|x(i)
1:t, z1:t−1)p(x(i)

t |x(i)
1:t−1)

q(x(i)
t |x(i)

1:t−1, z1:t)
w(x(i)

1:t−1). (6)

The key observation is that when t = m, the weight w(x(i)
1:m)

of particle (i) is equal to w(i) (defined in (3)). The derivation
of this fact can be found in [1]. Now we are able to formulate
the SIS theorem in our setting:

Theorem 1. By sampling particles according to (4) and
weighting them according (6), we obtain a set of weighted
samples form p(x1:m|Z) once t = m. Consequently, we can
approximate p(x1:m|Z) with any precision if the number of
particles N is sufficiently large. Thus, we can write

p(x1:m|Z) ≈
N∑

i=1

w(x(i)
1:t)δ(x1:m − x

(i)
1:m). (7)

The equation (6) can be simplified by making a common
assumption that q(x(i)

t |x(i)
1:t−1, z1:t) = p(x(i)

t |x(i)
1:t−1), i.e., the

proposal distribution depends only on the partial state vector
and does not depends on the observations. This assumption
significantly simplifies the recursive weight update formula

w(x(i)
1:t) = w(x(i)

1:t−1)p(zt|x(i)
1:t, z1:t−1), (8)

and, consequently, the samples are generated from

x
(i)
t ∼ pt(x|x(i)

1:t−1), (9)

i.e., the current observations z1:t−1 have no direct influence
on the samples. Analog to (4) we added the index t in (9)
to indicate the dimension of the state space from which the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

samples are generated. The influence of observations on the
samples is introduced when particles are resampled according
to their weights, which is a common step in PF algorithms,
since particle weights depend on observations.

In order to motivate the proposed approach, we derive now
the recursive weight update in (6) in a different way than is
usually reported in the literature, e.g., in [1]:

w(x(i)
1:t) =

p(x(i)
1:t|Z)

q(x(i)
1:t|Z)

=
p(x(i)

t |x(i)
1:t−1, Z) p(x(i)

1:t−1|Z)

q(x(i)
t |x(i)

1:t−1, Z) q(x(i)
1:t−1|Z)

=
p(x(i)

t |x(i)
1:t−1, Z)

q(x(i)
t |x(i)

1:t−1, Z)
w(x(i)

1:t−1) (10)

=
p(Z|x(i)

1:t)

p(Z|x(i)
1:t−1)

p(x(i)
t |x(i)

1:t−1)

q(x(i)
t |x(i)

1:t−1, Z)
w(x(i)

1:t−1) (11)

Eq. (11) follows from (10) by Bayes rule interchanging x
(i)
t

and Z in p(x(i)
t |x(i)

1:t−1, Z).
Since both formulas (6) and (11) are equal to w(x (i)

1:t), by
setting (6) = (11), we obtain

p(zt|x(i)
1:t, z1:t−1) =

p(Z|x(i)
1:t)

p(Z|x(i)
1:t−1)

(12)

Equation (12) provides an intuitive justification for the
reclusive weight update in (8). The weight of a particle (i)
increases, if adding the new state x

(i)
t to the state vector

x
(i)
1:t−1 increases the probability of the observations Z , i.e., if

p(Z|x(i)
1:t) > p(Z|x(i)

1:t−1).

Now we outline a standard PF algorithm. For every time
step t = 1, . . . , m and for every particle i = 1, . . . , N execute
the following three steps:
1) Importance sampling / proposal: Sample followers of
particle (i) according to (9) (a special case of (4)) and set
x

(i)
1:t = (x(i)

1:t−1, x
(i)
t).

2) Importance weighting / evaluation: An importance weight
is assigned to each particle x

(i)
1:t according to (8) (a special case

of (6)).
3) Resampling: Sample with replacement N new particles
form the current set of particles

{x(i)
1:t|i = 1, . . . , N}

according to their weights. We obtain a set of new particles
x

(i)
1:t for i = 1, . . . , N , all with weights of 1/N . This procedure

is called Sampling Importance Resampling (SIR) [1]. It is an
important part of any PF algorithm, since resampling prevents
weight degeneration of particles.

A common assumption underlying the equations (4) and (6)
is that there exist two known functions f and h such that

xt = f(x1:t−1) + ut (13)

zt = h(xt) + vt (14)

where both ut and vt are mutually independent and identically
distributed sequences with known probability density functions
(pdfs). Often they are assumed to be Gaussians that model
state prediction noise ut and observation noise vt. (Under the

Markov assumption, (13) is simplified to xt = f(xt−1) + ut,
i.e., that we can determine xt if we know the previous state
xt−1.)

3 UNORDERED OBSERVATIONS

In the proposed approach, the order of the observations is not
predetermined, in particular, we do not follow the order of
indices of the observations in Z . Our key idea is to extend the
PF framework to examine all possible orders of observations
and to follow the most informative orders. This way we are
able to utilize the the most informative observations first.
Intuitively, it makes sense, for example, if the first puzzle piece
has shape very similar to many other puzzle pieces and the
second puzzle pieces has a very distinctive shape, then our
approach will first process the second puzzle piece, since it is
more informative.

We stress that the standard SIS in Eq. 4 and particle evalu-
ation in Eq. 6 utilize the sequential order of the RVs reflected
in the order of dimensions in the state space (x1, . . . , xm). In
many applications, this order is determined naturally by the
time stamp of the observations, e.g., a single robot is collecting
laser measurements at consecutive time points, in which case
xt denotes the robot pose at time t. The goal of our work is to
extend SIS to applications in which there is no natural order
of observations like the case of multi robot map merging.

The key idea of the proposed approach is not to utilize
the fix order of the dimensions, but instead explore all pos-
sible orders of the dimensions (xi1 , . . . , xim) (or equivalently
RVs) so that the corresponding sequence of observations
Z = (zi1 , . . . , zim) is most informative. To achieve this we
modify the first step of the PF algorithm so that the importance
sampling is performed for every dimension not yet represented
by the current particle. Thus, we sample follower states x it

of particle (x(i)
i1

, . . . , x
(i)
it−1

) from each dimension that is not

represented in (x(i)
i1

, . . . , x
(i)
it−1

). For example, our puzzle in
Fig. 1(c) has the total of six puzzle pieces and the current
state vector of particle (i) is (x(i)

i1
, x

(i)
i2

) = (x(i)
5 , x

(i)
3), where

i1 = 5, i2 = 3, meaning that we have already placed pieces 5
and 3, Then in the next step we sample the follower states from
dimensions representing the poses of the remaining puzzle
pieces, which are pieces 1, 2, 4, 6 in our example.

To simplify the notation we replace the double indexing
of the state variables x

(i)
is

with a bijection (onto and one-to-
one function) < · >: {1, . . . , m} → {1, . . . , m} and use the
shorthand notation < 1 : t > to denote (< 1 >, < 2 >, . . . , <
t >). For example, if (i1, i2, i3) = (2, 3, 1), then

< 1 : 3 >= (< 1 >, < 2 >, < 3 >) = (i1, i2, i3) = (2, 3, 1)

and we denote x
(i)
<1:3> = x

(i)
i1:3

= (x(i)
i1

, x
(i)
i2

, x
(i)
i3

).
In order to introduce the extended sampling method, we

need to revise the underlying assumption (13) to the existence
of a function

xs = f(x<1:t−1>) + us,<1:t−1> for s ∈ N (x<1:t−1>),
(15)

where N (x<1:t−1>) denotes the neighborhood of the set of
states x<1:t−1>. The neighborhood is application dependent

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

with a simplest example being N (x1:t−1) = {t}, in which
case we obtain (13) as a special case of 15.

In our jigsaw puzzle example, the neighborhood of the pose
states of the two puzzle pieces 3 and 5 can be composed
of all the remaining pieces, e.g., N (x<1,2>) = N (x3,5) =
{1, 2, 4, 5}. Then function f allows to predict the poses of the
puzzle pieces s ∈ N (x<1,2>). Consequently, (15) means that
we can estimate the relative pose of the remaing puzzle pieces
for a given configuration of already positioned pieces.

We stress that now the sequence of states x<1:t−1> visited
before time t is not a sequence of consecutive numbers
(1, . . . , t − 1) but any subsequence (i1, . . . , it−1) formed by
t − 1 different numbers in {1, . . . , m}. Due to noise factor
us,<1:t−1> in (13), each value xs is an estimate or prediction
of a true unknown value.

4 PARTICLE FILTER FOR UNORDERED OB-
SERVATIONS

We are ready now to precise formulate the proposed impor-
tance sampling. At iteration t, the assumption (15) allows us
to sample

x(i)
s ∼ ps(x|x(i)

<1:t−1>) for each s ∈ N (< 1 : t − 1 >),
(16)

where the index s at the posterior pdf ps indicates that we
sample from RV in dimension s. Thus, we generate at least
one sample for each dimension s ∈ N (< 1 : t − 1 >).

For example, if the neighborhood of < 1 : t − 1 > is
composed of all dimensions not present in < 1 : t− 1 >, i.e.,

N (< 1 : t − 1 >) = {1, . . . , m}\ < 1 : t − 1 > (17)

and we generate exactly one sample from each dimension (i.e.,
RV) s ∈ N (< 1 : t − 1 >), then at iteration t particle (i) has
m−t+1 followers. Each follower is a sample from a different
dimension of the state vector (i.e., a different RV).

Let us assume that we have total of m = 5 pieces in our
jigsaw puzzle and after iteration 3, we determined the poses
of puzzle pieces < 1 : 3 >= (3, 1, 5). We then consider the
two remaining pieces as followers of < 1 : 3 >= (3, 1, 5)
at iteration 4. The poses of pieces 2 and 4 are determined
with reference to the poses of pieces 3, 1, 5, i.e., by sampling
x

(i)
2 ∼ p2(x|x(i)

<1:3>) and x
(i)
4 ∼ p4(x|x(i)

<1:3>). Of course,
this process is repeated for each particle (i) for i = 1, . . . , N ,
where N is the number of particles.

In contrast, in the standard application of rule (9), at each
iteration t particle (i) has one follower. Even when sometimes
each particle (i) has many followers, all followers are in the
same dimension (samples form the same RV), which means
that we only determine possible locations of say puzzle piece
2 and do not consider locations of puzzle piece 4 for particle
(i), since a strict order of the state dimensions is followed in
the classical setting.

We do not make any Markov assumption in (16), i.e., the
new state x

(i)
s is dependent on all previous states x

(i)
<1:t−1> for

each particle (i).
We derive now the recursive weight update formula for

the unordered set of static observations Z . This derivation is

analog to our derivation in (11). For every t from 2 to m, we
have

w(x(i)
<1:t>) =

p(x(i)
<1:t> | Z)

q(x(i)
<1:t> | Z)

=
p(x(i)

<t>|x(i)
<1:t−1>, Z) p(x(i)

<1:t−1>|Z)

q(x(i)
<t>|x(i)

<1:t−1>, Z) q(x(i)
<1:t−1>|Z)

=
p(x(i)

<t>|x(i)
<1:t−1>, Z)

q(x(i)
<t>|x(i)

<1:t−1>, Z)
w(x(i)

<1:t−1>)

=
p(Z|x(i)

<1:t>)p(x(i)
<t>|x(i)

<1:t−1>)

p(Z|x(i)
<1:t−1>)q(x(i)

<t>|x(i)
<1:t−1>, Z)

w(x(i)
<1:t−1>) (18)

The only difference to (11) is that we replace the fix order
of states 1 : t − 1 with a dynamic order < 1 : t − 1 >
that may be different for each particle (i). (In particular, to
obtain the last equation, we apply Bayes rule to decompose
p(x(i)

<t>|x(i)
<1:t−1>, Z) that interchanges x

(i)
<t> and Z .)

As it is often the case in PF applications, we assume
that q(x(i)

<t>|x(i)
<1:t−1>, Z) = p(x(i)

<t>|x(i)
<1:t−1>). Using this

simple exploration based proposal the weight recursion in (18)
becomes:

w(x(i)
<1:t>) = = w(x(i)

<1:t−1>)
p(Z|x(i)

<1:t>)

p(Z|x(i)
<1:t−1>)

(19)

Our next derivation step differs fundamentally
from the standard PF framework. By recursive
substitution of weights in (19), i.e., by applying (19) to
w(x(i)

<1:t−1>), w(x(i)
<1:t−2>), . . . , w(x(i)

<1:2>), we obtain

w(x(i)
<1:t>) = w(x(i)

<1:t−2>) �������
p(Z|x(i)

<1:t−1>)

p(Z|x(i)
<1:t−2>)

p(Z|x(i)
<1:t>)

�������
p(Z|x(i)

<1:t−1>)

= · · · = w(x(i)
<1>)

p(Z|x(i)
<1:t>)

p(Z|x(i)
<1>)

(20)

Under the assumption that all particles have the same initial
weight w(x(i)

<1>) and the same initial observation probability
p(Z|x(i)

<1>) for i = 1, . . . , N , we obtain

w(x(i)
<1:t>) = p(Z|x(i)

<1:t>) (21)

Since for t = m we have w(x(i)
<1:m>) = w(x(i)

1:m), we obtain
that the weights computed by the recursive formulas (19) -
(21) are equal to the weights in Eq. (3).

For comparison, the corresponding weight update in the
standard PF framework [1] is

w(x(i)
1:t) = w(x(i)

1:t−1) p(zt|x(i)
1:t−1, xt), (22)

where zt denotes the new observations obtained at time t.
A distinctive feature of our derivations is the fact that we

use the whole set of observations Z . In particular, this means
that we do not decompose Z into partial sequences following
some order of observations. Consequently, our weight update
formula (21) evaluates how likely the whole set of observations
Z is conditioned on the current state vector x

(i)
<1:t>.

We outline now the proposed PF for unordered obser-
vations (PFUO) algorithm. For every time step t = 1, . . . , m

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

and for every particle i = 1, . . . , N execute the following three
steps:
1) Importance sampling / proposal: Sample followers x

(i)
s

of particle (i) from each dimension s ∈ N (< 1 : t − 1 >)
according to (16), which we repeat here for completeness,

x(i)
s ∼ ps(x|x(i)

<1:t−1>) (23)

and set x
(i)
<1:t−1>,s = (x(i)

<1:t−1>, x
(i)
s). We need the second

index s, since in our framework, particle x
(i)
<1:t−1> usually

has more than one follower and s indexes the followers of
x

(i)
<1:t−1>. This means that the single particle x

(i)
<1:t−1> is mul-

tiplied and extended to several follower particles x
(i)
<1:t−1>,s.

If we generate one sample for each dimension s ∈ N (< 1 :
t−1 >), then we the number of followers x

(i)
<1:t−1>,s is equal

to the number of dimensions in N (< 1 : t − 1 >).
2) Importance weighting/evaluation: An individual impor-
tance weight is assigned to each particle follower x

(i)
<1:t−1>,s

according to Eq. 21, where we substitute x
(i)
<1:t−1>,s for

x
(i)
<1:t>, i.e.,

w(x(i)
<1:t−1>,s) = p(Z|x(i)

<1:t−1>,s) (24)

3) Resampling: Sample with replacement N new particles
form the current set of particles

{x(i)
<1:t−1>,s| i = 1, . . . , N, s ∈ N (< 1 : t − 1 >(i))}. (25)

according to the weights. We obtain a set of new particles
x

(i)
<1:t> for i = 1, . . . , N , all with weights of 1/N . This

is the standard Sampling Importance Resampling (SIR)
step [1] as in the classical PF framework, but the set of
particles that is resampled is different. We recall that the
index of dimensions < 1 : t − 1 > may be different for
each particle (i), which is why we use < 1 : t−1 >(i) in (25).

Theorem 2. The PFUO computes an approximation of Eq. 2,
i.e., for t = m the particles x

(i)
<1:t> with i = 1, . . . , N provide

an approximation to the posterior p(x1:m|Z) for sufficiently
large N , i.e.,

p(x1:m|Z) ≈
N∑

i=1

w(x(i)
1:m)δ(x1:m − x

(i)
1:m). (26)

Before we prove this theorem, we need to make an important
remark. Since t = m, all dimensions of considered RVs are
present in each particle x

(i)
<1:t>. Therefore, we can simplify

the notation and write x
(i)
<1:t> = x

(i)
1:m. We stress again that

the particular order of dimensions < 1 : t > is extremely
important in our approach in order to derive the state vector
x

(i)
<1:t> of particle (i). However, once we have this state

vector, we can simply present the state vector in the original
order of dimensions.

Proof of Theorem 2. Our proof is based on Eq. (26)
with weights defined in Eq. (3). We observe that the weights
computed by the recursive formulas (19) - (21) are equal to
the weights in Eq. (3), since for t = m we have w(x(i)

<1:m>) =
w(x(i)

1:m).

The Sampling Importance Resampling (SIR) replaces
weighted particles with N particles with the weight equal to
1/N , which provides an approximation to the same target
pdf. This proves the theorem.

The fact that we can consider more than one follower of
each particle and reduce the number of followers by resam-
pling is known in the PF literature and is referred to as prior
boosting [2], [3]. It is used to capture multi-modal likelihood
regions. We stress that the resampling in our framework plays
an additional and a very crucial role. It selects the the most
informative random variables (i.e., state space dimensions) as
followers of particles. Since the weights of x

(i)
<1:t−1>,s are

determined by the observations Z , and the resampling uses
the weights to selects new particles x

(i)
<1:t> by adding not yet

considered dimensions, the resampling determines the order of
RVs, i.e., the bijection < t > for t = 1, . . .m. Consequently,
the order of RVs is heavily determined by observations Z ,
and this order may be different for each particle (i). This is in
strong contrast to the classical PF, where observations Z have
no influence on the order of RVs, which is fixed.

In many applications, the weight (21) of each particle is
based on the evaluation of the similarity of the predicted
observations h(x(i)

<1:t−1>,s), i.e., the observations derived from

the current state vector x
(i)
<1:t−1>,s, to the real observations

in set Z . If we adopt the standard PF assumption (14) that
underlies particle weight computation, we can only relate the
predicted observations h(x(i)

<1:t−1>,s) to the corresponding real
observations z<1:t−1>,s. Then we utilize a special case of (24)
to compute the particle weights

w(x(i)
<1:t−1>,s) = p(z<1:t−1>,s|x(i)

<1:t−1>,s). (27)

This means that we only use the subset of observations that
corresponds to the current dimensions of the state vector to
evaluate particle (i). For instance, if the current state vector of
particle (i) is x

(i)
<1>,s = x

(i)
5,3, meaning that we have positioned

the puzzle piece < 1 >= 5 and the piece s = 3 as shown in
our puzzle example in Fig. 1(c), then the weight of particle
(i) depends on how likely the corresponding observations
z<1>,s = z5,3 = (z5, z3) are conditioned on the state vector
x

(i)
<1>,s = (x(i)

5 , x
(i)
3). In our jigsaw puzzle example, this

means that we evaluate the likelihood of the appearance
features (z5, z3) of puzzle pieces 5 and 3 conditioned on their
poses (x(i)

5 , x
(i)
3). This can be computed by evaluating the fit of

the puzzle pieces positioned according to the poses (x (i)
5 , x

(i)
3).

Since the pieces 5 and 3 match well, the particle shown in
Fig. 1(c) would obtain a high weight.

However, in our framework it is also possible to generalize
the assumption (14) so that we always use the whole set
of observations Z to compute the particle weights, i.e., we
directly use formula (21). This may increase the discriminative
power of the particle evaluation. For instance, if we use the
appearance of all six puzzle pieces Z = {z1, z2, z3, z4, z5, z6}
to compute the weight of particle x

(i)
<1>,s = (x(i)

5 , x
(i)
3), we can

additionally consider how distinctive the appearance features
(z5, z3) are in the context of all feature vectors in Z . In this
case, the value of the weight depends on two factors,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

• how descriptive a given vector of observations z<1:t−1>,s

is in the context of all observations Z and
• how good the prediction h(x(i)

<1:t−1>,s) of observations
z<1:t−1>,s is.

5 LOOPING PARTICLE FILTER FOR
UNORDERED OBSERVATIONS

In the PF algorithm introduced in Section 5, the number of
iterations t is equal to the dimensionality m of the state space.
In our jigsaw puzzle example with six puzzle pieces, this
means that t = 6. Consequently a large number of particles
N is needed to well approximate the posterior distribution.
According to Theorem 2, such a number of particles always
exist, but it may be hard in practice to set it properly.
Therefore, we propose in this section a modification of the
importance sampling / proposal step that makes number of
iterations independent from the dimensionality of the state
space.

In order to obtain a second version of the proposed al-
gorithm, called Looping PF for unordered observations
(L-PFUO) algorithm, we only need to slightly modify the
neighborhood in the importance sampling / proposal step in
(16). For iteration steps t ≤ m we keep the user defined
neighborhood structure, e.g., as defined in (17), but for t > m
we set the neighborhood structure to be

N (< 1 : t − 1 >) = {1, . . . , m}. (28)

We observe that for t > m our L-PFUO becomes a variant of
Gibbs sampler, since we loop over the state space and replace
values in one dimension by sampling from the conditional
proposal distribution (with values of the other dimensions
being fixed). However, our PF steps (2) and (3) are very
different from the existing Gibbs sampler approaches. While
there exist Gibbs sampler approaches that weight samples [],
none of them performs resampling as in our step (3).

In L-PFUO, the length of each state vector is equal to t
if t < m and is equal to m for every iteration t ≥ m. Thus,
L-PFUO can be viewed as a mixture of PF and Gibbs sampler
approaches. For t < m we follow the PF framework but
with unordered observations and incrementally build the state
vector until we reach its full length m. This makes L-PFUO
significantly more efficient than Gibbs sampler, which must
be initialized with the full length state vectors and therefore
requires a lengthy burn in phase (i.e., the first N samples
are discarded, where N can be very large). Once t = m, L-
PFUO switches to looping over the state space. L-PFUO loops
following the order determined by the resampling according
to the particle weights, which allows us to generate more
samples from the most informative dimensions of the state
space. In contrast, most Gibbs samplers loop in a predefined
deterministic order or in a completely random order [].

As we stated at the beginning of this section, L-PFUO
algorithm allows us to estimate the posterior distribution with
a significantly smaller number of particles than PFUO. This
means that we trade the smaller number of particles N for
the larger number or iterations t. While PFUO has a clearly
defined stop condition t = m, we need to specify the stop

condition for L-PFUO algorithm. We simply iterate L-PFUO
until the posterior distribution stabilizes, i.e., the change in
the posterior distribution is below a specified threshold. This
simple stop condition indicates the convergence of L-PFUO
algorithm to a stable solution. In contrast, there does not seem
to exist any condition on the number of particles N that would
indicate reaching a stable solution of PFUO.

6 MULTI ROBOT MAP MERGING

In this section, we describe an illustrative application of the
proposed framework to the problem of merging partial maps
acquired by multiple robots. We use map merging as an
illustrative instance of the jigsaw puzzle problem where the
individual puzzle pieces are the local maps which have to
be put together into a full global map. The goal becomes to
estimate the poses of the individual maps such that all the
individual maps align into a consistent global map.

6.1 System Description

We have a team of m robots that built m local maps, Z =
{z1, . . . , zm}. Each map is represented as a 2D occupancy grid
with three types of cells representing free space, obstacles, and
unknown space. Some maps have partial overlap, i.e., they
have common parts, while some do not have any overlap.
Let X = {x1, . . . , xm} be the poses of the local maps in
a global reference frame that need to be estimated. Without
getting into full details we explain the two most important
components needed in importance weighting and proposal
distribution viz. p(Z|x(i)

<1:t−1>,s) and ps(x|x(i)
<1:t−1>). More

details on the system can be found in [4]. An example result
is shown in Fig. 2.

6.2 Importance weights

The importance weights depend on how well the partial
maps fit together. We denote with M

(i)
<1:t−1>,s a partially

assembled map of particle (i) obtained by putting the local
maps z<1:t−1>,s at poses x

(i)
<1:t−1>,s in the global coordinate

system. We define

p(Z|x(i)
<1:t−1>,s) = Ψ(M<1:t−1>,s) · γ(M<1:t−1>,s) (29)

where Ψ is computed following the description in [5]. The
basic idea is to treat the images as arrays of pixels (occupancy
grid) and reward matching pixels based on their values and
relative positions. The arrays are scanned for each class of
pixels (obstacles, free space, and unknown). For each pixel,
the distance to its closest similarly valued pixel in the other
image is computed and its score is taken to be proportional to a
Gaussian transform of this distance. Fortunately the distances
can be computed in linear time in the number of pixels in the
images using ”distance-maps” [5].

γ is designed in such a way that its magnitude is made
proportional to the merge inconsistency. The inconsistency of a
merge is defined as the mismatch in the perception of the robot
between two differently calculated positions. The mismatch in
robot perception is based on the number of disagreeing pixels
in the two images. Thus its computation involves similar steps

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Fig. 2. Merged maps of 3, 5, 6 and 10 robots. The map indices are placed at the local origins of the individual maps.
The sequence of the maps merged is shown in the respective titles.

as those for Ψ. The larger the number of matching pixels
(c1 = c2), the larger Ψ is. In contrast to this, the smaller the
number of mismatched pixels (c1 �= c2), the larger γ is.

¡Why do we need γ?¿

6.3 Proposal distribution

The discrete probability distribution function (pdf),
ps(x|x(i)

<1:t−1>), is simulated using “structure registration“
among local maps. The initial distribution is uniform and
can pick any of the local maps, which becomes the reference
coordinate (global) frame in which the puzzle is completed.
The poses of rest of the puzzles are determined in reference
to this frame. Pose of each frame can be imagined at the
center of each of the puzzle.

Similar structures among local maps are extracted and
registered using closed form solutions like in [6]–[8]. The
correspondences are obtained by shape matching between
similar structures. There could be several similar structures
between local maps zt and xu. As a consequence, our proposal
distribution is usually multi-modal with peaks around the
poses predicted using structure registration. We note that each
possible pose update is actually a transformation of the local
map, zs, into the global frame of M<1:t−1>,s.

6.4 Experimental Results

We applied our technique to the data collected by National
Institute of Standards and Technology (NIST) in a ”maze” type
of environment1. We are provided only with the local maps

1. We would like to thank Raj Madhavan (NIST) for providing the dataset.

without any initial estimate of the relative poses. For feature
extraction we fit lines to the data points and determine corners.
For typical indoor local maps, corners are sufficiently distinct
feature descriptors to represent the environment structure. On
average there were about 10 corners in a local map and there
were about 5 matching corner pairs between two local maps.
Fig. 2 shows maps of best particles at iterations 3, 5, 6 and
10, which corresponds to global maps merged from local
maps of 3, 5, 6 and 10 robots. As can be seen we could
successfully merge maps of 10 robots. As virtual trajectory we
list the state dimensions, which are the indices of the robots,
used to build the global maps at corresponding iterations. We
observe that at different iterations the order is different, which
nicely illustrates the fact that the proposed framework explores
different orders of particles.

7 OBJECT DETECTION AND RECOGNITION BY
GROPING CONTOUR FRAGMENTS

7.1 System Description

In this section we present an application of the proposed
framework to object detection and recognition in images. Two
detection examples are illustrated in Fig 3. The white curves
show edge fragments obtained by edge detection. The contour
segments that form detected horses in these images are marked
with colors, where the colors indicate the order of detecting
and localizing these segments. We observe that the two orders
are different, which nicely illustrates the advantages of the
proposed framework, e.g., the best particle for the image
shown in (b) begins with the state dimension representing the
position of the horse head, which makes sense intuitively, since

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

the head contour can be clearly identified in (b). The situation
is different in (a), where the horse head is positioned in the
cluttered background. The first dimension of the best particle
in (a) represents the the state of a front leg.

(a) (b)

Fig. 3. Examples of two different inferred orders of de-
tected contour parts. Colors represent the order, which is
1=red, 2=cyan, 3=blue, 4=green, 5=yellow, and 6=black.

Our detection is model driven, where a model is defined
by the contour of an example object of a given class that
can be hand drawn or extracted from an example image,
e.g., see the apple logo in Fig. 4. Since edge fragments in
real images may be broken and may have missing parts, we
decompose our model contour into possibly overlapping model
contour segments S = {s1, . . . , sk}, which are grouped into
part bundles. An example bundle decomposition is shown
in Fig. 4. The main constraint for the bundle design is to
ensure that a rough shape sketch obtained by selecting one
part form each bundle still resembles the model contour. A
cognitive motivation behind our bundle decomposition scheme
is that an object can be recognized even if some parts of it
are missing, as can be observed in Fig. 5. There are several
reasons why parts of objects can be missing in real images:
occlusion, missing or weak edge information, and failures of
edge detection algorithms. The selection of parts and their
grouping into bundles was designed manually. We have one
part bundle model per shape class.

Fig. 4. The contour model of the apple and the cor-
responding part bundles. The contour is shown in the
center. The 11 contour fragments are decomposed into
four part-bundles.

Formally, B = {Bk}m
k=1, where Bk ⊂ S and m ≤ k, is

a part bundle decomposition of S if and only if
⋃B = S

and Bi

⋂
Bj = ∅ for i, j = 1, ..., m and i �= j. For example,

the part bundle decomposition of the apple logo in Fig. 4 is
composed of 11 contour segments grouped into four bundles
i.e.,k = 11 and m = 4. The four bundles are represented
by four RVs. In general, if a model is composed of m
part bundles, our goal is to estimate the states of m RVs
X1, . . . , Xm. The values of each RV Xt range over a 4D
parameter space xt = (st, ht, vt, αt), where st is an index of
a selected segment from the part bundle Bt, (ht, vt) describe
the horizontal and vertical coordinates of the centroid of this
segment on the image, and αt describes its orientation. (We
assume that the scale is known, but it is also possible to
estimate it in our framework).

Our shape model M of a given object class is composed of
the part bundle B and a set of contours of positive instances of
objects in this class. The instances represent shape constraints
of the object class. We measure the similarity of deformed
parts on the image (due to rotation αt) to the set of the instance
contours in order to ensure that the deformed model fragments
still resemble the shape of object in this class.

Fig. 5. Parts of the objects are missing both due to
missing edges and due to broken edge links.

The two phases of the proposed algorithm L-PFUO have
a natural interpretation in this framework. Given a particle
x

(i)
1:t−1, at steps t = 2, . . . , m we construct a rough shape

sketch of the model shape in the edge image. Then for
t > m we loop over the RVs and refine the placement of the
model segments on the image with possibly selecting different
segments form the same bundle. Intuitively this means that the
particles first trace a rough shape before adjusting the shape
details. Of course, we can achieve the same effect with our
first algorithm PFUO if we simply have a larger number of
particles.

7.2 Importance Weights

The weight of each particle is computed based on the shape
similarity of the contour constructed from the selected model
segments and the edges in the image. We compute it as
a Gaussian of the Oriented chamfer matching (OCD) [9].
However, we also need to consider the deformation of the
model introduced by the rotation of the model segments
on the image. We measure this deformation as similarity to
known positive model instances. To be more precise, in this
application we have a static set of observations Z = (I,M),
where I is a given edge image and M is a model of a given
shape class, since both I and M are known and fixed. Since
and I and M can be viewed as independent conditioned on
x

(i)
<1:t−1>,s we obtain:

p(Z|x(i)
<1:t−1>,s) = p(I|x(i)

<1:t−1>,s)p(M|x(i)
<1:t−1>,s). (30)

The first factor defines the probability that the model parts
positioned on the image according to the parameters of particle

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

x
(i)
<1:t−1>,s led to the edges around them in the edge map I

and we define it as

p(I|x(i)
<1:t−1>,a) = exp(−β · OCDI(x

(i)
<1:t−1>,s)), (31)

where OCDI returns the Oriented Chamfer distance. Con-
sequently, OCDI measures how well the constructed partial
model matches to the edge map I .

The second factor in (30) allows us to ensure that the rotated
model parts on the image still resemble objects in the given
shape class. It can be expressed as similarity of the model
parts on the image (deformed by rotations α t) to the set of
the instance contours, which is also measured with OCD.

7.3 Proposal Distribution

In order to execute the derived PF algorithm, it remains to
define the proposal distribution. The initial proposal distribu-
tion ps(x) is simply the probability of finding a model part
from part bundle Bs at each location in the image I . It is
obtained as a Gaussian of the OCMI computed in the sliding
window fashion at every location in I . In our application,
the conditional proposal distribution ps(x|x(i)

<1:t−1>) is the
probability of finding a model part from part bundle B s around
the locations of the previously positioned parts according to
the parameters of particle x

(i)
<1:t−1>, i.e., the location of a

model part from part bundle Bs is constrained by the already
positioned model parts. It is also computed as a Gaussian of
the OCMI . While the initial proposal distribution is computed
at every image location, the conditional proposal distribution
is only computed at regions of interest determined by the
previously placed model parts.

7.4 Experimental Results

This section is based on our experimental evaluation reported
in [10]. Specific implementation details of our shape similarity
and model construction can be found in [10].

We have tested our algorithm on three widely used data
sets: the extended Weizmann Horses [11], [12], the ETHZ
shapes [13] and the TU Darmstadt Database [14]. During the
testing for Weizmann Horses, only 12 automatically selected
horse silhouettes with one hand decomposed horse are used
to learn the shape model. All the other images are used
for testing. The edge maps for this dataset are obtained by
Canny edge detector. We also test our method on the class
of giraffe in ETHZ shape dataset [13]. The reason why we
only select the category giraffes from ETHZ is that our model
learning method can only transfer between objects with similar
structure and giraffe is the only object in ETHZ having similar
structure to horse. Only one hand decomposed horse and 6
automatically selected giraffe silhouettes are used to learn the
giraffe model. Further, we work on the cow dataset the TU
Darmstadt Database [14], since cows have similar structure
with the above two classes. It contains 111 images. Only
one hand decomposed horse and 6 automatically selected cow
silhouettes are used to learn the cow model. The edge maps
for this dataset are obtained by Canny edge detector.

To adapt to large scale variance, we generate multiple
models by resizing the original ones to 5 to 8 scales, and

choose as the final result from the best score in all the
scales. We not only report our results on the commonly
used bounding box intersection, but also the accuracy of our
boundary localization.

We first evaluate the ability of the proposed approach to lo-
calize objects in cluttered images using bounding-box intersec-
tion, which is widely used in traditional object detection task.
We adopt the strict standards of PASCAL Challenge criterion:
a detection is counted as correct only if the intersection-over-
union ratio with the ground-truth bounding-box is greater than
50%.

Fig. 6 reports precision-recall (P/R) curve and detection
rate vs false positive per image (DR/FPPI) curve for the class
Giraffes in ETHZ dataset [13]. In P/R, we compare to Lu et
al. [15], Zhu et al. [16], Ommer and Malik [17] and Ferrari et
al. [13], whose results are quoted from [15]. In DR/FPPI, as
Ferrari et al. [13], [18], Ommer and Malik [17] and Lu et al.
[15] provide their results, we compare to them. As Ravishankar
et al. [19] do not give their curves, we do not compare to them
in Fig. 6. According to the curves, we are better than Lu et
al. [15], Ommer and Malik [17], Ferrari et al. [13], [18] and
perform equally well as Zhu et al. [16]. The performance of the
proposed method illustrates its ability to cope with substantial
nonrigid deformations, which are present in the class Giraffes.
This is demonstrated by our example results in Fig. 7(a).

Table 1 compares our detection rate to [12], [20] on Weiz-
man Hores and TU Darmstadt Cows. The detection rate on
horses is estimated from the DR/FPPI curve in [12]. The
DR/FPPI curve for cows is not available in [12]. The method
in [20] is also matching based, while [12] is a classification
method. Some examples of our horse and cow detection results
are shown in Fig. 7(b). The detection precision/recall area
under curve (AUC) is a standard performance measure on
the Weizmann Horses dataset. The AUC for our approach is
79.84%, which is comparable to the result 80.32% in Xiang
et al. [21]. We compare to them as they also use the explicit
shape model and matching based method for object detection.
The AUC of classification based methods [12], [22] is 84.98%
and 96%, respectively. We observe that classification based
methods are bounding box classifiers and utilize significantly
more information than matching based methods as ours. This
explains why our detection rate and AUC is lower than [12],
[22].

TABLE 1
Detection rate.

Our method Zhu et al. [20] Shotton et al. [12]
Horses 93.97% 86.0% 95.20%
Cows 90.38% 88.6% N/A

The proposed approach can not only succeed in extensive
cluttered images, but also handles the problem of large range
of scales and intra-class variability. This is demonstrated by
several examples in Fig. 7. The images in the bottom right of
Fig. 7(a) with red rectangles are the ones we fail to detect.
The images of horses in Fig. 7(b) with red rectangles are
false positives in the negative images provided by Shotton
et. al. [12] to complement the Weizmann horse dataset. They

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

Ommer and Malik

ICCV 09

Ommer and Malik

ICCV 09

Fig. 6. Precision-recall curve and detection rate (DR) vs false positive per image (FPPI) curve for the class Giraffes in
ETHZ dataset.

(a) (b)

Fig. 7. Examples of detection results for Giraffes, horses and cows.

show that the false positives in the negative set are caused
by really very cluttered edges or by the structure of edges
happening to match to the model very well. Interestingly, the
rightmost false positive of horses is due to a camel, whose
shape is very similar to that of a horse.

The statistical inference framework presented in this paper
offers one important advantage compared to texture based and
classification methods like [22]–[24]. It can localize object
boundaries, rather than just bounding-boxes.

In order to quantify how accurately the output shapes match
to true boundaries, we use the coverage and precision measures
defined in [13]. Coverage is the percentage of points from
ground-truth boundaries closer than a threshold t to the output
shapes of the proposed approach. Reversely, precision is the
percentage of points from output shapes closer than t to
any point of ground-truth boundaries. As in [13] t is set to
4% of the diagonal of the ground-truth bounding box. The
measures are complementary. Coverage captures how much
of the object boundary has been recovered by the algorithm,
whereas precision reports how much of the algorithm’s output
lies on the object boundaries. These measurements seem to
be more suitable for evaluating shape based approaches than
bounding-box evaluation, which cannot quantify the accuracy
of contour localization. It is possible to have bounding-box
intersection larger than 0.5 without having correctly identified
the ground-truth object boundaries. Two examples of horse
detection are shown in Fig. 7(b) with green rectangles.

The first two columns of Table 2 show coverage and pre-
cision averaged over all images of the class giraffes in ETHZ
dataset in comparison to the results in [13]. We measure the
coverage and precision for the correct detections at 0.4 FPPI,
following [13]. The coverage of the proposed approach is over
11% better than [13], which shows that our approach can
efficiently recover the true boundary of objects. The precision
is a little lower than [13]. More importantly, the detection rate
at our 0.4 FPPI is 86.75%. However, even for 20% bounding
box intersection, the detection rate at 0.4 FPPI in [13] is only
around 60% , which is significantly lower than our result.

For horses and cows, the coverage and precision are ob-
tained over all correct detections. The third column of Table.
2 shows the coverage and precision of the proposed method
on the Weizmann Horse dataset. As the edges are significantly
worse than the ones provided for the giraffes, both measures
are worse than the results on giraffes. The coverage and
precision results for cow are shown in the fourth column
of Table. 2. Due to less intra-shape variance, the precision
is 92.02%, which is much higher than giraffes and horses.
However, the coverage is only 73.86%. The main reason for
the difference between these two values is that our model has a
gap, since we removed the contour part representing the horse
tail from the horse contour used for part decomposition. Thus,
even if the model and object match perfectly, the coverage
score cannot be perfect (see examples in Fig. 7).

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

TABLE 2
Accuracy of the boundary localization.

Ours Results in [13] Ours Ours
on giraffes on giraffes on horses on cows

Coverage 79.4% 68.5% 77.5% 73.86%
Precision 74.6% 77.3% 61.7% 92.02%

8 RELATED WORK

Particle filters (PF) are also known as sequential Monte Carlo
methods (SMC) for model estimation based on simulation.
There is large number of articles published on PF and we
refer to two excellent books [25], [26] for an overview. To our
best knowledge, the proposed PF framework with unordered
observations is novel and has not been considered before by
other authors. PF can be viewed as a powerful inference
framework that is utilized in many applications. One of the
leading examples is the progress in robot localization and
mapping based on PF [1]. Particle filter (PF) has been used for
object detection previously [27], [28]. They mainly utilize PF
in the classical tracking/filtering scenario with a pre-defined
order of states and observations. In contrast, our method
explores different orders of states and observations on the fly
and let particles follow the most informative orders, which is
theoretically quite different from the traditional PF framework.

The proposed PF framework is also related to Gibbs sam-
pling. The algorithm for Gibbs sampling was first introduced
in the seminal paper by Geman and Geman [29]. Since
then there have been many sampling algorithms like Gibbs
sampler, e.g., Hot Coupling [30], Tree sampling, Swendsen-
Wang sampling etc. But most of them assume restrictive
conditional independencies. Recently Hamze et. al. proposed
a very generic importance sampling method called Large Flip
Importance Sampling (LFIS) to sample from the posterior [31].
The main motivation for their approach comes from N-Fold
Way [32] and Tabu search [33], where they use heuristics
to improve the sampling of the exponential state space using
memory and heuristics to design good moves in the state space.
Since the moves are no-longer MCMC in the traditional sense
they introduce importance weights to the distinct states visited
by N copies of the sampler. In this paper we combine the
strengths of both PF and Gibbs sampler based approaches.
In particular, our approach can be viewed as improved Gibbs
sampler that employs the PF weighting scheme as well as the
PF resampling scheme.

A preliminarily version of the proposed PF inference
framework has also been applied to object detection and
recognition in [15], where the shape similarity was based
on direct matching of model contour parts to image contour
fragments. The presented PF inference framework has been
first applied to object detection and recognition in [10]. This
article focused on theoretical presentation of the proposed
PF inference framework and provides derivation of all key
formulas as well as proves their theoretical properties.

ACKNOWLEDGMENTS

The work has been supported in part by the NSF Grants
IIS-0812118, BCS-0924164, the AFOSR Grant FA9550-09-

1-0207, and the DOE Award 71498-001-09.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press Cambridge, 2005.

[2] N. Gordon, D. Salmond, and A. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” in Radar and Signal
Processing, IEE Proceedings of, vol. 140, April 1993, pp. 107–113.

[3] J. Carpenter, P. Clifford, and P. Fearnhead, “Building robust simulation-
based filters for evolving data sets,” Dept. of Statistics, University of
Oxford, Tech. Rep., 1999.

[4] N. Adluru, L. J. Latecki, M. Sobel, and R. Lakaemper, “Merging maps
of multiple robots,” in ICPR, 2008.

[5] A. Birk and S. Carpin, “Merging occupancy grid maps from multiple
robots,” in Proceedings of the IEEE, vol. 94, July 2006, pp. 1384 –
1397.

[6] B. K. P. Horn, H. M. Hilden, and S. Negahdaripourt, “Closed-form
solution of absolute orientation using orthonormal matrices,” Journal of
the Optical Society of America, vol. 5, no. 7, pp. 1127–1135, 1988.

[7] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America, vol. 4, no. 4,
pp. 629–642, 1987.

[8] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of
two 3-d point sets,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 9,
no. 5, pp. 698–700, 1987.

[9] J. S. abd A. Blake and R. Cipolla, “Multi-scale categorical object
recognition using contour fragments,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 30, no. 7, pp. 1270–1281, 2008.

[10] X. Yand and L. J. Latecki, “Weakly supervised shape based object
detection with particle filter,” in ECCV, 2010.

[11] E. Borenstein, E. Sharon, and S. Ullman, “Combining top-down and
bottom-up segmentation,” in POVC, 2004.

[12] J. Shotton, A. Blake, and R. Cipolla, “Multi-scale categorical object
recognition using contour fragments,” IEEE Trans. on PAMI, vol. 30,
no. 7, pp. 1270–1281, 2008.

[13] V. Ferrari, F. Jurie, and C. Schmid, “From images to shape models for
object detection,” IJCV, vol. 87, no. 3, 2010.

[14] B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization
and segmentation with an implicit shape model,” in Proceedings of the
Workshop on Statistical Learning in Computer Vision, Prague, Czech
Republic, May 2004.

[15] C. Lu, L. J. Latecki, N. Adluru, X. Yang, and H. Ling, “Shape guided
contour grouping with particle filters,” in ICCV, 2009.

[16] Q. Zhu, L. Wang, Y. Wu, and J. Shi, “Contour context selection for
object detection: a set-to-set contour matching approach,” in ECCV,
2008.

[17] B. Ommer and J. Malik, “Multi-scale object detection by clustering
lines,” in ICCV, 2009.

[18] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “From images to shape
models for object detection,” IEEE Trans. PAMI, vol. 30, no. 1, pp.
36–51, 2008.

[19] S. Ravishankar, A. Jain, and A. Mittal, “Multi-stage contour based
detection of deformable objects,” in ECCV, 2008.

[20] L. Zhu, Y. Chen, and A. Yuille, “Learning a hierarchical deformable
template for rapid deformable object parsing,” IEEE Trans. PAMI,
vol. 99, no. 1, 2009.

[21] X. Bai, X. Wang, L. J. Latecki, and Z. Tu, “Active skeleton for non-rigid
object detection,” in ICCV, 2009.

[22] J. Gall and V. Lempitsky, “Class-specific hough forests for object
detection,” in CVPR, 2009.

[23] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005.

[24] C. Desai, D. Ramanan, and C. Fowlkes, “Discriminative models for
multi-class object layout,” in ICCV, 2009.

[25] A. Doucet, N. D. Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. Springer-Verlag, 2001.

[26] J. Liu, Monte Carlo strategies in Scientific Computing. Springer-Verlag,
2001.

[27] S. Ioffe and D. Forsyth, “Probablistic methods for finding people,” IJCV,
2001.

[28] ——, “Finding people by sampling,” in ICCV, 1999.
[29] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and

the bayesian restoration of images,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 6, no. 6, p. 721741, 1984.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

[30] F. Hamze and N. de Freitas, “Hot coupling: A particle approach to
inference and normalization on pairwise undirected graphs of arbitrary
topology,” in NIPS, 2005, pp. 1–8.

[31] ——, “Large-flip importance sampling,” in UAI, 2007.
[32] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, “A new algorithm for

monte carlo simulation of ising spin systems,” Journal of Computational
Physics, vol. 17, pp. 10–18, 1975.

[33] G. F., “Tabu search - part i,” ORSA Journal on Computing, vol. 1, no. 3,
pp. 190–206, 1989.

