
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

CVPR
#****

CVPR
#****

CVPR 2009 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Particle Filter Estimation of Posterior Densities

Anonymous CVPR submission

Paper ID ****

Abstract

1. Background

Our goal is to compute a posterior distribution
p(X1, . . . , Xm | Z), where (X1, . . . , Xm) is a vector of
random variables (RVs) and Z = {z1, . . . , zm} is a set of
observations. This will allow us to find value assignments
Xt = x̂t for t = 1, . . . , m to RVs that maximize this poste-
rior:

x̂1:m = argmax
x1:m

p(X1 = x1, . . . , Xm = xm | Z), (1)

where x1:m = (x1, . . . , xm) ∈ Xm is a state space vector.
As it is commonly the case, we will abbreviate

p(X1 = x1, . . . , Xm = xm | Z) = p(x1:m | Z).

We will achieve our goal by approximating the posterior
distribution with a final number of samples in the frame-
work of Bayesian Importance Sampling (BIS). Since it is
usually difficult to draw samples from the pdf p(x1:m|Z),
we will draw samples x

(i)
1:m ∼ q(x1:m|Z) for i = 1, . . . , N

from a proposal pdf q, form which samples are easily gen-
erated. Then approximation to the density p is given by

p(x1:m|Z) ≈
N∑

i=1

w(i)δ(x1:m − x
(i)
1:m), (2)

where δ is the Dirac delta function and

w(i) =
p(x(i)

1:m|Z)

q(x(i)
1:m|Z)

(3)

are normalized weights (so that they sum to one).
Since it is still hard to draw samples from q due to high

dimensionality of x1:m, Sequential Importance Sampling
(SIS) is usually utilized. Following the order of dimensions
in the vector of RVs X = (X1, . . . , Xt) samples are gener-
ated

x
(i)
t ∼ q(xt|x1:t−1, Z) = q(xt|x1:t−1, z1:t) (4)

for t = 2, . . .m, and the particles are built sequentially
x

(i)
1:t = (x(i)

1:t−1, x
(i)
t) for i = 1, . . . , N . Since q factorizes

as

q(x1:m|Z) = q(x1|Z)
m∏

t=2

q(xt|x1:t−1, Z), (5)

we obtain that x
(i)
1:m ∼ q(x1:m|Z).

The weights are recursively updated according to

w(x(i)
1:t) =

p(zt|x(i)
1:t, z1:t−1)p(x(i)

t |x(i)
1:t−1)

q(x(i)
t |x(i)

1:t−1, z1:t)
w(x(i)

1:t−1).

(6)

We show now that by recursively updating the weights ac-
cording to (6) for t = 2, . . . , m, the weight w(x(i)

1:m) of
particle (i) is equal to w(i).

w(x(i)
1:t) =

p(x(i)
1:t|Z)

q(x(i)
1:t|Z)

=
p(x(i)

t |x(i)
1:t−1, Z) p(x(i)

1:t−1|Z)

q(x(i)
t |x(i)

1:t−1, Z) q(x(i)
1:t−1|Z)

=
p(x(i)

t |x(i)
1:t−1, Z)

q(x(i)
t |x(i)

1:t−1, Z)
w(x(i)

1:t−1) (7)

=
p(Z|x(i)

1:t)

p(Z|x(i)
1:t−1)

p(x(i)
t |x(i)

1:t−1)

q(x(i)
t |x(i)

1:t−1, Z)
w(x(i)

1:t−1) (8)

Eq. (8) follows from (7) by Bayes rule interchanging x
(i)
t

and Z in p(x(i)
t |x(i)

1:t−1, Z). It remains to show that the first

fraction in (8) is equal to p(zt|x(i)
1:t, z1:t−1). This is true,

since by keeping in mind that Z = z1:t and by factorizing
we obtain

p(Z|x(i)
1:t) = p(zt|x(i)

1:t, z1:t−1) p(z1:t−1|x(i)
1:t−1)

= p(zt|x(i)
1:t, z1:t−1) p(Z|x(i)

1:t−1) (9)

We have just derived the SIS theorem:
Theorem. By sampling particles according to (4) and
weighting them according (6), we obtain a set of weighted
samples form p(x1:m|Z) once t = m. Consequently, we

1

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#****

CVPR
#****

CVPR 2009 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

can approximate p(x1:m|Z) with any precision if the num-
ber of particles N is sufficiently large. Thus, we can write

p(x1:m|Z) ≈
N∑

i=1

w(x(i)
1:t)δ(x1:m − x

(i)
1:m), (10)

A common assumption underlying the equations (4) and
(6) is that there exist two known functions f and h such that

xt = f(xt−1) + ut (11)

zt = h(xt) + vt (12)

where both ut and vt are mutually independent and identi-
cally distributed sequences with known probability density
functions (pdfs). Often they are assumed to be Gaussians
that model state prediction noise ut and observation noise
vt. (The assumption in (11) can be replied by a weaker one:
xt = f(x1:t−1) + ut, i.e., that we can determine xt if we
know all previous states x1:t−1. For the simplicity of pre-
sentation we will use (11).

The equation (6) can be simplified by making a com-
mon assumption that q(x(i)

t |x(i)
1:t−1, z1:t) = p(x(i)

t |x(i)
1:t−1),

which yields

w(x(i)
1:t) = w(x(i)

1:t−1)p(zt|x(i)
1:t, z1:t−1), (13)

and, consequently, the samples are generated from

x
(i)
t ∼ p(x|x(i)

1:t−1), (14)

i.e., the current observations z1:t−1 have no direct influence
on the samples. The influence of observations on the sam-
ples is introduced when particles are resampled according
to their weights, which is a common step in PF algorithms,
since particle weights depend on observations.

As a summery of this section, we outline a standard PF
algorithm. For every time step t = 1, . . . , m and for every
particle i = 1, . . . , N execute the following three steps:
1) Importance sampling / proposal: Sample followers of
particle (i) according to (4) and set x

(i)
1:t = (x(i)

1:t−1, x
(i)
t).

2) Importance weighting / evaluation: An importance
weight is assigned to each particle x

(i)
1:t according to (6).

3) Resampling: Sample with replacement N new particles
form the current set of particles according to the weights.
We obtain a set of new particles x

(i)
1:t for i = 1, . . . , N all

with weight of 1/N . This procedure is called Sampling Im-
portance Resampling (SIR) approach ¡cite¿.

2. New Approach

We illustrate our key ideas on an example of multi robot
localization. A team of m robots obtained m observations
Z = {z1, . . . , zm} by exploring their environment, where
observation zt comes from robot t. For example, if the

robots are equipped with laser range scanners, then each
zt could be a vector of laser range readings representing
distances to the closest obstacles from the robot t. Each RV
Xt describes robot poses, i.e., its values xt represent coordi-
nates and the heading direction of the robot t. Our goal is to
determine the state vector of robot poses (x1, . . . , xm) in a
given top view map of the environment that maximizes the
posterior distribution p(X1, . . . , Xm|Z). In other words,
(x1, . . . , xm) is a vector of most likely robot poses given
the measurements Z .

It is possible to apply the classical PF robot local-
ization by utilizing the order of the observations Z =
{z1, . . . , zm}, which follows the numbering of the robots.
Hence the follower for each particle (i) is determined by im-
portance sampling from the proposal distribution, i.e., sam-
ple x

(i)
t ∼ p(x|x(i)

1:t−1) and the particle weight is updated
based on the evaluation of the observation z t according to
the recursive formula in Eq. 13. However, by doing so, we
would have selected an arbitrary order, and in particular,
if the robot localization task fails, it could be due to the
selected order. Would we have selected a different order,
the localization task could have been successful. Moreover,
the observations Z = {z1, . . . , zm} are collected simulta-
neously at the same time. i.e., after each robot completed its
exploration. Consequently, there is no reason to favor any
particular order without utilizing further information.

In the proposed approach, the order of the observations
is not predetermined, in particular, we do not follow the or-
der of indices of the observations in Z . Our key idea is to
utilize the PF framework to determine the most informa-
tive order of the observations. This way we are able to si-
multaneously find the most informative order and to utilize
the observations in the order of their informativeness. In-
tuitively, it make sense, for example, if the first robot took
its laser readings in the middle of a along a long corridor
and the second robot at the entrance to a room with many
distinctive features, then our approach will first process the
laser readings obtained by the second robot, since they are
more informative.

We stress that the SIS in Eq. 4 and particle evaluation
in Eq. 6 utilize the sequential order of the RVs reflected
in the order of dimensions in the state space (x1, . . . , xm).
In many applications, this order is determined naturally by
the time stamp of the observations, e.g., a single robot is
collecting laser measurements at consecutive time points,
in which case xt denotes the robot pose at time t. The goal
of our work is to extend SIS to applications in which there is
no natural order of observations like the case of multi robot
localization.

The key idea of the proposed approach is not to utilize
the fix order of the dimensions, but instead compute the best
possible order of the dimensions (xi1 , . . . , xim) (or equiva-
lently RVs) so that the corresponding sequence of observa-

2

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

CVPR
#****

CVPR
#****

CVPR 2009 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

tions Z = (zi1 , . . . , zim) is most informative. For this we
extend the underlying assumption (11) to the existence of a
sequence of functions

xs = fs|k(xk) + us,k forall s, k ∈ {1, . . . , m}, (15)

which means that all RVs depend on each other, and each
function fs|k can determine the value of variable s for any
given value xk of variable k. In our multi robot mapping
example, fs|k allows to determine the pose of robot s when
we know the pose of robot k. Consequently, (15) means
that each robot knows the relative pose of the other robots.
In comparison, in the standard assumption (11), we have
f = ft|t−1, i.e., we only can determine the value of the
next state.

We observe that now the sequence of states visited before
time t is not a sequence of consecutive numbers (1, . . . , t−
1) but any subsequence (i1, . . . , it−1) formed by t−1 differ-
ent numbers in {1, . . . , m}, and the function fs|k allows us
to determine not only the value of the next state but values
of all remaining states. Due to noise factor us,k, each value
xs is an estimate or prediction of a true unknown value.
Since a given state xs can be determined based on all the
states in the current sequence, we can combine all the pre-
dictions fs|ik

(xik
)+us,ik

for k = 1, . . . , t−1 and improve
the accuracy of the estimation of the state xs.

The proposed sampling is as follows. At iteration t, the
assumption (15) allows us to generate m − t + 1 samples
from

x
(i)
is

∼ pis|it−1(x|x(i)
i1:t−1

) for s ∈ {t, . . . , m}. (16)

Hence at iteration t particle (i) has m − t + 1 followers.

For example, if m = 5 and x
(i)
i1:3

= x
(i)
1,5,3, then particle

(i) will have two followers x
(i)
2 and x

(i)
4 . With reference to

our multi robot example, when we determined the locations
of robots 1, 3, 5, we consider the two remaining robots 2
and 4 as the next robot whose pose we want to determine
by particle (i). The poses of robots 2 and 4 are determined
with reference to the pose of robot 3 as the last element of
the sequence 1, 5, 3. Of course, we repeat an analogous
process for each particle (i) for i = 1, . . . , N , where N is
the number of particles.

In contrast, in the standard application of rule (14), at
each iteration t particle (i) has one follower. Even when
sometimes each particle (i) has many followers, all follow-
ers are in the same dimension, which means that we only
determine possible locations of say robot 2 by the follow-
ers and do not consider locations of robot 4 for particle (i),
since a strict order of the state dimensions is followed in the
classical setting.

3. Particle Filter with Static Observations

Our derivation is analog to the PF derivation, but it dif-
fers fundamentally, since unlike the standard PF framework,
the observations Z do not arrive sequentially, but are avail-
able at once. To simplify the notation we replace the double
indexing of the state variables x

(i)
is

with a bijection (onto and
one-to-one function) < · >(i): {1, . . . , m} → {1, . . . , m}.
Although we may have a different bijection for each parti-
cle, we will drop the index (i) from < 1 : t >(i), since
the state variables carry the particle index. For example, we
will denote (x(i)

i1
, x

(i)
i2

, x
(i)
i3

) = x
(i)
i1:3

as x
(i)
<1:3>.

We derive now the recursive weight update formula for
the static observations Z . For every t from 2 to m, we have

w(x(i)
<1:t>) =

p(x(i)
<1:t> | Z)

q(x(i)
<1:t> | Z)

=
p(x(i)

<t>|x(i)
<1:t−1>, Z) p(x(i)

<1:t−1>|Z)

q(x(i)
<t>|x(i)

<1:t−1>, Z) q(x(i)
<1:t−1>|Z)

=
p(x(i)

<t>|x(i)
<1:t−1>, Z)

q(x(i)
<t>|x(i)

<1:t−1>, Z)
w(x(i)

<1:t−1>)

=
p(Z|x(i)

<1:t>)p(x(i)
<t>|x(i)

<1:t−1>)

p(Z|x(i)
<1:t−1>)q(x(i)

<t>|x(i)
<1:t−1>, Z)

w(x(i)
<1:t−1>)

(17)

To obtain the last equation, we apply Bayes rule to decom-
pose p(x(i)

<t>|x(i)
<1:t−1>, Z) that interchanges x

(i)
<t> and Z .

As it is often the case in PF applications, we assume that
q(x(i)

<t>|x(i)
<1:t−1>, Z) = p(x(i)

<t>|x(i)
<1:t−1>). Using this

simple exploration based proposal the weight recursion in
(17) becomes:

w(x(i)
<1:t>) = = w(x(i)

<1:t−1>)
p(Z|x(i)

<1:t>)

p(Z|x(i)
<1:t−1>)

(18)

By recursive substitution of weights in (18), i.e., by ap-
plying (18) to w(x(i)

<1:t−1>), w(x(i)
<1:t−2>), . . . , w(x(i)

<1:2>),
we obtain

w(x(i)
<1:t>) = w(x(i)

<1:t−2>) �������
p(Z|x(i)

<1:t−1>)

p(Z|x(i)
<1:t−2>)

p(Z|x(i)
<1:t>)

�������
p(Z|x(i)

<1:t−1>)

= · · · = w(x(i)
<1>)

p(Z|x(i)
<1:t>)

p(Z|x(i)
<1>)

(19)

Under the assumption that all particles have the same initial
weight w(x(i)

<1>) and the same initial observation probabil-

ity p(Z|x(i)
<1>) for i = 1, . . . , N , we obtain

w(x(i)
<1:t>) = p(Z|x(i)

<1:t>) (20)

3

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

CVPR
#****

CVPR
#****

CVPR 2009 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Since for t = m we have w(x(i)
<1:m>) = w(x(i)

1:m), we
obtain that the weights computed by the recursive formulas
(18) - (20) are equal to the weights in Eq. (3).

For comparison, the corresponding weight update in the
standard PF framework ([5]) is

w(x(i)
1:t) = w(x(i)

1:t−1) p(zt|x(i)
1:t−1, xt), (21)

where zt denotes the new observations obtained at time t.
Because our observations Z do not have any natural order,
Z cannot be expressed as a sequence of observations. We do
not make any Markov assumption in the proposed formula
(20), i.e., the new state x

(i)
<t> is dependent on all previous

states x
(i)
<1:t−1> for each particle (i).

We outline now the proposed PF algorithm with static
observations (PFSO). For every time step t = 1, . . . , m and
for every particle i = 1, . . . , N execute the following three
steps:
1) Importance sampling / proposal: Sample followers of
particle (i) for s ∈ {1, . . . , m}\ < 1 : t − 1 >

x(i)
s ∼ ps|<t−1>(x|x(i)

<1:t−1>) (22)

and set x
(i)
<1:t−1>,s = (x(i)

<1:t−1>, x
(i)
s). This step is possi-

ble by assumption (15). We sample one follower for each
RV Xs whose dimension index s is not in < 1 : t − 1 >.
Consequently, we have m− t + 1 followers at step t. In the
first iteration (t = 1) we generate m samples

x
(i)
<1> = x(i)

s ∼ ps(x) for s ∈ {1, . . . , m}. (23)

2) Importance weighting/evaluation: An individual im-
portance weight is assigned to each follower of each particle
according to Eq. 20.
3) Resampling: At the sampling step we sample more fol-
lowers than the number of particles. Thus we have a larger
set of particles x

(i)
<1:t−1>,s for i = 1, . . . , N and

s ∈ {1, . . . , m}\ < 1 : t − 1 >

from which we sub-sample N particles and assign qual
weights to all of them as in the standard Sampling Impor-
tance Resampling (SIR) approach ¡cite¿. We obtain a set of
new particles x

(i)
<1:t> for i = 1, . . . , N . The resampling is

not performed in the last step, i.e., when t = m.

Theorem. The PFSO algorithm computes an approxima-
tion of Eq. 2, i.e., for t = m the particles x

(i)
<1:t> with

i = 1, . . . , N provide an approximation to the posterior
p(x1:m|Z) for sufficiently large N , i.e.,

p(x1:m|Z) ≈
N∑

i=1

w(x(i)
1:m)δ(x1:m − x

(i)
1:m). (24)

Proof. Our proof is based on Eq. (24) with weights defined
in Eq. (3). We observe that the weights computed by the
recursive formulas (18) - (20) are equal to the weights in
Eq. (3), since for t = m we have w(x(i)

<1:m>) = w(x(i)
1:m).

The Sampling Importance Resampling (SIR) replaces
weighted particles with N particles with the weight equal
to 1/N , which provides an approximation to the same tar-
get pdf. This proves the theorem.

The fact that we can consider more than one follower
of each particle and reduce the number of followers by re-
sampling is known in the PF literature and is referred to as
prior boosting [2, 1]. It is used to capture multi-modal like-
lihood regions. We stress that the resampling plays in our
framework an additional and a very crucial role. It selects
the the most informative random variables (i.e., state space
dimensions) as followers of particles. Since the weight of
x

(i)
<1:t−1>,s is determined by the observations Z , and the re-

sampling uses the weights to selects a follower x<t> = xs

from not yet considered dimensions

s ∈ {1, . . . , m}\ < 1 : t − 1 >,

the resampling determines the order of RVs, i.e., the bijec-
tion < t > for t = 1, . . . m. Consequently, the order of RVs
is heavily determined by Z , and this order may be different
for each particle (i). This is in strong contrast to the classi-
cal PF, where observations Z have no influence on the order
of RVs, which is fixed.

The weight (20) of each particle is based on the evalu-
ation how the predicted observations h(x(i)

<1:t−1>,s) differ
from the current observations z<1:t−1>,s. Consequently, in
the proposed approach, the weights of different particles are
evaluated with respect to different observations. Thus, in
the proposed approach the value of the weight depends on
two factors,

• how descriptive a given vector of observations
z<1:t−1>,s is and

• how good the prediction h(x(i)
<1:t−1>,s) of observation

z<1:t−1>,s is.

4. Rao-Blackwellized Particle Filter

The following derivation is inspired by Rao-
Blackwellized particle filter often used in SLAM [3].
Our goal is to derive the posterior p(x1:m, μ|Z) not only
over the set of stats x1:m but also over possible shape
models μ. To make this estimation possible, we use the
following factorization

p(x1:t, μ|Z) = p(μ|x1:t, Z) p(x1:t|Z) (25)

for t = 1, . . . , m. This factorization allows us to first es-
timate only the set of states and then compute the shape

4

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

CVPR
#****

CVPR
#****

CVPR 2009 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

model. The key assumption here is that the shape model
is a deterministic function of the set of states. Hence, the
posterior over models p(μ|x1:t, Z) can be computed ana-
lytically since x1:t, Z are known. This technique is often
referred to as Rao-Blackwellization.

By substituting Eq. (25) to Eq. (24), we obtain

p(x1:m, μ|Z) ≈ p(μ|x1:m, Z)
N∑

i=1

w(x(i)
1:m)δ(x1:m − x

(i)
1:m)

=
N∑

i=1

p(μ|x1:m, Z)w(x(i)
1:m)δ(x1:m − x

(i)
1:m) (26)

By denoting u(x(i)
1:m) = p(μ|x(i)

1:m, Z)w(x(i)
1:m), we obtain

p(x1:m, μ|Z) ≈
N∑

i=1

u(x(i)
1:m)δ(x1:m − x

(i)
1:m), . (27)

Consequently, if we modify the weight (20) of each particle
to

u(x(i)
<1:t−1>) = p(μ|x(i)

<1:t−1>, Z)p(Z|x(i)
<1:t−1>), (28)

we obtain a PF algorithm that estimates the posterior
p(x1:t, μ|Z).

5. Improved Importance Sampling from MRFs

In this section we will develop the key motivational story
behind our work i.e. sampling from the posterior distri-
bution of a Markov Random Field. As is well known in
computer vision community many low level problems have
been modeled using MRFs. A limited work is done in mod-
eling mid-level and high-level problems using MRFs not
because they cannot be modeled in such a way but the in-
ference process becomes computationally hard. In fact for
a general MRF, inference becomes NP-hard. This is be-
cause inference in MRFs is closely related to assignment
problems. Except for simple costs of assignments the as-
signment problem quickly turns out to be intractable. Our
contribution is to be able to infer to a reasonable degree
on the problem instances of contour grouping and object
recognition where we can exploit certain results from im-
portance sampling theory to effectively navigate the expo-
nential space of assignments. this has applications in clus-
tering, object recognition, contour grouping and any gen-
eral applications where inferences can be modeled using
Markov Random Fields or Conditional Random Fields.

6. Markov Random Fields

Let S = {s1, s2, . . . , sm} be a family of random
variables (RVs), which take the values ei ∈ E =
{e1, e2, . . . , en}. E is called a set of labels. si = ei de-
notes the random event that the RV si gets ei assigned. If f

is a short hand for (s1 = e1, s2 = e2, . . . , sm = em) and S
forms a MRF as per definitions in [?]:

p(f) =
1
Z

e−
1
T U(f) (29)

where Z is the normalizing constant and T is the tem-
perature parameter determining the sharpness of the distri-
bution: high-temperature makes all configurations equally
likely since the effect of U(f) goes down. Simply put
e−

1
T U(f) → 1 as T → ∞.
At given T and particular U we can sample “patterns” of

assignments by sampling from p.
The state space to be explored to understand the patterns

of the posterior p is nm. At lower T s it finding Maximum
A Posteriori (MAP) estimates of p has important applica-
tions in high-level vision problems. Thus one of the goals
of sampling from MRF is:

f̂ = argmax
f∈ES

p(f) (30)

There have been many sampling algorithms like Gibbs sam-
pler, Hot Coupling ([4]), Tree sampling, Swendsen-Wang
sampling etc. But most of them assume restrictive condi-
tional independences. Recently Hamze et. al. proposed a
very generic importance sampling method called Large Flip
Importance Sampling (LFIS) to sample from the posterior
[?]. The main motivation for their approach comes from N-
Fold Way (NFW, [?]) and Tabu search ([?]) where they use
heuristics to improve the sampling of the exponential state
space using memory and heuristics to design good moves
in the state space. Since the moves are no-longer MCMC in
the traditional sense they introduce importance weights to
the distinct states visited by N copies of the sampler. Inde-
pendently there has been an application of similar strategy
using particle filters with static observations in [?]. In this
paper we combine the strengths of both the approaches and
present an improved sampler that employs better weigthing
scheme and navigational strategy to explore state space so
as to compute MAP in an efficient way.

We first present a brief overview of both the approaches
and then combine both into an integrated approach.

6.1. Large Flip Importance Sampling

Sampling algorithms used in computer vision often tend
to use different terminology which might makes things a
bit difficult to understand convergence complexity issues.
Hence, even though the Gibbs sampler is the simplest
MCMC sampler for MRF we would like to present the al-
gorithm below so as to make the connections between dif-
ferent approaches explicit. where fi indicates the random
event si = ei. The above algorithm shows that the invari-
ance kernel at a particular iteration above, for MCMC type

5

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

CVPR
#****

CVPR
#****

CVPR 2009 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Algorithm 1 Gibbs sampler

1: Initialize a sample: f (0) =(
s
(0)
1 = e

(0)
1 , s

(0)
2 = e

(0)
2 , . . . , s

(0)
m = e

(0)
m

)
.

2: for i = 1 to T do
3: Draw f

(i)
1 ∼ p(f1|f (i−1)

2 , f
(i−1)
3 , . . . , f

(i−1)
m).

4: Draw f
(i)
2 ∼ p(f2|f (i)

1 , f
(i−1)
3 , . . . , f

(i−1)
m).

...

5: Draw f
(i)
m ∼ p(fm|f (i)

1 , f
(i)
2 , . . . , f

(i)
m−1).

6: end for
7: Return {f (1), f (2), . . . , f (T)}.

convergence is defined as:

K(f, f ′) =
1
m

m∑
i=1

p(fi|fM\i) (31)

The convergence condition says

‖K(T)(f (0), f ′) − p(f ′)‖ → 0, as T → ∞ (32)

As can be seen from above there are two computational
complexity issues in a sampling algorithm viz. (1) sim-
ulation complexity, (2) optimization complexity. Simu-
lation complexity is because of the computations needed
in drawing the samples while the optimization complex-
ity involves T . The longer one runs the algorithm the
closer one gets to the optimum. Of course in the most
general case T can be exponentially large. Most practi-
cal algorithm designs involve in reducing T so as to visit
non-trivial and important states of ES as soon as possible
without wasting computing resources. Such design algo-
rithms are called event driven MCMC approaches. Moti-
vated from NFW (algorithm below) LFIS was developed
to address the “cycling” problem of NFW. where f̂ (i) =

Algorithm 2 N-Fold Way

1: Initialize a sample: f̂ (0) =(
s
(0)
1 = e

(0)
1 , s

(0)
2 = e

(0)
2 , . . . , s

(0)
m = e

(0)
m

)
.

2: for i = 1 to T do
3: Draw τ ∼ Geometric(pflip(f̂

(i−1)
1 , f̂

(i−1)
2 , . . . , f̂

(i−1)
m)).

4: Draw f̂ (i) ∼ ν(j, e, f̂ (i−1)).
5: Set Θi = Θi + τ .
6: end for
7: Return {f̂ (1), f̂ (2), . . . , f̂ (T)}.

f (Θi...Θi+1−1) i.e. the above algorithm avoids visiting du-
plicate states and the actual mixing time of the equiva-
lent Gibbs sampler is ΘT . Hence NFW effectively re-
duced the mixing time by cleverly covering more states
in less time. Geometric(pflip(f̂

(i−1)
1 , f̂

(i−1)
2 , . . . , f̂

(i−1)
m)) is

the probability that the f̂ (i−1) changes over the next itera-
tion. ν(j, e, f̂ (i−1)) is the discrete posterior probability of
the joint event ”variable j assumes value e” given that a
change in state occurred, i.e. f̂ (i) �= f̂ (i−1). Essentially the
NFW simulates T − 1 flips.

One reason for longer mixing times for some posteriors
is the conditionals involved in the kernel can make the state
not change i.e. f = f ′ for a long time. NFW exploits
the clever perspective of “simulating” the long waiting time
if the conditionals for change of state space visited can be
computed. The main problem involved is in computing this
“change conditionals” which if not computed using exhaus-
tive flips can result in “cycling” of the states i.e. same states
get visited over and over again instead of visiting new states.
LFIS avoids this by having explicit memory and running N
copies of the sampler. After the run it computes importance
weights to each of the unique states visited as follows:

w(i) =
p(f̃ (i))∑SL

i=1 p(f̃ (i))
(33)

where SL ⊂ ES . These importance samples represent the
posterior p(f |SL) instead of p(f). Obviously if the algo-
rithm is run long enough SL → ES and the samples repre-
sent the posterior p(f).

Algorithm 3 Large Flip Importance Sampling

1: Initialize a sample: f̂ (0) =(
s
(0)
1 = e

(0)
1 , s

(0)
2 = e

(0)
2 , . . . , s

(0)
m = e

(0)
m

)
.

2: k = 1.
3: Γk ∼ U [Γmin, Γmax]
4: n = 0.
5: F k

0 = φ.
6: for i = 1 to T do
7: Draw f̂ (i) ∼ ν(j, e, f̂ (i−1)).
8: Fk

n = Fk
n−1 ∪ f̂ (i).

9: n = n + 1.
10: if n = Γk then
11: k = k + 1.
12: Γk ∼ U [Γmin, Γmax]
13: n = 0.
14: F k

0 = φ.
15: end if
16: end for
17: Pick all the unique states, {f̃ (i)}T

i=1, from {Fk
Γk
} for

all available k.
18: Assign importance weights to those unique states as per

Eq. (33).
19: Return {(f̃ (1), w(1)), (f̃ (2), w(2)), . . . , (f̃ (T), w(T))}.

6

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

CVPR
#****

CVPR
#****

CVPR 2009 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6.2. Particle Filters with Static Prior

Another recent work that uses importance sampling for
sampling from MRF is in [?]. Owing to the similarity to
the notations used in robot mapping, they call it particle
filters with static prior. There the idea is to sample states
sequentially and in such a way that samples build-up the as-
signments bottom-up using clever conditionals. Below we
summarize that approach using the terminology used in this
paper. f<1:t> denotes t random variables are instantiated
not necessarily s1 through st. Also p(f<t>|f<1:t−1>) de-
notes the conditional probability distribution of instantiat-
ing a random variable which has not been instantiated so
far.

Assume there are N particles. Let’s take a closer look
at the journey of one particle. By definition f<1:m> ≡ f

Algorithm 4 Particle filter with static prior
1: for i = 1 to N do
2: Draw f

(i)
<1> ∼ p(f<1>).

3: Set w
(i)
<1> = p(f (i)

<1>).
4: Draw f

(i)
<2> ∼ p(f<2>|f<1>(i)).

5: Set f
(i)
<1:2> = {f (i)

<2>, f
(i)
<1>}.

6: Set w
(i)
<1:2> = w

(i)
<1> ∗ p(f (i)

<2>|f<1>(i)).
...

7: Draw f
(i)
<m> ∼ p(f<m>|f (i)

<1:m−1>).
8: Set f

(i)
<1:m> = {f (i)

<m>, f
(i)
<1:m−1>}.

9: Set w
(i)
<1:m> = w

(i)
<1:m−1> ∗ p(f (i)

<m>|f (i)
<1:m−1>).

10: end for
11: Return {(f (1)

<1:m>, w
(1)
<1:m>), (f (2)

<1:m>, w
(2)
<1:m>), . . . , (f (N)

<1:m>, w
(N)
<1:m>)}.

since f has m random variables. Since there are only
m random variables the equivalent of number of itera-
tions (T) in Gibbs sampler needed is only m. The impor-
tance samples {(f (i)

<1:m>, w
(i)
<1:m>)} represent the posterior

p(f<m>|f (i)
<1:m−1>). But there are three key observations:

• If N is large enough and the conditionals are designed
properly the samples would represent non-trivial pat-
terns in the posterior and since in [?] the goal was to
identify good matching between model and image con-
tours the samples were able to serve the purpose.

• The samples are weighted incrementally using recur-
sive importance weighting unlike LFIS where the sam-
ples are weighted at the end of the sampling process.
For derivations of the recursive importance weighting
please refer to [?].

• Although the samples are not generated in a standard
MCMC fashion like Gibbs sampler the importance
weighting and the conditional distributions result in
useful samples. This is the key basis for LFIS also.

Acknowledgments

This work was supported in part by NSF IIS-0812118
and by DOE DE-FG52-06NA27508 grants. N. Adluru is
supported by CIBM and MIR at the UW-Madison.

References

[1] J. Carpenter, P. Clifford, and P. Fearnhead. Building robust
simulation-based filters for evolving data sets. Technical re-
port, Dept. of Statistics, University of Oxford, 1999. 4

[2] N. Gordon, D. Salmond, and A. Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. In Radar
and Signal Processing, IEE Proceedings of, volume 140,
pages 107–113, April 1993. 4

[3] G. Grisetti, C. Stachniss, and W. Burgard. Improved tech-
niques for grid mapping with rao-blackwellized particle fil-
ters. IEEE Trans. on Robotics, 23:34–46, 2007. 4

[4] F. Hamze and N. de Freitas. Hot coupling: A particle approach
to inference and normalization on pairwise undirected graphs
of arbitrary topology. In NIPS, pages 1–8, 2005. 5

[5] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
The MIT Press Cambridge, 2005. 4

7

