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Abstract

Suppose that we have a matrix of dissimilarities between n images of a database. For a new image, we would like to select
the most similar image of our database. Because it may be too expensive to compute the dissimilarities for the new object to
all images of our database, we want to 5nd p�n “vantage objects” (Pattern Recognition 35 (2002) 69) from our database
in order to select a matching image according to the least Euclidean distance between the vector of dissimilarities between
the new image and the vantage objects and the corresponding vector for the images of the database. In this paper, we treat
the choice of suitable vantage objects. We suggest a loss measure to assess the quality of a set of vantage objects: For every
image, we select a matching image from the remaining images of the database by use of the vantage set, and we average the
resulting dissimilarities. We compare two classes of choice strategies: The 5rst one is based on a stepwise forward selection
of vantage objects to optimize the loss measure. The second is to choose objects as representative as possible for the whole
range of the database.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we deal with the following problem: Sup-
pose that we have a database of n images (objects). The in-
formation about the images is given in form of n(n − 1)=2
dissimilarities between them. For a new image, we would
like to select the most similar image from our database. This
requires the computation of n dissimilarities. Suppose that
there is some computational e@ort to calculate a single dis-
similarity, and that it is feasible to calculate a small num-
ber of dissimilarities, say 20 or 40, but not all n. Vleugels
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and Veltkamp [1] suggest the following strategy: Choose
a suitable number p of objects from the database as “van-
tage objects”. Calculate the dissimilarities between the new
object and the vantage objects. Interpret every object in
the database, as well as the new object, as a p-dimensional
vector in the Euclidean space, namely as the vector of
dissimilarities to the vantage objects. Select the object in
the database, whose vector of dissimilarities to the vantage
objects has the smallest Euclidean distance to the vector
of the new image. This means that for the classi5cation
of the new image only p dissimilarity calculations are
needed.

The question arises how to choose the vantage objects.
Vleugels and Veltkamp [1] suggest some heuristic strate-
gies. We present here a data driven approach to measure the
quality of a set of vantage objects by means of a loss func-
tion and we suggest and compare some strategies to 5nd
high quality sets. If p would be so small that evaluation of
the loss of all ( np ) vantage sets of size p would be possible,
the loss function could be optimized directly.
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There are two well-known problems in multivariate statis-
tics that have some similarities to the vantage object prob-
lem: As in the variable selection problem in classi5cation
[2, Chapter 6], a subset of a “feature set” (namely the set
of objects, variables, respectively) is to be constructed in
order to perform a computationally easier classi5cation on
the base of this subset. Secondly, there are some methods to
look for “representative objects” of a dataset in the context
of cluster analysis, see [3, Chapter 2].

The loss function and some of the suggested strategies
are inspired by an old data-analytic idea, namely the prin-
ciple of cross-validation (A general account is given by
Stone [4]). In general, this means that a rule for statisti-
cal prediction or classi5cation can be assessed by divid-
ing a dataset in two parts. One is used for the develop-
ment of the rule, the other for the assessment of its quality.
“Leave-one-out”, a more re5ned form, is used frequently for
variable selection in classi5cation, beginning with Lachen-
bruch and Mickey [5]. The principle here is as follows: If
we have a training sample of n objects, each of them be-
longing to a known of k possible classes, and we want to
assess the quality of a classi5cation rule based on p of
q features to classify a new observation into one of the
classes, we divide the dataset n times (for each object) in
parts of 1 and n − 1 objects, respectively. Then we treat
the class of the single object as unknown and classify it
on the base of the other n− 1 objects. The misclassi5cation
rate gives a good loss measure for the discriminant rule, and
features can be chosen byminimizing this experimental error
rate.

The vantage object problem needs another kind of loss
measure, which is de5ned in Section 2. As long as no simple
probability models for object distances are available, there
are no standard statistical competitors for data driven meth-
ods such as cross-validation.

For large p, the loss measure cannot be optimized di-
rectly. In Section 3, we discuss a strategy to 5nd vantage
objects which optimize the loss measure locally on the base
of a stepwise forward algorithm as used often for vari-
able selection in discriminant analysis and linear regression,
see e.g. [6, Chapter 15]; [2, Chapter 6], and on the base
of cross-validation. They can be compared with alternative
strategies, which try to 5nd objects which, in some manner,
represent the whole database. The strategy of Vleugels and
Veltkamp [1] belongs to this class as well as the search for
objects representing clusters in the data. Such techniques are
discussed in Section 4. Some extensions of our approach are
introduced in Section 5.

In Section 6, we apply the strategies to four databases
where three di@erent dissimilarity measures between the im-
ages are used.

The direct optimization of the loss measure on the
database leads to a certain bias, if it is interpreted as an
estimator for the loss of the selection of similar images
for new objects. This bias is assessed in Section 7. Some
discussion is given in Section 8.

2. The loss measure

Let A be our database of |A|= n objects. The aim of this
section is to de5ne a measure for the selection loss of a
vantage object set V ⊂ A with |V |= p�n.
Firstly we give a mathematical model of the selection

procedure of the most similar objects from the database A
for a given 5xed set V ⊂ A with |V | = p¡n of vantage
objects.

Let D(q; r) with D(q; q)= 0 and D(q; r)=D(r; q) denote
the dissimilarity between the objects r and q. An example is
given by Latecki and LakKamper [7]. Let ṽ(q)=(D(q; a))a∈V
the vector of dissimilarities from object q to the vantage
objects, i.e., vi(q); i = 1; : : : ; p; denotes the dissimilarity to
the vantage object of ith smallest index, and let dV (q; r) =
‖̃v(q)− ṽ(r)‖ the Euclidean distance between ṽ(q) and ṽ(r).
When the retrieval in the image database A is based on

the set of vantage objects V , then for a query image q the
best matching image s1(q; A) in A to q is usually chosen as
the image with the smallest Euclidean distance dV (q; r) for
r ∈A (for example, this is the case in [1]). Thus,

s1(q; A) = argmin
r∈A

dV (q; r); (1)

where arg minr∈A denotes the element in A for which the
minimum value minr∈A dV (q; r) is reached.

Compared to the selection of the best matching image
from A for some query image, the vantage object approach
leads to some loss in the retrieval performance. To model the
extent of this loss, we de5ne a “loss function” l(q; s1(q; A))
that speci5es the loss for the selection corresponding to a
query object q.

One clearly would like that the dissimilarity value D be-
tween the query image q and the most similar object s1(q; A)
retrieved for q is as low as possible. Ideally s1(q; A) should
be the element with the smallest dissimilarity value for all
elements of A, i.e., D(q; s1(q; A)) should be lower or equal
to D(q; r) for all r ∈A and r �= s1(q; A). This leads us to the
following de5nition of the loss function:

l0(q; s1(q; A)) = D(q; s1(q; A)): (2)

Note that a loss of 0 can only be reached if identical im-
ages, i.e., images with dissimilarity 0 from the query ob-
jects, are present in the dataset. Therefore, in most cases the
optimal possible value of l0 will be larger.

Alternatives for the selection rule (1) and the loss function
(2) are given in Section 5.

Given a loss function l, the quality of a selection rule SV
based on vantage objects V can be assessed by the overall
loss function

L(s1) =
1
n

∑
a∈A
l(a; s1(a; A\{a})); (3)

that is, L(s1) is the average loss over all n objects of A
under selection from A, where a is left out. Here, as in
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leave-one-out cross-validation, every single a mimics a
query object while A\{a} mimics the database.

3. Stepwise approximate minimization of the overall loss

We now consider the form of the selection function hV
and the loss function l as given, but not the vantage set
V . The natural approach to 5nd V would be to optimize
the overall loss L subject to |V | = p or |V |6 q for some
upper bound q. But this requires the evaluation of L for ( np )
candidate vantage sets, which is computationally intractable
even for moderate p. Another approach would be to choose
the p best objects a according to L(S{a}), but this cannot
be expected to lead to satisfactory results because usually
many of the found objects represent about the same selection
information and thus most of them could be omitted without
considerable loss.

To 5nd a vantage set which minimizes L approximately,
we adopt another strategy from the variable selection prob-
lem in data-analytic setups like discriminant analysis and re-
gression, namely the stepwise forward selection (SFS); (see
e.g. [6, Chapter 15]). The idea is that we search for the opti-
mal set with one element 5rst. Then we look for the optimal
pair including the optimal 5rst element and so on. Formally

V = {a1; : : : ; ap}; ai = argmin
a∈A\{a1 ;:::;ai−1}

L(S{a1 ;:::;ai−1 ;a}):

(4)

This reduces the number of evaluations of L to n+ (n−
1) + · · · + (n − p + 1), while the resulting L(SV ) can be
expected to be a reasonable approximation to the global
minimum. We call the whole strategy de5ned now stepwise
forward leave-one-out (SFLOO).

Up to now we have considered the case of a pre-speci5ed
5xed number p of vantage objects. In linear regression the
SFS can be complemented by an automatic choice of the
number of features based on statistical tests. This is not
possible here. An idea is to stop the enlargement of V when
L is increased for the 5rst time by the addition of the best new
vantage object. As can be seen in Section 6, our experience
is that sometimes surprisingly early some V is found where
L does not get smaller by the addition of any single object.
However, in such situations it makes almost always sense
to add further vantage objects because L is again decreased
later, so that we cannot recommend to stop if L is increased
for the 5rst time. For similar reasons, it does not seem to be
worth the e@ort to adopt some modi5cations to SFS, e.g.,
combination of SFS and backward elimination as suggested
in [6, Chapter 15].

A better idea would be to specify a penalty term C(p),
increasing in p, which speci5es the “cost” to have p vantage
objects in a manner comparable to the selection loss. Then
SFS may be used to minimize approximately L(SV )+C(p)
subject to |V |6 q. In our examples, however, we restricted
our attention to a pre-chosen p.

4. Alternative strategies

The calculation of the qth vantage object among the re-
maining n−q+1 non-vantage objects according to SFLOO
requires n−q+1 times the calculation of the selection func-
tions for (n− q)(n− 1) objects, i.e. it is of order n3. Even
though the vantage set has to be determined only once for
a given database, this may take too much time for larger
databases.

Here, are some useful strategies to determine p vantage
objects with smaller computational e@ort. Their results can
be compared by calculation of the overall loss function L,
as is done for our examples in the Sections 6 and 7.

CV(t): This strategy replaces the leave-one-out
cross-validation by a less computer intensive cross-validation
scheme. Draw randomly without replacement two disjoint
samples T1 and T2 of test objects from A, both of size t.
Then, L from (3) can be replaced by

L̂(SV ) =
1
t

∑
a∈T1
l(a; SV (a; T2)); (5)

that is, instead of selecting an object from A\{a} for each
a∈A, only objects from a selection set T2 are selected for
objects from a test set T1. The vantage objects can now be
chosen according to (4) with L replaced by L̂. A second dif-
ference is that only images from A\(T1∪T2) should become
vantage objects, because the values of L̂ are not comparable
for the objects of T1 and T2 to those for the rest of A. The
order of the number of selection function evaluations is nt2,
and test sets of size t between 100 and 1000 should work
well and much faster than SFLOO. One could wonder, why
we do not take a single test sample T and assign all a∈ T in
the LOO style to the elements of T\{a}. In our experience,
the relation between quality and computing time is more fa-
vorable when operating with disjoint test and selection sets
T1 and T2.
NCV(t): The CV(t)-strategy has the disadvantage that not

all elements of A can get into V . A slight variation consists in
drawing new test and selection sets T1(V ); T2(V ) from A\V
for each candidate vantage set V occurring during the SFS.
If we introduce T1(V ); T2(V ) in (5), we can again optimize
(4) over all V={a1; : : : ; ap−1; a}; a∈A\{a1; : : : ; ap−1}. The
advantage is paid by the fact that the estimated loss for the
choice of a as a new vantage object does not base on the
same test sets for all a, and some images may be favored by
the drawing of a test and selection set which 5t extraordinary
well. The e@ect of this problem may however be small for
a not too small p and t.
MAXIMIN: Vleugels and Veltkamp [1] suggest to take

a 5rst vantage object randomly. Then, the second object
should be the object with maximum distance to the 5rst, and
the further vantage objects are chosen in order to maximize
the minimum distance to one of the previous vantage objects.
The idea behind this strategy is that the vantage objects are
thought to represent as good as possible the variety of the
objects of the database.
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CLUSTER: The same goal could be attained by perform-
ing a cluster analysis on the objects of A and choosing rep-
resentative objects for the clusters. There are many methods
of cluster analysis, some of them operating on dissimilarity
matrices, others on Euclidean vectors. We have chosen a
clustering algorithm which 5ts directly to our problem, i.e.,
a method that extracts p medoid objects m1; : : : ; mp ∈A in
order to minimize the objective function∑
a∈A

min
j=1;:::;p

D(a; mj);

that is, every object is assigned to the nearest medoid. The
method was introduced in [3, Chapter 2] and is implemented
in the statistical packages SPLUS and R. Unfortunately, the
computational e@ort for large datasets is high and we were
only able to apply the method to the smaller of our two
example databases. The result is somewhat disappointing,
and therefore we refused to try other clustering approaches
which may be computationally easier, but match our pur-
poses less clearly.

1LOO: The last strategy is included only for comparison
and consists of taking the best p objects from the 5rst step
of SFLOO, that is, the objects with lowest L(S{a}). This
requires as well O(n3) evaluations of the selection function,
but it is more than p times faster than SFLOO because
our selection functions increase in complexity with |V |. As
remarked earlier, 1LOO cannot be expected to be a good
strategy, because the vantage objects may get too similar.

Note that only SFLOO, CLUSTER and 1LOO lead to a
deterministic choice of the vantage set. The other methods
depend on random initializations.

5. Extensions

The selection rule (1) and the loss function (2) from Sec-
tion 5 are not the only reasonable choices. In this section,
we discuss some alternatives.

Rule (1) has the form

s1(q; A) = argmin
r∈A

hV (q; r);

where we call hV “selection function”. hV (q; r) = dV (q; r)
is the easiest choice, but we observed that the weighted
distance

hV (q; r) = wV (q; r) =
p∑
i=1

|vi(q)− vi(r)|
0:3 + vi(q)

led to somewhat better results for the database A3 discussed
in Section 6. This is reasonable because it may be expected
that near vantage objects, i.e., objects with small vi(q), give
better information about q, and such objects get a larger
weight in the computation of wV .

The loss function l0 may be replaced by a more re5ned
version as well:

lc(q; SV (q; A)) = min[D(q; s1(q; A)); c];

where c is some cuto@ value with the interpretation that
c should be the smallest distance value such that a cho-
sen object r with D(q; r) = c is considered as a de5nitely
inadequate matcher for q. The reason for introducing c is
that from the viewpoint of application, it does not matter if
D(q; s1(q; A))= c or D(q; s1(q; A))=1000c, if s1(q; A) is in-
adequate in each case, but the di@erence in distance would
strongly a@ect the overall loss L de5ned in (3), if l0 would
be chosen as the loss function. The cuto@ idea stems from ro-
bust statistics and was previously used in a cross-validation
context by Ronchetti et al. [8]. It is most useful if the value
range of the dissimilarities is very large.

For some applications it may be of interest to retrieve
more than one similar image from the database for a given
query image q. In this case, we may wish to 5nd vantage
objects that minimize a loss function depending not only on
the 5rst selected image. For this purpose we de5ne si(q; A)
as the object r ∈A with ith smallest value 1 of hV (q; r);
i = 1; : : : ; n. Let k be the number of selected objects of in-
terest and let SV (q; A) = (s1(q; A); : : : ; sk(q; A)) denote the
whole selection. Thus, SV (q; A) is the list of the 5rst k best
matching images in A for a given query image q.

For the case that k selected objects are of interest, we
de5ne

lk(q; SV (q; A)) =

(
k∑
i=1

zi

)−1 k∑
i=1

zihV (q; si(q; A)); (6)

where zi ¿ 0; i= 1; : : : ; k; are weights corresponding to the
relative importance of the ith best selected object. Further
reasonable loss functions can be imagined easily.

6. Examples

We compared the vantage sets V from several choice
strategies applied to four databases by evaluation of the
overall loss function L(SV ), where SV (q; A)=s1(q; A) unless
stated explicitly.

The 5rst example database A1 consists of 1100 shapes of
5shes form
http://www.ee.surrey.ac.uk/Research/VSSP/

imagedb/demo.html.
The database has been used in [9], where the use of a

new dissimilarity measure between shapes is proposed. This
measure is a pseudo-metric, i.e., it is symmetric and satis5es
the triangle inequality and each object has dissimilarity 0
to itself. The measure is applied to boundary contours of
2D objects. First feature points are extracted from boundary
contours, such as edge and corner points. The set of features
of one object is then translated, rotated, and scaled so as
to minimize some similarity function with respect to the
features from the other object.

1 For ease of notation we assume that the object leading to the
ith smallest value is always unique.

http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html.
mailto:imagedb/demo.html.
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Table 1
Database A1: Comparison of several strategies for vantage object
choice (loss function l0, selection function dV )

Strategy p L(SV )

Optimal 0.1171
V = A 1100 0.1345
Demo default 12 0.1535
SFLOO 12 0.1410
MAXIMIN 12 0.1544
CLUSTER 12 0.1552
CV(100) 12 0.1538
NCV(100) 12 0.1516

Table 2
Database A2: Comparison of several strategies for vantage object
choice (loss function l0, selection function dV )

Strategy p L(SV ) R(SV )

Optimal 0.0458 0.951
V = A 100 0.0516 0.927
SFLOO-l0 4 0.0480 0.925
SFLOO-l9 4 0.0546 0.920
MAXIMIN 4 0.0552 0.910
CLUSTER 4 0.0729 0.898

The results from our strategies are given in Table 1.
A demonstration of image retrieval with A1 can be found
on http://give-lab.cs.uu.nl/Matching/ptd/. The
vantage object approach is demonstrated as well, based on 12
given default vantage objects (which can be changed manu-
ally). These objects are referred to as “demo default”, 2 and
this has been the reason why our comparisons are based on
12 vantage objects.

Further, we calculated the optimal possible value of
L(SV ), i.e. the average loss under selection of the image
b0 ∈A for a with b0=argminb �=a D(a; b). We also calculated
the overall loss for V = A, i.e., the set of vantage objects is
the whole database. It could be believed that the obtained
value approximates the best value of L(SV ) to be attained
by use of the method of vantage objects. However, it can-
not be expected in general that V = A minimizes the loss
over all V , and sometimes much smaller vantage sets can
do better, as can be seen in the second example (Table 2).

SFLOO gives clearly the best results for this database,
while the di@erences between the losses of the other

2 As far as we know, the demo default objects result from an
application of MAXIMIN. The result may di@er from our MAX-
IMIN result because MAXIMIN depends on chance. The demo
default objects are 2, 12, 22, 107, 307, 427, 450, 648, 800, 861,
999, 1025. We obtained 157, 565, 757, 592, 1090, 34, 434, 653,
600, 942, 49, 266 from SFLOO.

strategies are small and might be explained by the random
variations of MAXIMIN, CV and NCV alone.

The database A2 contains only 100 images from movies.
The images can be seen on www.cis.temple.edu/
∼latecki/ImSim. The advantage of this database is that
a ground truth retrieval rate is known. There are 10 images
from each sequence, so that there are 10 known classes of
images. That is, the results obtained from our strategies can
be compared with the true retrieval rate.

Let k = 10 be the size of the classes and m = 10 be the
number of classes. With SV (q; A) = (s1(q; A); : : : ; sk(q; A)),
and g(q)∈{1; : : : ; m} denoting the class of object q, the
retrieval rate is de5ned as the proportion of objects of the
correct class among the 5rst k retrieved objects:

R(SV ) =
1
nk

∑
a∈A

|i∈{1; : : : ; k}: g(a) = g(si(a; A))|: (7)

By convention, a = s1(a; A) is included in the calculation
of R.
To generate the database A2, we used the metric of Hu and

Mojsolovic [10], which is applied to measure dissimilarity
of digital color images. The 5rst step of distance computa-
tion is to obtain a compact, perceptually relevant representa-
tion of the color content of an image. This representation is
obtained by a kind of rough segmentation of a given image
to obtain perceptually dominant colors. Once the dominant
colors are extracted, the image is represented as a vector of
pairs (Ii; Pi), where Ii is the index to a color in a particular
color codebook and Pi is the area percentage occupied by
that color. The actual distance between two images is com-
puted by 5nding the optimal mapping function between their
vector representations that minimizes the overall mapping
distance.

We decided to work with 4 vantage objects because the
sequences stem from 4 movies. The results are shown in Ta-
ble 2. The entry for “optimal R(SV )” is based on the 10 most
similar images for every image; the theoretically maximal
possible value for R(SV ) is of course 1.000. “SFLOO-l9”
means that the SFLOO strategy is used to optimize the loss
based on l9 as de5ned in (6). The weights are chosen as
z1 = · · · = z9 = 1. The reason for using this loss function
here is that the retrieval rate is based on the choice of the
9 best matching images for a query image (plus the query
image itself). We try to simulate the situation that we do
not know the correct classes, but we know that 9 matching
images (all of the same importance) for a query image are
to be found. L(SV ) is nevertheless computed on the base of
l0 for all strategies. In this example, the use of l9 does not
pay, because SFLOO-l0 is not only the best with respect
to L(SV ), but also with respect to the retrieval rate. Its
value of L(SV ) is even better than that of V = A. However,
SFLOO-l9 gives almost the same retrieval rate, and the idea
of using more than one selected object is supported by the
results of Table 6 in Section 7. Note that Table 2 shows a
good correspondence between the quality ranking in terms
of our loss function L(SV ) and in terms of the retrieval rate.

http://give-lab.cs.uu.nl/Matching/ptd/.
http://www.cis.temple.edu/~latecki/ImSim.
mailto:~latecki/ImSim.
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Fig. 1. Database A3: Some shapes from the manual chosen set of vantage objects.

This can be seen as a justi5cation for the choice of our loss
function.

MAXIMIN and CLUSTER are clearly worse with respect
to both criteria. The strategies CV(t) and NCV(t) are in-
tended to reduce the computational e@ort of SFLOO. There-
fore they are only recommended for t much smaller than
n=2. We did not apply them to A2 because for such t this
database is too small to form reliable subsets and SFLOO
is fairly fast.

The two databases A3 and A4 are composed from im-
ages retrieved from the Internet. Some images are shown in
Fig. 1. The dissimilarities between images were computed
on the base of their shapes using the shape similarity mea-
sure de5ned in [7]. It is designed to compare the shapes of
silhouettes of 2D objects. To reduce inQuence of digitiza-
tion noise as well as segmentation errors the shapes are 5rst
simpli5ed by a novel process of digital curve evolution. To
compute the similarity measure, the best possible correspon-
dence of visual parts is established 5rst. Then the similarity
between corresponding parts is computed and aggregated.
The obtained shape similarity measure does not obey the
triangle inequality. It achieved an excellent retrieval per-
formance in Core Experiment CE-Shape-1 of the MPEG-7
standard [11].

For the A3-database, we tried to choose the objects so that
we cover as many di@erent shapes of objects as possible. We
also tried to cover all classes of the common everyday shapes
of man-made and natural objects, like shapes of cars, tools,
humans, animals, and plants. A3 consists of 1189 shapes.
The A4 database is an extension of A3 to 8090 images.

The results 3 for database A3 are given in Table 3. We
applied the loss function lc with c=2. This means that two
images with dissimilarity larger than 2 are considered as
de5nitely inadequate matchers for each other. While about
97.5% of the dissimilarities are smaller than 2, the remain-
ing values go up to a maximum of 8.32. The use of lc should
prevent that a single selection of a very bad matcher for a
query image during the LOO procedure excludes an other-
wise good candidate image from getting a vantage object.

3 Note that the entries for L(SV ) in Tables 3 and 4 have been
computed with a slight modi5cation of (3): The loss has only been
averaged over the non-vantage objects (except of the case “V=A”).
As far as we have checked it, the di@erences are negligible. But
the use of form (3) is de5nitely recommended for small databases
such as A2.

The entry “Manual” refers to a vantage set of 40 shapes
from A3 which was chosen manually and intuitively to rep-
resent the database well, including the shapes of Fig. 1. We
do not have the “Manual” entry for A4, since it seems to be
impossible to choose manually shapes that optimally repre-
sent such a large database.

We performed some extra comparisons with database
A3, loss function lc and selection function dV . The
non-deterministic strategies were applied 5ve times to as-
sess their variability. In these cases, the “overall loss” value
is a mean, and the minimum and maximum values are also
given.

For some of the strategies in the A3=lc-setup, we looked
for the 5rst number p of vantage objects such that L(SV )
for p + 1 objects is larger than for p. The value of L(SV )
for such p is listed as “stopped” variant in Table 3. For the
non-deterministic strategies, only one run was examined.
The stopping rule did generally not lead to good values of
the overall loss, because L(SV ) was always again decreased
for more than one further object. The general tendency that
the larger p is, the smaller is the overall loss, is not changed
substantially by the use of the stopping rule. SFLOO was
monotonely decreased for the 5rst 40 vantage objects.

Because the computational e@ort for SFLOO becomes
horrible for A4, we computed only 10 vantage objects with
SFLOO. This needed more than a week of computation time.
The present implementation of CLUSTER causes memory
problems. Note that the authors Kaufman and Rousseeuw
[3] acknowledge the problems for such large datasets, but
their recommended alternative does not work for distance
data. The other strategies have been evaluated with p= 10
and p= 40. The results from A4 are given in Table 4.
The main results from A3 and A4 are as follows: SFLOO

leads clearly to the best results as long as it is computation-
ally feasible. MAXIMIN is the fastest method and yields in
most cases the second best vantage set. The CV and NCV
methods are similar to MAXIMIN in loss. The results of
the A3=dW setup indicate that the loss di@erences between
MAXIMIN, CV and NCV could possibly be explained by
random variation only. MAXIMIN has the lowest variation,
CV has the largest, so that MAXIMIN is to be preferred
when only one vantage set should be calculated, but if one
would like to take the best vantage set from 20 or 50 runs
of a method, say, the best CV run may outperform the best
MAXIMIN run. All these methods are better than the man-
ual choice.
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Table 3
Database A3: Comparison of several strategies for vantage object choice (loss function lc)

Strategy Selection p L(SV ) Min Max
function

Optimal 0.4207
V = A dV 1189 0.5896
V = A wV 1189 0.5927

Manual dV 40 0.6845
Manual wV 40 0.6774

SFLOO dV 40 0.6258
SFLOO wV 40 0.6207
MAXIMIN dV 40 0.6593 0.6556 0.6625
MAXIMIN—stopped dV 9 0.7653
MAXIMIN wV 40 0.6387
CLUSTER dV 40 0.6783
CLUSTER wV 40 0.6864
CV(100) dV 40 0.6726 0.6560 0.6963
CV(100)—stopped dV 9 0.7550
CV(100) wV 40 0.6699
CV(200) dV 40 0.6743 0.6692 0.6820
CV(200)—stopped dV 17 0.7161
NCV(100) dV 40 0.6673 0.6604 0.6706
NCV(100)—stopped dV 24 0.6991
NCV(100) wV 40 0.6763
NCV(200) dV 40 0.6720 0.6606 0.6816
NCV(200)—stopped dV 13 0.7405
1LOO dV 40 0.7365
1LOO—stopped dV 6 0.8184

Table 4
Database A4: Comparison of several strategies for vantage object
choice (loss function lc)

Strategy Selection p L(SV )
function

Optimal 0.3113
V = A dV 8090 0.4779
V = A wV 8090 0.4859

SFLOO dV 10 0.5837
MAXIMIN dV 10 0.6491
CV(200) dV 10 0.6451
NCV(200) dV 10 0.6377

MAXIMIN dV 40 0.5455
MAXIMIN wV 40 0.5339
CV(200) dV 40 0.5505
CV(200) wV 40 0.5495
CV(500) dV 40 0.5410
NCV(200) dV 40 0.5448
NCV(200) wV 40 0.5530
NCV(500) dV 40 0.5442

The size of the test samples for CV and NCV used here
does not seem to matter, while, of course, a very small test
sample will not work well, and very large test samples make
vanishing the speed advantage over SFLOO.

The results of CLUSTER are not as good as we hoped.
It remains a problem for further research if there is a bet-
ter clustering method for this purpose. As expected, 1LOO
performed badly.

The weighted selection function wV performs a little
bit better in most cases than dV , but not always. At least
in combination with MAXIMIN it seems to be preferable
to dV .

7. Assessment of the selection bias

L(SV ) can be interpreted as an estimator for the expected
loss of the selection from A for a new query object. For a
5xed set of vantage objects V , this estimator is only biased
very weakly, because L(SV ) is computed based on selections
out of n− 1 images (A\{a} for all a∈A), while we select
from all n images for a new query object.

But if V stems from the optimization of L(SV ), which is
done at least approximately by SFLOO, this can induce a
severe bias into L(SV ), the so-called “selection bias” (see
e.g. [12]). The reason can be understood easily: Consider a
perfect dice. Of course the relative frequency of throwing
a “5” will be an unbiased estimator for the probability of
this event, which is 1

6 . However, the relative frequency of
the fewest thrown number can be expected to be more or
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Table 5
Average loss from 10 random splits of database A1 into training
sample A11 and validation sample A12 with 550 objects each (loss
function l0, selection function dV )

Strategy p L11(SV11 ) L12(SV11 )

SFLOO 6 0.1618 0.1659
MAXIMIN 6 0.1725 0.1722
CLUSTER 6 0.1751 0.1746
CV(50) 6 0.1731 0.1727
NCV(50) 6 0.1713 0.1715

less smaller than 1
6 (depending on the number of throws),

and if this number is “5” by chance, the (minimal) relative
frequency of “5” must be a downward biased estimator for
its probability. The selection bias problem is analogous.

This means that the value for L(SV ) can be too optimistic
for SFLOO and also, but to a smaller extent, for CV and
NCV.

The only way to assess the selection bias is the use of in-
dependent images. If the images of our database are the only
images at hand, the database must be split into two parts.
The 5rst part can be used to perform the search for good
vantage objects (“training sample”), and the second part can
be used for the assessment of the loss of the vantage sets
applied to independent images (“validation sample”). Be-
cause cross-validation has already been applied on the train-
ing sample, this principle is called “double cross-validation”
by Mosteller and Tukey [6, pp. 36f.].

However, the images of the validation sample can be
expected to be more eUcient to be used for the improve-
ment of the vantage set instead of the assessment of the se-
lection bias. While we suggest to take 5nally the vantage
objects based on the whole database, we performed a study
to assess the selection bias for the databases A1; A2 and A3
by performing such a double cross-validation.

For this sake Ai; i = 1; 2; 3; was split randomly in two
disjunct parts Ai1 (training sample) and Ai2 (validation sam-
ple). The sizes have been |A11|= |A12|=550; |A21|= |A22|=
50; |A31|=595 and |A32|=594. Additionally, we restricted
A21 and A22 so that both sets had to contain exactly 5 images
from each of the 10 classes.

The strategies SFLOO, MAXIMIN, CLUSTER, CV and
NCV 4 were again performed on Ai1 to yield vantage sets
Vi1 independent of Ai2, and the loss of selecting images from
Ai1 for the new images from Ai2 was measured by

Li2(SVi1 ) =
1

|Ai2|
∑
a∈Ai2
l(a; SVi1 (a; Ai1)): (8)

The absolute values of Li2(SVi1 ) cannot estimate properly
the loss of a vantage set V chosen with the same strategy on

4 CV and NCV again have not been applied to A2.

Table 6
Average loss from 10 random splits of database A2 into training
sample A21 and validation sample A22 with 50 objects each (loss
function l0, selection function dV )

Strategy p L21(SV21 ) R21(SV21 ) L22(SV21 ) R22(SV21 )

SFLOO-l0 2 0.0845 0.899 0.0935 0.885
SFLOO-l4 2 0.0887 0.912 0.0964 0.901
MAXIMIN 2 0.1162 0.843 0.1144 0.818
CLUSTER 2 0.1166 0.805 0.1054 0.774

Table 7
Loss from random split of database A3 into training sample A31
with 595 objects and validation sample A32 with 594 objects (loss
function lc, selection function dV )

Strategy p L31(SV31 ) L32(SV31 )

SFLOO 20 0.6897 0.7332
MAXIMIN 20 0.7495 0.7580
CLUSTER 20 0.7470 0.7691
CV(50) 20 0.7447 0.7662
NCV(50) 20 0.7396 0.7785

Ai, because |Ai1| ≈ |Ai|=2, and therefore it can be expected
that better matchers for new images can be found in Ai than
in Ai1. But it is of interest if the ranking of strategies with
respect to Li2(SVi1 ) remains the same as for Li1(SVi1 ) on Ai1,
which is the analogue of L(SV ) on Ai, and in particular if
SFLOO remains to be the best. To keep the circumstances
comparable, t for CV and NCV and p have been divided
by 2 compared to the computations in Section 6. SFLOO-l9
has been replaced by SFLOO-l4 for A2. R21 and R22 have
been de5ned by analogy to Li1 and Li2 with the di@erence
that k = 5 has been used in (7) because the class sizes in
A21 are shrunken to 5.

The results of such a double cross-validation depend
on chance because of the random split of the database.
To get more reliable results, we repeated the double
cross-validation 10 times for the databases A1 and A2. The
results are given in Tables 5 and 6. While there has been
considerable variation in the overall loss values during the
10 replications, the rankings among the strategies remained
fairly stable. Note that the retrieval rate R22(SV21 ) must be
expected to be larger than R21(SV21 ) in most cases, because
the query object itself, which is always correctly classi-
5ed, is included in the calculation of R21(SV21 ), but not in
R22(SV21 ).

The results for A3 are given in Table 7. Generally, the re-
sults show the expected tendency that SFLOO su@ers from
the largest selection bias, but still remains the best strategy.
CV and NCV also try to optimize the overall loss approx-
imately, but except of NCV in Table 7 they did not pro-
duce a signi5cantly larger selection bias than MAXIMIN
and CLUSTER.
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As opposed to Table 2, SFLOO-l4 outperforms SFLOO-l0
in terms of the retrieval rate in Table 6. This happened for
8 out of 10 random splits for R21(SV21 ) and for 7 out of 10
random splits for R22(SV21 ). With respect to the overall loss,
MAXIMIN performed worse in Table 6 compared to the
other situations. Because the 5rst vantage object of MAX-
IMIN is chosen randomly, p = 2 may be too small for this
strategy.

8. Discussion

The approach developed here is neither restricted to a
particular dissimilarity nor to a particular loss or selection
function. It is always possible to compare vantage object
sets stemming from various choice strategies by a loss
measure based on the “leave-one-out” principle. Our sug-
gestions for loss function are not meant to be optimal in
a general sense. We think that the loss measure should be
tailored to the concrete database and the objective of the
image retrieval. However, our suggestions may 5t many
situations.

If n is not too large, it is promising to optimize the loss
locally by stepwise forward selection. In larger databases,
other approaches like maximin distance or strategies based
on cross-validation with random test sets are to be com-
pared. In our examples, the maximin distance method led to
good results unless the number of vantage objects was too
small. It is fast and easily implemented, so that it looks like
a good choice. The strategy of taking representative objects
of clusters as vantage objects led to disappointing results
in almost all examples. However, we generally recommend
the comparison of vantage objects from more than one
strategy.

The results of our examples do not show considerably dif-
ferent tendencies between the two image dissimilarity mea-
sures that obey the triangle inequality and the one of Latecki
and LakKamper [7], but more experiments would be needed
to examine in depth the dependence of our approach on the
properties of the dissimilarity measure.

From a statistical point of view, the overall loss function
(3) is only an estimate of the “real” selection loss of a se-
lection rule for new unknown images. In our setup there is
no statistical model, and therefore the theoretical properties
of this estimate cannot be analyzed. But there are some re-
sults for “leave-one-out” cross-validation in more accessi-
ble problems. In general it can be said that cross-validation
leads to almost unbiased estimations of a prediction error in
discriminant analysis and regression and is clearly superior
to naive approaches. The assumptions for cross-validation
to work are listed in [13], where the author refers as well
to theoretical results about some situations where the prin-
ciple may lead to suboptimal decisions. If vantage objects
are selected by the optimization of a CV-based measure,
the measure has a selection bias, which can be assessed by
performing a double cross-validation. We suggest to do this

only for the illustration of the bias, and to use the objects
chosen by use of the whole database 5nally.

For some data-analytical problems, cross-validation can
be replaced or complemented by more re5ned data driven
techniques such as “bootstrap” [14] refer to some papers
about comparing simulations between cross-validation and
bootstrap), but it is not clear how to adapt them to our setup,
and the authors continue to acknowledge cross-validation as
a widely applicable and useful approach.

An alternative approach to the selection of a similar im-
age could be to build a decision tree on the database based
on vantage objects that decide between the branches of the
tree. It would be of interest to compare the resulting selec-
tion method with ours by means of the leave-one-out loss
measure.

9. Summary

Suppose that we have a matrix of dissimilarities between
n images of a database. For a new image, we would like to
select the most similar image of our database. Because it
may be too expensive to compute the dissimilarities for the
new object to all images of our database, we want to 5nd
p�n “vantage objects” [1] from our database in order to
select a matching image according to the least Euclidean
distance between the vector of dissimilarities between the
new image and the vantage objects and the corresponding
vector for the images of the database. In this paper, we treat
the choice of suitable vantage objects. We suggest a loss
measure to assess the quality of a set of vantage objects: For
every image, we select a matching image from the remain-
ing images of the database by use of the vantage set, and
we average the resulting dissimilarities. This principle is
referred to as “leave-one-out cross-validation” is statistics.
We suggest and compare some choice strategies: The 5rst
class of choice strategies is based on a stepwise forward
selection of vantage objects to optimize the loss measure.
This can be done by using the whole dataset to estimate the
loss measure, or, to save computing time, to draw random
subsets on which the measure is evaluated. The second class
is the choice of objects as representative as possible for
the whole range of the database. From this class, a cluster
analysis method and the stepwise forward maximization of
the minimum dissimilarity inside the vantage set are com-
pared. Some modi5cations are suggested to adapt the loss
function and the selection criterion for vantage objects
better to a given database. We apply the strategies to four
example databases. We study not only the performance of
the strategies, but also the selection bias by splitting the
databases in two parts and testing the quality vantage ob-
jects selected from one part for the other. In the examples,
stepwise forward optimization of the loss measure on the
whole database performs best. The strategy to maximize
the minimum dissimilarity inside the vantage set shows a
good relation between performance and computing time.
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