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Introduction and Motivation The Story

The Story

This is the story of outliers
When outliers corrupt

Classifying noisy time series
When outliers are important

The minority class in imbalanced data sets
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Introduction and Motivation Time Series

Time Series
When Outliers Corrupt

Sequences of real numbers are commonly used in all research fields
Historically called Time Series

Even if the natural ordering is imposed from dimension other than time

Earliest know time series
plot of planetary orbits
from 10th century monastery
[Funkhouser, 1936]
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Introduction and Motivation Time Series

Example Time Series

[Ratanamahatana and Keogh, 2004]

www.thrombosisadvisor.com

finace.yahoo.com
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Introduction and Motivation Time Series

The Problem

Given a data set of known time series, and one unknown time series, can we
predict the class label of the unknown time series?
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Introduction and Motivation Time Series

Solutions I

Many data mining algorithms have similarity (distance) measurements of
sequences at their core

Classification [Rafiei, 1999]

Clustering [Aach and Church, 2001]

Motif discovery [Chiu et al., 2003]

Anomaly detection [Keogh et al., 2004, Salvador et al., 2004]
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Introduction and Motivation Time Series

Solutions II

Time series distance measures

Euclidean Distance

Dynamic Time
Warping [Velichko and Zagoruyko, 1970, Sakoe and Chiba, 1971]

Longest Common Subsequence [Das et al., 1997, Vlachos et al. 2003]

Optimal Subsequence Bijection 2007 [Latecki et al., 2007]

Edit Distance with Real Penalty [Chen and Ng, 2004]

Time Warp Edit Distance [Marteau, 2009]
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Introduction and Motivation Imbalanced Data Sets

Imbalanced Data Sets
When Outliers are Important

Many real-world data sets are highly imbalanced

Oil spill detection 896/41 [Kubat et al., 1998]

Mammography 10,923/260 [Woods et al., 1993]

Credit card fraud ≈400,000/≈100,000 [Chan and Stolfo, 1998]

The rare event, aka
The minority class
Positive examples

The common event, aka
The majority class
Negative examples

Suzan Köknar-Tezel (TU CIS) OSB and GP September 10, 2010 13 / 97



Introduction and Motivation Imbalanced Data Sets

Problems

Most traditional learning systems are designed to work on balanced data
They are biased towards the majority class
They focus on improving overall performance
They usually perform poorly on the minority class

There may be uneven costs associated with false negatives and false
positives

E.g., in cancer diagnosis, a false negative may cost a patient much more
than a false positive
And often, these costs are difficult to quantify
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Introduction and Motivation Imbalanced Data Sets

Solutions

Undersample the majority class
Lose potentially useful data

Resample the minority class
May lead to overfitting since examples are duplicated

Add synthetic points
Until now, this could be done only in feature space
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Introduction and Motivation Thesis

Thesis

Contribution 1: Optimal Subsequence
Bijection [Köknar-Tezel and Latecki, 2010b]

A sequence matching method
Directly optimizes the sum of distances of corresponding elements
Allows penalized skipping of outlier elements
Defines a bijection on the remaining subsequences

Contribution 2: Ghost Points [Köknar-Tezel and Latecki, 2010a]
A synthetic point that can be added in distance spaces that are metric or
non-metric
Using geometric analysis, we show that the distances are preserved
between the ghost points and the other points in the distance space
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Optimal Subsequence Bijection Existing Distance Measures

Euclidean Distance

Given two sequences of real numbers of equal length n, the simplest
comparison is to treat them as vectors in Rn, and compute their squared
Euclidean distance (ED)

This assumes that both sequences are well aligned but this is often not
satisfied

Euclidean distance is very sensitive to distortions in the data
Outliers
Time phase
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Optimal Subsequence Bijection Existing Distance Measures

Euclidean Distance Equation

Given two sequences a and b of the same length n,

a = (a1, . . . , an) and b = (b1, . . . , bn)

the Euclidean distance between a and b is

ED(a, b) =
m∑
i

|ai − bi|2
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Optimal Subsequence Bijection Existing Distance Measures

Dynamic Time Warping I

DTW:

The most well-known elastic measure

First used for aligning spoken words
It allows two sequences to be stretched or compressed to optimize local
alignments

The distance is then computed as the sum of the distances of the
corresponding elements
Dynamic programming is used to find corresponding elements so that this
distance is minimal
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Optimal Subsequence Bijection Existing Distance Measures

Dynamic Time Warping II

It is particularly sensitive to outliers, since it is not able to skip any
elements of the sequences

Each element of the query sequence must correspond to some element of
the target sequence and vice versa
Thus, the optimal correspondence computed by DTW is a relation on the
set of indices of both sequences, i.e., a one-to-many and many-to-one
mapping

The fact that outlier elements must participate in the correspondence
optimized by DTW often leads to an incorrect correspondence of other
sequence elements
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Optimal Subsequence Bijection Existing Distance Measures

Dynamic Time Warping III

DTW with warping windows
A global constraint that

Prevents pathological warping
Slightly speeds up calculation

Dynamic Time Warping Sakoe-Chiba Band Itakura Parallelogram

Images taken from [Keogh and Ratanamahatana, 2005]
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Optimal Subsequence Bijection Existing Distance Measures

DTW vs OSB

The main difference is that OSB can skip outlier elements of the query
and target sequences while DTW requires that every element of both
sequences participate in the correspondence

This makes the performance of OSB robust in the presence of outliers

OSB defines a bijection on the remaining subsequences, i.e. a one-to-one
correspondence of the remaining elements
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Optimal Subsequence Bijection Existing Distance Measures

Dynamic Time Warping Equation

Given two sequences a and b of different lengths m and n,

a = (a1, . . . , an) and b = (b1, . . . , bn).

A nonnegative, local dissimilarity function d must be defined for every
pair of elements ai and bj

For univariate time series, usually the L1-norm is used
d(ai, bj) = |ai − bj|

DTW(a, b) =



0 if m = n = 0
∞ if m = 0 ∨ n = 0
|am − bn|+ min{DTW(a1:i, b1:j) otherwise
|i = m− 1 ∨ m, j = n− 1 ∨ n,
i + j < m + n}
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Optimal Subsequence Bijection Existing Distance Measures

Longest Common Subsequence I

LCSS:

Used to deal with the alignment and outlier problems
LCSS determines the longest common subsequence

LCSS finds subsequences of the query and target that best correspond to
each other

The subsequence
Does not need to consist of consecutive points
The order of points is not rearranged
Some points can remain unmatched

The distance is based on the ratio between the length of longest common
subsequence and the length of the whole sequence
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Optimal Subsequence Bijection Existing Distance Measures

Longest Common Subsequence II

When LCSS is applied to sequences of numeric values, one needs to set
a threshold ε that determines when values of corresponding points are
treated as equal [Vlachos et al. 2003]

The performance of LCSS depends heavily on the correct setting of ε
LCSS (ε = 0.05)

LCSS (ε = 0.01)

OSB (C = 0.1)

OSB (C = 0.002)
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Optimal Subsequence Bijection Existing Distance Measures

LCSS vs OSB

LCSS optimizes over the length of the longest common subsequence,
while OSB directly optimizes the sum of distances of corresponding
elements
OSB includes a penalty (jumpcost) for skipping elements in either the
query or target sequence

The penalty for skipping consecutive elements of a sequence is
proportional to the number of elements skipped
Thus skipping one outlier costs less than skipping a consecutive
subsequence of several elements

LCSS has no direct penalty for skipping elements which often leads to
accidental matches

In OSB, the equality of two elements is dynamic and it depends on other
elements in their neighborhoods in both sequences

In LCSS, the threshold ε is static
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Optimal Subsequence Bijection Existing Distance Measures

Longest Common Subsequence Equation

Given two sequences a and b of different lengths m and n,

a = (a1, . . . , an) and b = (b1, . . . , bn).

There is no “distance” between two elements

Instead, if two elements match (according to some threshold ε), then the
subsequence length is increased by 1

LCSS(a, b) = min


0 if m = 0 ∨ n = 0
1 + LCSS(a1:m−1, b1:n−1) if |am − bn| < ε

max{LCSS(a1:m−1, b),LCSS(a, b1:n−1) otherwise
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Optimal Subsequence Bijection Existing Distance Measures

Edit Distance with Real Penalty

The edit distance was originally used as a distance measure between
strings,
The edit distance between two strings is the smallest number of primitive
operations (insertions, deletions, and substitutions) needed to transform
one string into the other
It has been adapted to work with sequences of real numbers
In ERP, the only edit operation supported is deletion of an element from
a sequence, but it is treated as an insertion of a null element into the
other sequence

The null element is indicated by Λ

The L1 distance is used for calculating the distance between two
elements, using a constant value for Λ
Note that ERP can be viewed as a variant of

The L1-norm except that it handles local time shifting
DTW except that it is a metric
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Optimal Subsequence Bijection Existing Distance Measures

Edit Distance with Real Penalty Equation I

Given two sequences a and b of different lengths m and n,

a = (a1, . . . , an) and b = (b1, . . . , bn)

the distance between two elements is defined as

derp(ai, bj) =


|ai − bj| if ai, bj match
|ai − g| if bj = Λ
|bj − g| if ai = Λ

where g is a constant gap penalty
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Optimal Subsequence Bijection Existing Distance Measures

Edit Distance with Real Penalty Equation II

The authors of ERP use g = 0 and give two justifications:
1 When g = 0, the distance between sequences a and b corresponds to the

difference between the area under the curve of a and the area under the
curve of b

2 Then
∑

i ai =
∑

j a′j where a is the original sequence and a′ is the
transformed sequence

The ERP between two sequences is

ERP(a, b) =



∑n
1 |bi − g| if m = 0∑m
1 |ai − g| if n = 0

min{ERP(a1:m−1, b1:n−1) + derp(am, bn), otherwise
ERP(a1:m−1, b) + derp(am,Λ),
ERP(a, b1:n−1) + derp(Λ, bn)}
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Optimal Subsequence Bijection Existing Distance Measures

Time Warp Edit Distance

TWED also combines Lp-norms with edit distance like ERP
But also uses the time stamps of the sequences when calculating the
distance between elements

This controls the elasticity of the measure
TWED uses the difference in the time stamps to linearly penalize the
matching elements

This favors matching elements that have close time stamps
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Optimal Subsequence Bijection Existing Distance Measures

Time Warp Edit Distance Equation I

Given two sequences a and b of different lengths m and n,

a = (a1, . . . , an) and b = (b1, . . . , bn)

the distance between two elements is defined as

dtwed(ai, bj) =


dmatch if ai, bj match
ddela if bj = Λ
ddelb if ai = Λ
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Optimal Subsequence Bijection Existing Distance Measures

Time Warp Edit Distance Equation II

with

dmatch = dist(ai, bj) + dist(ai−1, bj−1)+
ν · (|tai − tbj |+ |tai−1 − tbj−1 |)

ddela = dist(ai, ai−1) + ν · (tai − tai−1) + λ

ddelb = dist(bj, bj−1) + ν · (tbj − tbj−1) + λ

where

dist(ai, bj) is any Lp-norm

λ ≥ 0 is a constant penalty for deletion

ν ≥ 0 is a constant that characterizes the stiffness of the elasticity

|tai − tbj | is the time-stamp difference of elements ai and bj respectively
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Optimal Subsequence Bijection Existing Distance Measures

Time Warp Edit Distance Equation III

The TWED between two sequences is

TWED(a, b) =



0 if m = n = 0
∞ if m = 0 ∨ n = 0
min{TWED(a1:m−1, b1:n−1)+ otherwise

dtwed(am, bn),
TWED(a1:m−1, b) + dtwed(am,Λ),
TWED(a, b1:n−1) + dtwed(Λ, bn)}
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Optimal Subsequence Bijection OSB

Optimal Subsequence Bijection

The Optimal Subsequence Bijection (OSB) works for the elastic
matching of two sequences of different lengths m and n:

a = (a1, . . . , am) and b = (b1, . . . , bn).

The goal of OSB is to find subsequences a′ of a and b′ of b such that a′

best matches b′

Skipping (not matching) some elements of a and b is necessary because
both sequences may contain some outlier elements

However, skipping too many elements of either sequence increases the
chance of accidental matches

To prevent this from happening, we introduce a penalty for skipping
which we call jump cost and denote it with C.
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Optimal Subsequence Bijection OSB

Definition of OSB I

To formally define OSB, we need to first augment the sequences a and b
by first and last elements

ā = (a0, a1, . . . , am, am+1) and b̄ = (b0, b1, . . . , bn, bn+1).

The subsequences using ā and b̄ will be denoted ā′ and b̄′

ā′ will always contain the elements a0 and am+1
b̄′ will always contain b0 and bn+1

These added elements do not contribute to the computed distance
between the optimal subsequences a′ and b′.
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Optimal Subsequence Bijection OSB

Definition of OSB II

We assume that the distance function d used to compute the dissimilarity
value between elements is given

We do not have any restrictions on the distance function d other than
non-negativity, i.e., d(ai, bj) ≥ 0

Usually, for sequences of real numbers, d(ai, bj) = (ai − bj)2

This is the case for all our experiments

We define

dosb(ai, bj) =


(ai − bj)2 if 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n
0 if (i = 0 ∧ j = 0)∨

(i = m + 1 ∧ j = n + 1)
∞ otherwise
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Optimal Subsequence Bijection OSB

Definition of OSB III

We want to select a subsequence a′ of the query sequence a by skipping
some outlier elements of a

1 So that each element of a′ matches to some element of b
2 In an order preserving manner
3 With possibly skipping some outliers in b as well

The optimal correspondence is obtained by optimizing the balance
between the dissimilarity of a′ to its image subsequence of b and the
penalties of skipping elements of a and of b
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Optimal Subsequence Bijection OSB

Definition of OSB IV

The optimal correspondence can be found with a shortest path algorithm
on a DAG (directed acyclic graph)

The nodes of the DAG are all index pairs
(i, j) ∈ {0 . . .m + 1} × {0 . . . n + 1}
The edge cost w is defined as

w((i, j)(k, l)) =


((k − i− 1) + (l− j− 1)) · C + d(ak, bl)

if i < k ∧ j < l
∞ otherwise
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Optimal Subsequence Bijection OSB

Definition of OSB V

The purpose of the added nodes (0, 0) and (m + 1, n + 1) is to have distinct
source and destination vertices for the shortest path algorithm and to allow the
skipping of elements at the beginning and the end of a and b
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Optimal Subsequence Bijection OSB

Definition of OSB VI

The output of OSB yields a correspondence defined as a monotonic
injection

f : {i0, . . . im′} → {0, 1 . . . n + 1}
such that

(i0, . . . im′) ⊆ (0, 1 . . .m + 1) is a subsequence with
i0 = 0
im′ = m + 1
f (i0) = f (0) = 0
f (im′) = f (m + 1) = n + 1

The sets of indices {i0, . . . im′} and {f (i0), . . . f (im′)} define
subsequences ā′ of ā and b̄′ of b̄, such that f restricted to these sequences
is a bijection

The phrase “subsequence bijection” in OSB
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Optimal Subsequence Bijection OSB

Definition of OSB VII

Our goal is to find a subsequence bijection f that minimizes the function

1
m′

m′∑
k=0

w((ik, f (ik)), (ik+1, f (ik+1))).

We need to find subsequences
ā′ = (ai0 , . . . aim′ ) of ā
b̄′ = (bf (i0), . . . bf (im′ )) of b̄

With a minimal total weight for w
The word “optimal” in OSB

Suzan Köknar-Tezel (TU CIS) OSB and GP September 10, 2010 46 / 97



Optimal Subsequence Bijection OSB

Definition of OSB VIII

The OSB distance between two sequences is

OSB(ā, b̄) =



0 if m = n = 0
∞ if m = 0 ∨ n = 0
dosb(am+1, bn+1) + min{OSB(a0:i, b0:j)+ otherwise

(|m− i|+ |n− j|) · C|i = 0 : m + 1,
j = 0 : n + 1, i + j < m + n + 2}
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Optimal Subsequence Bijection OSB

A Simple Example

Given two sequences a = (20, 1, 2, 8, 6, 6, 8) and
b = (5, 1, 2, 9, 15, 3, 5, 6, 20) with the jump cost C = 1

OSB(a, b) = 8 DTW(a, b) = 14.28
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Optimal Subsequence Bijection Experimental Results

Experimental Results

The UCR data sets (20 data sets) [Keogh et al., 2006]
We had best accuracy on 8 data sets
Uniquely best on 5

The MPEG-7 Core Experiment CE-Shape-1 data
set [Latecki et al., 2000]

Full sequences
We had 96.3% accuracy for 1NN
We had 72.4% accuracy for bulls-eye

Partial sequence matching
We had 100% accuracy for 1NN
We had 79% accuracy for bulls-eye
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Optimal Subsequence Bijection Experimental Results

UCR Results
Number Size of Size of Time

of Training Testing Series DTW

DATASET Classes Set Set Length ED WW DTW LCSS ERP OTWED OSB

Synthetic Control 6 300 300 60 0.120 0.017 0.007* 0.047 0.036 0.023 0.020

Gun-Point 2 50 150 150 0.087 0.087 0.093 0.013+ 0.040 0.013+ 0.020

CBF 3 30 900 128 0.148 0.004 0.003+ 0.009 0.003+ 0.007 0.004

Face (all) 14 560 1690 131 0.286 0.192 0.192 0.201 0.202 0.189* 0.190

OSU Leaf 6 200 242 427 0.483 0.384 0.409 0.202 * 0.397 0.248 0.409

Swedish Leaf 15 500 625 128 0.213 0.157 0.210 0.117 0.120 0.102 0.085*

50 Words 50 450 455 270 0.369 0.242 0.310 0.213 0.281 0.187* 0.257

Trace 4 100 100 275 0.240 0.010 0.000* 0.020 0.170 0.050 0.030

Two Patterns 4 1000 4000 128 0.090 0.002 0.000+ 0.000+ 0.000+ 0.001 0.000+

Wafer 2 1000 6174 152 0.005 0.005 0.020 0.000* 0.009 0.004 0.001

Face (four) 4 24 88 350 0.216 0.114 0.170 0.068 0.102 0.034* 0.045

Lightning2 2 60 61 637 0.246 0.131+ 0.131+ 0.180 0.148 0.213 0.131+

Lightning7 7 70 73 319 0.425 0.288 0.274 0.452 0.301 0.247 0.192*

ECG 2 100 100 96 0.120 0.120 0.230 0.100+ 0.130 0.100+ 0.100+

Adiac 37 390 391 176 0.389 0.391 0.396 0.425 0.378 0.376 0.358*

Yoga 2 300 3000 426 0.170 0.155 0.164 0.137 0.147 0.130* 0.142

Fish 7 175 175 463 0.267 0.233 0.267 0.091 0.120 0.051* 0.103

Beef 5 30 30 470 0.467 0.467 0.500 0.533 0.500 0.533 0.433*

Coffee 2 28 28 286 0.250 0.179+ 0.179+ 0.214 0.250 0.214 0.286

OliveOil 4 30 30 570 0.133 0.167 0.133 0.800 0.167 0.167 0.100*

Total Number of Best Scores per Method 0 2 6 5 2 7 8

Total Number of UNIQUELY Best Scores per Method 0 0 2 2 0 5 5

Table: + indicates a best score; * indicates a uniquely best score.
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Optimal Subsequence Bijection Experimental Results

MPEG-7 Results (Full Sequences)

OSB LCSS DTW
C = 0.03 ε = 0.45 r = 3

1NN 0.963X 0.955 0.912

5NN 0.872X 0.847 0.780

10NN 0.779X 0.752 0.678

20NN 0.651X 0.627 0.557

Bulls-eye 0.724X 0.719 0.624

Table: The retrieval results on the MPEG-7 data set for various distance measures.
Bolded, checked results indicate best scores.
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Optimal Subsequence Bijection Experimental Results

MPEG-7 Results (Partial Sequences)

Full-length Targets Targets using Corresp. Window

OSB LCSS DTW OSB LCSS DTW ED
1NN 1.00X 0.40 0.10 1.00X 0.80 0.50 0.70

5NN 0.86X 0.26 0.06 0.86X 0.70 0.38 0.66

10NN 0.82X 0.28 0.05 0.82X 0.59 0.33 0.46

20NN 0.69X 0.23 0.04 0.69X 0.47 0.28 0.31

Bulls-eye 0.79X 0.33 0.09 0.79X 0.57 0.37 0.40

Table: The retrieval results on the MPEG-7 data set for ten partial query sequences.
Bolded, checked results indicate best scores.
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Ghost Points Distance Spaces

Metric Distance Spaces

Definition

A metric on a set X is a distance function ρ : X × X → R, such that the
following axioms hold:

1 ρ(x, y) ≥ 0 (non-negativity)
2 ρ(x, y) = ρ(y, x) (symmetry)
3 ρ(x, y) = 0⇔ x = y (positive definiteness)
4 ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (triangle inequality)

for any x, y, z ∈ X.

Definition

A metric space is an ordered pair (X, ρ), where X is a set of points, and ρ is
metric on X, that is, a distance function ρ : X × X → R.
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Ghost Points Distance Spaces

Embeddings

When non-Euclidean distance measures are used, embeddings to low
dimensional Euclidean spaces are often utilized

However, embedding implies distance distortion
In addition, not every four point metric space can be isometrically
embedded into a Euclidean space Rk

E.g., see [Matousek, 2002]

Definition

Let Y and Z be two metric spaces. We say that a mapping f of the space Y into
Z is an isometric embedding if distZ(f (y1), f (y2)) = distY(y1, y2).
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Ghost Points Distance Spaces

4-Point Embedding Example [Georgiou and Hatami, 2008]

Given the metric space (X, ρ) defined in the figure below and the
mapping f : X = {a, b, c, d} → Rk for some k where f preserves the
distances
The triangle inequality holds for a, b, d

In fact ρ(b, d) = ρ(b, a) + ρ(a, d) and because of the equality, the mapped
points f (b), f (a), and f (d) are collinear in the space Rk

Same holds for elements a, c, d
But then f (b) = f (c) contradicting the fact that the original distance
between b and c is 2
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Ghost Points Distance Spaces

Non-metric Distance Spaces I

Many applications have non-metric distances at their core, such as
distances between

Images
Shapes
Text documents
Time series

The data are often represented as a matrix of pairwise comparisons

This matrix represents the distance space of the data and is often
non-metric
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Ghost Points Distance Spaces

Non-metric Distance Spaces II

Many well-established machine learning methods require the data to be
metric

Non-metric distance spaces are forced to be metric by embedding them
into Euclidean spaces
The distortion of the data that occurs with this embedding is assumed to
be noise

But little is known about the real information loss

Working directly with non-metric distance spaces may better represent
the real distances between
objects [Jacobs et al., 2000, Laub and Müller, 2004]
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Ghost Points Distance Spaces

Non-metric Distance Spaces III

Definition
For our purposes, a distance space is an ordered pair (X, ρ), where X is a set
of points and ρ : X × X → R is a distance function that satisfies

1 ρ(x, y) ≥ 0 (non-negativity)
2 ρ(x, y) = ρ(y, x) (symmetry)
3 x = y⇒ ρ(x, y) = 0

We would like ρ to be as close as possible to a metric, but this is not always
possible
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Ghost Points Ghost Points

3-Point Metric Embedding

Although not every four point metric space can be embedded into a
Euclidean space, every three point metric space can be isometrically
embedded into the plane R2

Let (∆, ρ), where ∆ = {x, a, b} ⊆ X, be a metric space with three
distinct points. Then it is easy to map ∆ to the vertices of a triangle on
the plane.

For example, we can construct an isometric embedding h : ∆→ R2 by
setting h(a) = (0, 0) and h(b) = (ρ(a, b), 0).

Then h(x) is uniquely defined as a point with nonnegative coordinates
such that its Euclidean distance to h(a) is ρ(x, a) and its Euclidean
distance to h(b) is ρ(x, b).

This construction does not require that (X, ρ) be a metric space, but it
does require that the three point space (∆, ρ) be a metric space.
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Ghost Points Ghost Points

Definition of Ghost Points I

Given any two points a, b in a distance space X, we define a ghost point e
induced by a and b using the construction e = µ(a, b) = h−1(1

2(h(a) + h(b)).
For every x ∈ X, the distance from x to e, ρ(x, µ(a, b)), is computed as
follows:
Case 1: If the three point subspace ∆ = {x, a, b} is a metric, then

ρ(x, µ(a, b))2 =
1
2
ρ(x, a)2 +

1
2
ρ(x, b)2 − 1

4
ρ(a, b)2 (1)
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Ghost Points Ghost Points

Definition of Ghost Points II

Cases 2 and 3 in this definition apply when ∆ is not a metric space

Case 2: If ρ(a, b) > ρ(x, a) + ρ(x, b), then

ρ(x, µ(a, b)) =
1
2
ρ(a, b)− ρ(x, b) (2)
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Ghost Points Ghost Points

Definition of Ghost Points III

Case 3a: If ρ(x, a) > ρ(x, b) + ρ(a, b), then

ρ(x, µ(a, b))2 = ρ(x, b)2 +
1
4
ρ(a, b)2 (3)

Case 3b: If ρ(x, b) > ρ(x, a) + ρ(a, b), then

ρ(x, µ(a, b))2 = ρ(x, a)2 +
1
4
ρ(a, b)2 (4)
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Ghost Points Ghost Points

The Augmented Distance Space

Ghost points, as defined, are guaranteed to be nonnegative and
symmetric by their construction

Hence the space augmented by ghost points remains a distance space
If the space X is finite, i.e., X = {x1, . . . , xn}, then the distance function
ρ : X × X → R≥0 is represented by a square matrix Mρ(X)

Each row of the square distance matrix Mρ(X) is the distance of one data
point x to all data points in the data set
I.e., for all y ∈ X, Mρ(x, y) = ρ(x, y).

The matrix for X ∪ {µ(a, b)} is obtained by simply adding one row and
one column to Mρ(X), with each entry computed using the equations in
the definition

Thus, the proposed approach can be applied to metric and
non-metric distance spaces
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Ghost Points Ghost Points

SMOTE I

Synthetic Minority Oversampling Technique
(SMOTE) [Chawla et al., 2002] has shown that it can improve overall
classification accuracy and also improve the learning of the rare event

The synthetic points are generated from existing minority class examples
It takes the difference between the corresponding feature values of a
minority class example x and one of its nearest neighbors in the minority
class
Multiplies each feature difference by a random number between 0 and 1
Adds these amounts to the feature vector of x.
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Ghost Points Ghost Points

SMOTE II

But SMOTE works only in feature space

Feature space - n-dimensional space where n is the number of features of
each example
Variations of SMOTE

SMOTEBoost [Chawla et al., 2003]
SMOTE with Different Costs [Akbana et al., 2004]
Borderline-smote [Han et al., 2005]
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Ghost Points Experimental Methodology

Evaluating Performance on Imbalanced Data Sets

The Mammography data set [Woods et al., 1993] has 10,923 examples of
non-cancerous tumors and 260 examples of cancerous tumors

A trivial classifier will be 97.68% accurate

But with a misclassification rate of 100% on the minority examples

When the performance on the minority class is as important or more
important than overall accuracy, other performance measures must be
used
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Ghost Points Experimental Methodology

Confusion Matrix

Metrics borrowed from the information retrieval community

Predicted Predicted
Positive Negative

Actual Positive TP FN
Actual Negative FP TN

Table: Confusion Matrix
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Ghost Points Experimental Methodology

Performance Metrics

Accuracy
Accuracy = TP+TN

TP+FP+TN+FN

Precision measures the exactness of a classifier
Higher precision means less false positives
Precision = TP

TP+FP

Recall measures the completeness or sensitivity of a classifier
Higher recall means less false negatives
Recall = TP

TP+FN

Fβ-Measure is the weighted harmonic mean of precision and recall
F1-Measure weights precision and recall equally
F2-Measure weights recall twice as heavily as precision
Fβ-Measure = (1 + β2) Recall×Precision

β2×Precision+Recall
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Ghost Points Experimental Methodology

Data Sets and Distance Measures Used

Data sets:
The UCR data sets [Keogh et al., 2006]

We use 17 of the data sets
Three already have two classes with a minority class
For the other fourteen, we create minority classes using one-against-all then
average the results

The MPEG-7 Core Experiment CE-Shape-1 data set [Latecki et al., 2000]
Seventy classes with twenty examples per class
Use one-against-all for all classes then average the results

Distance functions
Optimal Subsequence Bijection (OSB) [Köknar-Tezel and Latecki, 2010b]
Dynamic Time Warping
(DTW) [Velichko and Zagoruyko, 1970, Sakoe and Chiba, 1971]
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Ghost Points Experimental Methodology

Methodology: Training Set

1 Given a training set consisting of m time series, create the m× m
distance matrix by calculating the OSB or DTW distance between each
pair of examples.

2 For each minority class example x, add k-many ghost points by inserting
one ghost point between x and each of its knn. This gives us a total of p
new points.

3 Calculate the distance from the p ghost points to every other point in the
training set; we now have an (m + p)× (m + p) matrix.

4 Convert both the original and augmented OSB or DTW score matrix to
affinity matrices using the approach in [Yang et al., 2008].

5 Use these affinity matrices as the user-defined or precomputed kernels
for the SVM to get two models: one that includes ghost points and one
that does not.

6 Run SVM to train.
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Ghost Points Experimental Methodology

Methodology: Testing Set

1 Given a testing set consisting of n time series, and a training set
consisting of m time series, create the n×m OSB or DTW distance score
matrix.

2 Calculate the distance from each test data point to each of the p ghost
points; we now have an n× (m + p) distance matrix.

3 Convert both the original and augmented OSB or DTW score matrix to
an affinity matrix as for training set.

4 Use these affinity matrices as the user-defined or precomputed kernels
for the SVM as in step 1e above.

5 Run SVM to test.
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Ghost Points Experimental Methodology

Parameters I

Param 1 & 2: Converting distance matrix to affinity
matrix [Yang et al., 2008]

The affinity between a pair of points

k(xi, xj) = exp(
−d(xi, xj)2

σij
) (5)

where
σij = A · mean{knn d(xi), knn d(xj)}
mean{knn d(xi), knn d(xj)} is the the mean distance of the K-nearest
neighbors of points xi, xj

A is an extra scaling parameter

Param 3: SVM
The cost parameter C
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Ghost Points Experimental Methodology

Parameters II

Param 4: The number of ghost points per minority example
The final results can be sensitive to this
Two good heuristics but neither always give the best results

1 Balance the classes
2 Add one ghost point per minority example

How to choose the optimal number of ghost points is an open question

For all UCR experiments we used A = 0.5, K = 5, and C = 0.5

For all MPEG-7 experiments we used A = 0.36, K = 25, and C = 0.5
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Ghost Points Experimental Results

UCR Data Sets and OSB

Shaded results indicate best performers; the darker the shade, the larger the difference between the results

with and without ghost points
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Ghost Points Experimental Results

UCR Data Sets and DTW

Shaded results indicate best performers; the darker the shade, the larger the difference between the results

with and without ghost points
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Ghost Points Experimental Results

MPEG-7 Data Set

Shaded results indicate best performers; the darker the shade, the larger the difference between the results

with and without ghost points
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Ghost Points Experimental Results

Types of Ghost Point Distance Calculations

Computing the distance of a ghost point to other points can take one of
three forms (see Definition of Ghost Points)
We compute the number of each type for OSB and DTW on all data sets

See tables on next two slides
Interesting note: most of the distance spaces induced by DTW contain
very few Type 2 and Type 3 computations

This indicates that the distance space induced by DTW is very close to a
metric space

For distance spaces induced by OSB, the numbers are much more
variable

The number of non-Type 1 computations ranges from 6% to 85%
Thus OSB is more likely to induce non-metric distance spaces

Though we stress, and our experimental results show, that ghost points
may be used to densify non-metric distance spaces
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Ghost Points Experimental Results

Types of Ghost Points and OSB
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Ghost Points Experimental Results

Types of Ghost Points and DTW
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Summary and Future Work

When Outliers Corrupt

OSB
OSB directly optimizes the sum of distances of corresponding elements
Allows penalized skipping of outlier elements
Defines a bijection on the remaining subsequences
The penalty for skipping outliers is part of the edge weights of the DAG
built from two matched sequences

This results in skipping decisions being made with a dynamic threshold
whose optimization is directly included in the dynamic programming
optimization
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Summary and Future Work

When Outliers Are Important

Ghost Points
An innovative method for over-sampling the minority class of imbalanced
data sets
Unlike other feature based methods ghost points are added in distance
space
In addition, ghost points can be added to distance spaces that are not
metric
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Summary and Future Work

Future Work

Trying a non-linear jumpcost penalty

Exploring optimal strategies for inserting ghost points.

Choosing the optimal number of ghost points
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