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Abstract

For a long time, handwriting analysis, such as handwriting recognition and signature verifi-

cation, has been an active research area. There are two categories of handwriting, online and

offline. Online handwriting is captured in real-time on a digital device such as a tablet screen

with a stylus pen. In contrast, the handwritten text scanned or captured by a camera from a

physical medium such as paper is referred to as offline handwriting. For offline handwriting,

the input is limited to handwritten images, making handwriting analysis much more difficult.

In our work, we proposed a Stroke Trajectory Recover (STR) for offline and unconstrained

handwritten documents. For this purpose, we introduce large-scale word-level annotations

for the English handwriting sampled from the IAM-online dataset. The current STR ar-

chitectures for English handwriting use lines of text or characters of the alphabet as input.

However, a word-level STR method estimates loss for each word rather than averaging DTW

loss over the entire line of text. Furthermore, to avoid the stray points/artifacts in predicted

stroke points, we employ a marginal Chamfer distance that penalizes large, easily noticeable

deviations and artifacts. For word detection, we propose the fusion of character region scores

with bounding box estimation. Since the character level annotations are not available for

handwritten text, we estimate the character region scores in a weakly supervised manner.

Character region scores are estimated autonomously from the word’s bounding box estima-

tion to learn the character level information in handwriting. We propose to fuse the character

region scores and images to detect words in camera-captured handwriting images. We also

propose an automated evaluation to check the quality of the predicted stroke trajectory. The

existing handwriting datasets have limited availability of stroke coordinates information.

Hence, although the proposed system can be applied to handwriting datasets without stroke

coordinates information, it is impossible to evaluate the quality of its predicted strokes using

the existing methods. Therefore, in our work, we propose two measures for evaluating the

quality of recovered stroke trajectories when ground truth stroke information is not given.

First, we formulated an automated evaluation measure based on image matching by finding

the difference between original and rendered images. We also evaluated the preservation of

readability of words for original and rendered images with a transformer-based word recog-

nition network. Since our proposed STR system works with words, we demonstrate that our

method is scalable to unconstrained handwritten documents, i.e., full-page text.

Finally, we present a probabilistic diffusion model conditioned on handwriting style tem-

plate for generating writing strokes. In handwriting stroke generation, imitating a calli-

graphic style of template image has significant importance. However, previous studies have

not emphasized the calligraphic features of the handwriting style, which in turn results in

inadequate style imitation ability of the learning model. In our work, we propose to utilize

a strong multi-scale feature for calligraphic style extraction. We also introduce a character
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and character-pair style features to include local and global style features for handwriting

stroke generation. Conventional handwriting image evaluation methods are based on evalu-

ations designed on natural images, which do not capture global writing style and character

shape. In our work, we propose style features and projected character shape matching for

the evaluation of handwriting stroke generation.

Moreover, we train our diffusion model for handwriting stroke prediction with the Dynamic

Time Warping (DTW) loss function, along with the diffusion loss, which eliminates the

need to train any auxiliary networks for text or writer style recognition and adversarial

network. Our experimentation shows that the proposed conditional diffusion model trained

with multiscale attention style features and dynamic time Warping outperforms the current

state-of-the-art stroke generation network.
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Introduction

The focus of our work is offline handwriting Stroke Trajectory Recovery (STR), which fa-

cilitates the tasks such as handwriting recognition and synthesis. The input is an image of

handwritten text, and the output is a stroke trajectory, where each stroke is a sequence of

2D point coordinates.

Recently, detecting and recognizing a handwritten text has gained much attention from

the research community. However, word detection from unconstrained low-contrast camera-

captured images is still an open problem in document analysis. Word detection from hand-

written text plays a crucial role in the success of subsequent applications such as word recog-

nition or reconstruction. Word detection is considered an object detection problem. However,

characters are the basic building block in words, and the presence of characters makes word

detection different from general object detection problems. Character region scores identi-

fication performs consistently for handwritten text in low-contrast camera-captured images,

But detecting words from characters poses a challenge because of variable character spacing

in words. Nevertheless, considering the only character and ignoring a word’s entirety does

not cope with overlapping words in handwriting text. In our work, we propose the fusion of

character region scores with word detection. Since the character level annotations are not

available for handwritten text, we estimate the character region scores in a weakly supervised

manner. Character region scores are estimated autonomously from the word’s bounding box

estimation to learn the character level information in handwriting. Therefore, we propose to

fuse the character region scores and images to detect words in camera-captured handwriting

images.

Stroke Trajectory recovery (STR) is considered a sequence prediction problem where the

input is a handwriting image and the output is the sequence of predicted stroke points. Usu-

ally, Dynamic Time Warping (DTW) or Euclidean distance-based loss function is employed

to train the STR network. In DTW loss calculation, the predicted and ground-truth stroke

sequences are aligned, and their differences are accumulated. The DTW loss penalizes the

alignment of far-off points proportional to their distance. As a result, DTW loss incurs a

small penalty if the predicted stroke sequence is aligned to the ground truth stroke sequence

but includes stray points/ artifacts away from ground truth points. To address this issue,
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Method Image Strokes Random style Desired style Short words Long sentences

Handwriting stroke prediction

Base LSTM [11] ✓
Trace [5] ✓ ✓ ✓

U-STR [34] ✓ ✓ ✓ ✓
Handwriting image generation

HiGAN+ [26] ✓ ✓ ✓ ✓
ScrabbleGAN [22] ✓ ✓ ✓

VATr [59] ✓ ✓ ✓
Wordstylist [57] ✓ ✓ ✓

Handwriting stroke generation

Brush [45] ✓
Stroke diffusion [53] ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 1: The capabilities of the previous and proposed methods for handwriting image and stroke generation

we propose to compute a marginal Chamfer distance between the predicted and the ground

truth point sets to penalize the stray points more heavily. Our experiments show that the loss

penalty incurred by complementing DTW with the marginal Chamfer distance gives better

results for learning STR. We also propose an evaluation method for STR cases where ground

truth stroke points are unavailable. We digitalize the predicted stroke points by rendering

the stroke trajectory as an image and measuring the image similarity between the input

handwriting image and the rendered digital image. We further evaluate the readability of

recovered strokes. By employing an OCR system, we determine whether the input image

and recovered strokes represent the same words.

The second section of our work focuses on handwriting stroke generation. While it is a

difficult to generate an image from a given stroke sequence, the task of converting a hand-

writing image into a stroke sequence is very challenging since it facilitates many subsequent

tasks, such as handwriting recognition [21] and writing order prediction [58]. In handwriting

stroke generation, the desired calligraphic style is provided in the form of an image with a

string of textual content. The system intends to learn to imitate the handwriting style for

unseen textual content. Apart from mimicking the handwriting calligraphic style for stroke

generation, the strokes are also required to generate readable text. Despite the advancements

of image generation models [56, 64, 38] for natural scene generation, precisely representing

the calligraphic style of handwriting images in a generation network is still an open prob-

lem. In a similar problem of handwriting stroke prediction, a network is designed to learn

the stroke trajectory from handwritten images. When given only handwritten images, the

network predicts the sequence of strokes drawn by the writer to write the given text. The

ability of the previous handwriting stroke prediction networks [5, 34, 45] is limited to recover-

ing the stroke trajectory from images. To estimate the stroke sequence of any arbitrary text

in a desired style, we have to provide that text written in that particular calligraphic style.

Since these networks are not conditioned on arbitrary text, their implementation depends

2



Figure 1: The input textual content and calligraphic style for handwriting stroke generation are fed into the
proposed system. The output stroke of the system imitates the input textual content in the given calligraphic
style.

on images for textual content extraction. Because of this restriction, they cannot generate

handwriting strokes for arbitrary text in a given calligraphic style unless provided with the

text in the desired calligraphic style. In general, stroke prediction networks cannot generate

text in unseen calligraphic styles because of their lack of textual conditioning and depen-

dence on image features for both textual content and calligraphic style extraction. In our

work, we present a handwriting stroke generation network that can generate strokes for an

arbitrary text. The high-level workflow of the desired handwriting stroke prediction frame-

work is shown in Fig. 1. The input is a calligraphic style in the form of an image and an

arbitrary text, e.g., ”written by the same writer”. The system outputs a new handwritten

stroke sequence that imitates the given calligraphic style.

On the other hand, recent advancements in generative models for natural images [56, 64,

38] have facilitated handwriting image generation. The natural images are conditioned on

text prompts, whereas, the handwriting images are conditioned on calligraphic style. How-

ever, the previous handwriting image generation methods use weak style learning networks to

facilitate the readability of text [25, 26, 57]. These networks are based on GAN architecture

and give less emphasis on calligraphic style features as compared to stronger textual features

to increase the readability In contrast, our work proposes to use multi-scale attention-based

features for a handwritten image. We have noticed that by using strong multi-scale calli-

graphic style features, our method performs well on unseen style images (see Section 6.2.3)

while keeping the readability intact. Additionally, the image generation methods [25, 26, 57]

learn the background texture. However, for handwriting image generation the handwriting

style is more important than the background texture. One of the challenges handwriting
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images offer is the variation of calligraphic styles. Calligraphic style may include characters’

shape and connectivity, font size, and writing tilt.

The current methods [25, 26, 57] do not consider character pair style (character connec-

tivity), resulting in incomplete feature representation for handwriting style. Our proposed

multi-scale style feature extraction is specifically designed to provide distinctive calligraphic

features for stroke generation for arbitrary textual content for character shape and character

pair style. The existing approaches [53, 45] for handwriting stroke generation often are un-

able to provide distinctive features for different styles, which in turn reduces the generation

model’s capability to mimic calligraphic style. In Table 1, we highlight the capabilities of

the previous methods to mimic handwriting style. The handwriting stroke generation system

is also preferred to work independently of the length of textual content. For instance, it is

expected to generate readable strokes in a calligraphic style for short as well as longer text.

As shown in Table 1 our method can effectively generate strokes in any desired style for short

and long sentences.

Another issue that we address is the fact that the current image evaluation metrics are

applied for the quantitative analysis of handwriting image generation. These metrics cap-

ture object diversity in generated natural images, but they are not designed to capture the

calligraphic style and character shapes in handwriting. To evaluate the style similarity and

character shape matching between generated and real handwriting images, we propose a style

distance and projected character shape matching. To the best of our knowledge, ours is the

first research to introduce evaluation metrics specifically capturing handwriting style and

character shapes.

4



Chapter 1

Literature Review

1.1 Word detection

In the previous work, the words are segmented in the top-down approach where lines are

segmented, then in the lines, the words and characters are segmented [47]. This approach

uses a variable-sized window which is not robust to variation of word size in camera-captured

images. [41] used confidence scores of word hypotheses from word recognition and lexical

modeling to improve word detection. But if the lexicon method perform poorly then the

word detection is also effected.

1.1.1 Scene text detection

Character detection shows promising results for natural image scene text detection. Never-

theless, the scene text is very different from the handwritten text. Words in natural image

scene text are separated from one another in an arbitrary shape and mainly in a typed for-

mat. However, words in handwritten text often overlap with one another in adjacent lines.

Furthermore, the spacing between characters in words may vary depending on the individual

handwriting style. [69, 78] parameterized the word detection with the character gap, but

these approaches are not effective against the overlapping words in handwritten text.

Moreover, scene text detection aims to localize the words in natural scenes from varying

perspectives. However, in handwriting, the objective of word detection is to cope with

different handwriting styles. Specifically, varying character/word spacing in handwritten

text with uncontrolled camera conditions makes word detection challenging.

In the scene text detection domain, character detection is used to localize word instances.

[40] construct word detector based on characters. The character region score detector is

trained on word bounding boxes. Similarly, [7] localized the individual character and linked

them to a text instance. The character region scores are trained in a weakly supervised

manner with synthetic [29] and real dataset. Despite the success of character region scores
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in scene text detection, it cannot be directly applied to handwritten text since bounding box

construction from character region scores cannot handle overlapping text frequently seen in

handwriting.

Previous research explore various object detection frameworks for word detection in hand-

writing images.

1.1.2 Object detection

Another work [85] proposed to use a Cascade R-CNN [14] for handwriting detect. The

invoice datsests is used in [85] with printed and handwritten parts. It detects the words

from both handwritten and printed text. A two-stage framework is build in [83] where the

first stage generates a region proposal for words and the second stage classifies the bounding

box centered on a word. Also, [84] searched the word in historical handwritten documents

by initializing the search using region proposals and embedding the proposals into word

embedding space. These methods rely on a two-stage framework and proposal generation

network. However, the presence of region pooling for region proposals in a two-stage network

gives unsatisfactory results with handwriting images.

In recent years, the single-stage object detection algorithm has improved object detection

accuracy and speed. In [52] a single-stage word detector [66] detect words and grade the

examination automatically. In [70], [66] detect and recognize Kawi characters on copper

inscriptions. These works are evaluated either on scanned images or printed text. However,

the proposed framework for word detection is evaluated on more realistic low-contrast camera

captures images.

The proposed word detector has the following contributions: 1) We explore the character

region score for word detection in handwriting images. 2) Fuse the character region, affinity

score, and input image for multi-channel word detection. 3) Our work is designed for low-

contrast camera-captured handwriting images. 4) Our proposed character region score and

input fusion outperform the state-of-the-art object detector for word detection in handwrit-

ten text. For a long time, handwriting analysis, such as handwriting recognition [21] and

signature verification [20], has been an active research area.

1.2 Stroke trajectory recovery

There are two categories of handwriting, online and offline. Online handwriting is captured

in real-time on a digital device such as a tablet screen with a stylus pen. In contrast,

the handwritten text scanned or captured by a camera from a physical medium such as

paper is referred to as offline handwriting [51, 60]. The handwriting inscribed on a digital

device or captured from a physical medium is often unconstrained with varying orientations.
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The availability of temporal movements of a stylus pen for online handwriting makes the

handwriting analysis task easier. However, for offline handwriting, the input is limited to

handwritten images, making handwriting analysis much more difficult.

The current STR architectures for English handwriting use lines of text [5, 11] or char-

acters of alphabets [62, 63] as input. One of the recent datasets for STR, IAM-online [54],

includes only line-level annotations. For English handwritten documents, line detection is a

prominent topic for processing historical document images [13, 3]. A learning-free mecha-

nism for detecting lines in a historical handwritten document is presented in [48]. Another

algorithm for line segmentation in handwritten documents is proposed in [76]. This work is

limited to separating the overlapping words only in horizontal lines [75]. For more complex

Arabic handwriting, [24, 23] segment the curved text lines with overlapping words. A gen-

erative model to segment lines for Arabic handwriting is proposed in [18]. This method can

segment slanting and curved lines but is not accurately enclosing a complete word in lines

because they consider a binary mask to train the generative model. We have tried a few line

segmentation [76, 3] methods. They are either proposed for non-English text or do not work

well for unconstrained non-horizontal text in handwritten document images.

Non-English handwriting datasets [8, 88] emphasize word-level annotations and provide

word, line, and page-level annotations for historical handwritten documents. The Chinese,

Japanese, Arabic, and Tamil [11, 55, 79, 61] datasets for stroke trajectory also provide word-

level annotations. Older STR datasets such as IRONOFF [80] consists of words/characters/digits

of English handwriting. Unipen dataset [30] is available with character-level annotation,

whereas IRONOFF consists of words. But we were unable to obtain any copies of IRONOFF

datasets. In contrast, the publically available English handwriting dataset IAM-online [54]

for STR includes line-level annotations with missing word-level annotations. Therefore, we

propose constructing a large-scale word-level annotation for the IAM-online dataset in our

work. In recent years conventional methods [20, 71] devised rule-based algorithms for signa-

ture/word trajectory recovery. Moreover, stroke trajectory recovery has progressed through

deep neural networks. For stroke trajectory recovery, [11] introduces a first trainable convo-

lutional network. This LSTM architecture learns strokes from Tamil scripts with Euclidean

distance loss, making it hard to apply to long words with multiple strokes, such as English

handwriting. Recently, [62, 63] introduced an attention mechanism to train the writing order

recovery for characters. These attention networks are trained on characters with L1-loss,

which is, again difficult to train for words. Similarly, [55] employs an LSTM architecture

with an attention layer and Gaussian mixture model trained with cross-entropy loss. How-

ever, it is limited to encoding only a single Japanese character. Recently, [5] presents the

stroke trajectory recovery, where LSTM is trained with a Dynamic Time Waring (DTW)

loss function. [5] has a disadvantage that it can work only for a line of text. Apart from
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the restriction of the input to the lines of text, DTW loss has a drawback for long sequence

matching: it sums the loss function for all the points when finding the best alignment be-

tween two sequences. Hence order preserving stray points, i.e., predicted stroke points far

apart from their matching originals, have a minor influence on the DTW loss. However, they

result in noticeable artifacts in the predicted strokes. To circumvent this issue, we propose

to add the Chamfer distance [1] between predicted and ground truth point sets to the loss

function. In order to prevent penalizing stroke points with small deviations, we augment the

Chamfer distance to a marginal Chamfer distance. Applying the marginal Chamfer distance

yields a more significant penalty for stray points/artifacts.

Another challenge a stroke trajectory recovery system faces is the availability of ground

truth strokes. Annotating ground-truth strokes for the STR system is a laborious process

that demands time and resource allocation. Therefore, our work proposes an evaluation

algorithm that does not require ground truth stroke points to evaluate the STR system. To

the best of our knowledge, the evaluation of the STR system without ground truth stroke

points has not been proposed before.

1.3 Handwriting image generation from style image

The first few approaches for handwriting image generation conditioned on calligraphic style

are based on GAN architecture. [4] proposed the first GAN-based architecture for syn-

thesizing handwritten text images focusing on seen words only. Similarly, [43] proposed a

few-shot style-conditioned handwritten word generation. However, it is limited to synthe-

sizing short words rather than long texts. ScrabbleGAN [22] also synthesizes handwritten

texts by concatenating all the letter tokens. It can be applied to any length of text but it

does not generalize the calligraphic styles well and exhibits a lack of imitation ability. The

above-mentioned GAN architectures are trained with multiple samples of images such as 15

samples with the same calligraphic style. Recent architectures utilize transformer encoder-

decoder networks for handwriting image generation. The transformer architecture [10, 59]

shows an advantage over LSTM models [5, 34] since they are not restricted to only predicting

in forward direction.

In general, transformer-based handwriting imitation networks take a long time to train

and are difficult to converge.

Recently, [25] has been proposed to utilize a GAN-based framework for handwriting image

generation. It offers an advantage over the previous methods in that it can be trained using

a single-word image as a sample. However, the generated images are slightly blurred and

do not follow a unique character shape. To offer the image quality improvement to [25],

[26] proposed to include a patch discriminator to the GAN architecture in [25]. The local
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patches of the image are fed into a patch discriminator and trained to improve the blur in the

generated images. [26] can produce realistic and readable output by taking advantage of patch

discriminator, text recognition, and writer identification modules. However, it overfits to

text background. It seems to generate images with output even when there is no background

texture in the style image (see Fig. 6.6). It is also not able to generalize to unseen styles

and requires a large memory to train because of several auxiliary networks. [57] presents

the latest diffusion model-based image generation network without auxiliary networks. The

iterative learning of the diffusion model also requires a long time to train and often does

not generate readable output. This network is trained with writer class information hence

it cannot be applied to unseen styles outside the dataset. Additionally, these methods [25,

26, 57, 10, 59] only generate words and are not able to process long sentences and exhibit

limited applicability for unseen styles.

Furthermore, for handwriting image generation, the learning network aims to generate

images directly from calligraphic style features [16, 17, 42]. However, the image generation

method requires a long time to train [57]. On the other hand, handwriting stroke generation

networks constitute fewer parameters to train and, therefore, can be computationally much

faster to train [53, 5, 34].

1.4 Handwriting strokes generation from style image

The proposed approach belongs to handwriting stroke generation methods. In contrast to

handwriting stroke prediction and image generation, these methods can generate strokes

for an arbitrary textual string in any arbitrary calligraphic style. The handwriting stroke

generation has an advantage over the image generation. A stroke generation network deals

with fewer parameters as compared to an image generation network and requires less time

to train the network.

[45] decouples the textual and style features from handwriting images. It proposes an

implicit learning of textual and style features simultaneously. However, it does not generate

readable text because of the imperfect separation of textual and calligraphic features. Most

recently, [53] proposed a method to predict strokes from handwriting images. It employs a

diffusion model conditioned on text and style features to generate the stroke sequence for

any arbitrary text in a calligraphic style. It consists of a diffusion model without auxiliary

networks, which can be trained in a reasonable time. However, it fails to generate strokes in

the same calligraphic style and lacks diversity in the generated stroke styles. The drawback of

this model is that they used mobile net [39] trained on natural images to extract the features

from handwriting images. It results in irrelevant features for handwriting and does not

represent the diversity in handwriting calligraphic styles since the generic feature extraction
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network does not represent handwriting features. Thus, it cannot mimic the calligraphic

style of the image. In the next section, we present our proposed diffusion model trained with

strong style features and Dynamic Time Warping loss.

1.5 Contribution

Overall, handwriting stroke prediction and generation for arbitrary textual content and cal-

ligraphic styles is a challenging problem. Our work makes the following main contributions:

• We introduce large-scale word-level annotations for the English handwriting STR dataset

sampled from the IAM-online dataset. Our version of the IAM-online dataset contains

62,000 words.

• A word-level STR method estimates loss for each word rather than averaging DTW

loss over the entire line of text. To avoid the stray points/artifacts in predicted stroke

points, we employ a marginal Chamfer distance that penalizes large, easily noticeable

deviations and artifacts.

• We also introduce an algorithm for evaluating the STR system on images without ground

truth stroke points.

• Since our method works with words, we demonstrate that our method is scalable to

unconstrained handwritten documents, i.e., full-page text.

• We propose a simple probabilistic diffusion model for handwriting stroke generation. As

opposed to handwriting generation as images, our model is small and efficient to train.

• We propose multi-scale attention features to represent the character embedding.

• We also propose a character pair embedding to represent the connectivity between char-

acters based on multi-scale features.

• We trained our diffusion model with Dynamic Time Warping (DTW) and diffusion loss

to improve the stroke prediction.

• We introduce new metrics to evaluate calligraphic style similarity that utilize style fea-

tures and character shapes.

• Our system can compete with image generation in terms of calligraphy style imitation via

plotting strokes as images. Our quantitative and qualitative results show our proposed

method’s effectiveness and generalization ability.
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Chapter 2

Word Detection in Camera-captured

Handwriting Documents

2.1 Method

In our work, we propose to fuse character region and affinity score with the input image to

determine the word localization for camera-captured handwritten text. The character region

and affinity scores give information about the character’s existence and probability of char-

acter belonging to the same word, respectively. Characters are fundamental building blocks

for camera-capturing handwritten images. However, the handwritten text lacks character

annotation for words. So, we adapt the character region score from [7]. In [7], an encoder-

decoder pair is trained for character region score with 80k synthetic images having character

bounding box annotations. Encoder in character region score network consist of VGG-16 [73]

backbone and decoder with skip connections similar to U-Net [68]. The encoder-decoder pair

learns character region and affinity scores for handwritten text. The labels for characters in

the handwritten text are generated in a weakly supervised manner. The predicted charac-

ter bounding boxes from handwritten text and ground-truth character bounding boxes from

synthetic datasets [29] are used to train the encoder-decoder pair, which predicts character

region scores for handwriting images. The loss function for character region score and affinity

map is given in eq. 4.1.

L =
∑
p

Sc(p) ·
(
∥Sr(p)− S∗

r (p)∥
2
2 + ∥Sa(p)− S∗

a(p)∥
2
2

)
(2.1)

where S∗
r (p) and S

∗
a(p) denote the pseudo-ground truth region score and affinity map, respec-

tively, and Sr(p) and Sa(p) denote the predicted region score and affinity score, respectively.

The two fundamental challenges in designing a word detection algorithm for practical

application are the diversity in handwriting styles and the low-contrast of camera-captured
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Figure 2.1: (a) character region + affinity score (b)word detection based on (a)

handwriting images. Fig. 2.1(a) shows the normalized sum of character region scores and

affinity scores for GNHK handwriting datasets [49]. The character map predicted by weakly

supervised learning is a good indicator of the character’s presence. However, Fig. 2.1(b)

shows that the deterministic method to construct bounding boxes on these character region

scores [7] is not able to detect the word for handwritten text. Therefore, in our work, we

propose to train a multi-channel object detector with these character region scores described

in the Sec 2.1.1.

2.1.1 Multi-channel word detector

Though character region scores are a good indicator for words, as shown in 2.2(a), the bound-

ing box estimation on character region scores cannot handle a handwriting style. Fig. 2.2(b)

highlighted that character region scores alone are insufficient to perform well for overlapping

words in adjacent lines.
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To keep the advantages offered by the character region score and to prevent the problem

shown in 2.2(b), we propose to fuse the character region and affinity scores with the input

image to learn word detection from handwritten text. Word detection from handwritten text

is a single-class detection problem with multiple steams of input information. The detection

network consists of convolutional layers with dense connections and pyramid pooling. It

is a multi-channel word detection framework for handwritten text. In previous research,

Figure 2.2: The block diagram of the convolution network comprising encoder, decoder and detection
branches. Encoder-decoder pair is used to learn character region scores and detection branch learn the
multi-channel word detection for fused character region scores and handwriting image. The break symbol
between encoder-decoder branch and detection branch shows the autonomy of both branches.

multi-channel input is utilized for object detection in satellite images [77] and outdoor scenes

[81]. However, these researches used additional information bands such as infrared or depth

maps, which are readily available with datasets. However, we propose learning the character

region score in weakly supervised manner without any character level annotations. We fuse

the character region score and affinity scores for word detection into an object detection

framework [67, 12, 35]. Single-stage objects detector [67] performs better on word detection

than a two-stage object detectors [12]. The work in [6] used region score to detect word. It

estimates the heat map of words and generates the region proposal on the estimated heat

map. The heat map and regional proposals are fed into the filter network to learn if the region

proposal envelops a word. This work is very different from our proposed approach. First,

it does not learn any information about the character regions and is limited to estimating

word region scores. Secondly, their region proposal generation is also limited to a heat map

of words. However, in our work, we propose combining the cons of both handwriting image

and its character region scores. The character region scores break the word entity into basic

building blocks (character), and the affinity map provides the probability of them belonging

to the same word. Our proposed method is independent of vocabulary and considers words’

character region and affinity scores in handwritten text. Therefore, it can be easily scalable
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Method mAP@0.5 mAP@0.5:0.95

Two-stage object detector [67] 78.0 56.5
Character region score [7] 60.3 56.5

Table 2.1: The detection accuracy for two-stage object detector [67] and Character region score [7]

to any document type and vocabulary.

2.2 Experiments

In the next section, we briefly describe the low-contrast camera-captured GNHK dataset [49]

and evaluate the performance of word detection on it.

2.2.1 Datasets

The images in GNHK datasets are sourced from Europe, North America, Africa, and Asia.

It is a diverse dataset as penmanship varies in different parts of the world. The dataset

consists of 687 images containing different types of handwritten text, such as shopping lists,

sticky, and diaries notes. Mobile phone cameras captured images under unconstrained set-

tings. Therefore, it may contain shadows from mobile devices, and handwriting has very low

contrast with the background, as visible in Fig. 2.3. There is a corresponding JSON file for

each handwritten-text image containing the annotations of words in the images. Fig. 2.3(a)

shows the image of handwritten text, and Fig. 2.3(b) shows the ground truth bounding boxes

of words for each word in handwritten text.

2.2.2 Results and discussion

In our work, a multi-channel object detector is proposed for word detection for GNHK

datasets [49]. In [49] the baseline is established with two-stage word detector [67, 82]. Table.

2.1 shows the performance of the two-stage object detector and character region score. It

can be seen in Table. 2.1 that the object detector and character region score have the same

mAP@0.5:0.95 accuracy (0.565), however for mAP@0.5 two-stage object detector (0.780) have

higher accuracy than character region score (0.603). The low accuracy of the character region

score is because of a deterministic bounding box estimation for words [7]. For overlapping

text in handwriting, the deterministic estimation does not work for handwriting text, as

shown in Fig. 2.2.

In our work, we propose to perform multi-channel word detection leveraging character

region and affinity score along with handwriting text image. The single-stage object detector

outperforms the two-stage detector by a large margin. Table. 2.2 shows the quantitative
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Input Prec Recall mAP@0.5 mAP@0.5:0.95
Word detector [12]

image 90.1 87.2 91.8 63.6
Multi-channel word detector with character region scores [12, 7]

image —— RS
90.3

(+0.2)
87.7 91.8 64.0

image —— (RS + AS) 89.8
88.4

(+1.2)
92.2

(+0.4)
64.0

(+0.4)

Table 2.2: The detection statistics for image, character region and affinity score on multi-channel object
detector network [12]. In the table, image stands for 3-channel handwriting image, RS stands for character
region score and AS stands for character affinity scores.

Handwriting size Prec Recall mAP@0.5 mAP@0.5:0.95
image

Large 82.0 89.6 89.5 64.8
Med 91.5 92.2 94.1 68.0
Small 89.5 86.1 91.1 62.2

image —— (RS + AS)
Large 84.9 90.7 91.1 65.7
Med 92.0 91.7 94.4 67.1
Small 89.2 86.9 91.3 62.1

Table 2.3: The detection statistics for image and character region scores as input for the object detector
network [12] for large, medium, and small handwriting sizes
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Figure 2.3: Sample images from GNHK datasets [49] with bounding boxes

Figure 2.4: The qualitative results for word detection for low-contrast camera -captured handwritten text
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results for image, character region (RS ), and affinity scores (AS ) for the word detector

network [12]. In Table. 2.2, we can see that the multi-channel information consisting of

handwriting image, character region scores, and affinity map outperforms the word detector

without character region and affinity scores [12]. The multi-channel word detector increases

the recall by 1.2%, mAP@0.5, and mAP@0.5:0.95 by 0.4%. Therefore, additional information

from weakly supervised character region scores beats the state-of-the-art word detector.

Fig. 2.4 show the qualitative results for challenging examples with low-contrast and over-

lapping words. Nevertheless, our method still produces a reasonable detection compared

to state-of-the-art word detector [12]. In that case, the character region and affinity score

provide the word clues shown in character scores map in Fig. 2.4.

We also validated in Table. 2.3 that character region and affinity scores gives better

performance for large and medium-size words. It gives approximately 1% improvement in

mAP@0.5 with the single-stage word detector. On the other hand mAP@0.5:0.95 declines

for small handwriting text as the quality of character region scores declines for very small

word sizes. In Table 2.3, we illustrate the results for large, medium, and small handwritten

text. Character region and affinity scores for large and medium handwriting outperform

input images for word detection. Character region and affinity scores as word clues with

RGB images of handwritten text improves the word detection accuracy on camera-captured

handwriting images.

2.3 Conclusion

In our work, we propose the multi-channel word detection that leverage the character region

scores trained in a weakly supervised manner for handwritten text. The character region

and affinity scores improve the qualitative and quantitative results. The state-of-the-art

word detector struggles to detect words in low-contrast camera-captured handwriting im-

ages. However, the proposed multi-channel word detector performs well also on challenging

examples.

17



Chapter 3

Strokes Trajectory Recovery for

Unconstrained Handwritten Documents

3.1 Method

3.1.1 Network architecture

We deploy a CNN with bidirectional LSTM for stroke trajectory learning. The input to

the CNN is a word image resized to a fixed height with variable width to keep the same

aspect ratio. A CNN branch consists of seven convolutional blocks with ReLU activation.

The convolutional filters have a 3x3 kernel size with 2x2 and 2x1 max pooling in each layer.

The output of the CNN branch, a Wx1024 dimensional feature vector, where W is the width

of the image, is fed into eight bidirectional LSTM blocks. Each bidirectional LSTM block

consists of 128 hidden units, so each LSTM block’s input is Wx128. Lastly, a bidirectional

LSTM is followed by a 1-D convolutional block that predicts a Wx4-dimensional output.

The number of output points is proportional to the width of the input image. The first

two dimensions of the output indicate the relative coordinates (x,y) with respect to the

previous location. The last two dimensions indicate start-of-stroke (sos) and end-of-stroke

(eos) tokens, respectively. Cross-entropy loss is employed to learn the start-of-stroke and

end-of-stroke tokens. The overall architecture is shown in Fig. 6.1.

3.1.2 Loss function

The ground truth in IAM-online dataset [54] is a sequence of points defined as (x, y) coordi-

nates with a time stamp. Since the number of predicted coordinates is propositional to the

width of the input image, we re-sample the equidistant ground-truth coordinates such that

the number of points is proportional to the image’s width.
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Figure 3.1: The block diagram of the overall system for training, inference, and automatic evaluation.

Dynamic Time Warping (DTW) loss

In general, DTW [9] computes the optimal match between ground-truth (GT) (T = (t1, t2, t3, ....tm))

and predicted sequences (P = (p1, p2, p3, ....pn)) of different lengths by finding the warping

path between two sequences. In DTW loss, the cost matrix is calculated as:

cost(i, j) = ||pi − tj||2 (3.1)

The accumulative cost matrix (A) is given as,

A(i, j) = cost(i, j) +min[A(i− 1, j), A(i− 1, j − 1), (3.2)

A(i, j − 1)] (3.3)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Given matrix A, DTW computes the optimal warping path from A(n,m) to A(1, 1) as

the alignment of points in P to points in T is expressed as index mapping α : {1, . . . , n} →
{1, . . . ,m}, where α is an onto function.

LDTW (P, T ) =
n∑

i=1

||pi − tα(i)||. (3.4)
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Figure 3.2: The impact of marginal Chamfer distance loss on the stroke trajectory recovery. (a) DTW loss
only. (b) DTW + Chamfer distance loss.

Chamfer distance loss

The DTW gives promising results for training the stroke trajectory recovery systems [5]. It

helps to match the point trajectory for ground truth and predicted strokes. However, the

DTW loss function does not impose a sufficiently large penalty for predicted points following

a similar trajectory as the ground truth points but far off compared to the ground truth at

the pixel level. Fig. 3.2(a) shows that the predicted and ground truth points are far off, but

the DTW loss is small since the predicted strokes follow the same trajectory as a ground

truth stroke. Therefore, in this work, we propose to add a marginal Chamfer distance. Its

effect is illustrated in Fig. 3.2(b). The proposed marginal Chamfer distance between the

predicted and ground truth point sets is given by

dCD(P, T ) =
∑
p∈P

max(min
g∈T

∥p− g∥22)− c2, 0) + (3.5)∑
g∈T

max(min
p∈P

∥g − p∥22)− c2, 0), (3.6)

where P and T represent the point sets for predicted and ground truth strokes. The Chamfer

distance is calculated on the pixel level. In the experimental section, we will discuss the

setting of parameter c. The intuition behind the marginal Chamfer distance for STR is to

consider the distance only if the predicted stroke point is at least a unit pixel apart from its

nearest ground-truth stroke point. It leads to quantitative improvements in loss calculations

as shown in Table 5.1. The proposed loss is simply a sum LDTW (P, T ) + dCD(P, T )

3.2 Experiments

We first present the construction of word-level annotations for IAM-online dataset (Sec.

3.2.1) and introduce the greeting-card handwritten messages (GHM) dataset (3.2.1). We
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Method mAP@0.5 mAP@0.5:0.95

Scene text detector [7] 0.603 0.565
Two-stage word detector [67] 0.780 0.565
Single-stage word detector [12] 0.913 0.619

Table 3.1: The accuracy (mAP) of word detection with state-of-the-art scene text detector [7] and single and
two-stage object detectors [67, 12].

discuss the evaluation metric and results of the proposed method on these datasets (Secs.

3.2.2 and 6.2.3). Finally, we present the application of our proposed method for the GHM

dataset (Sec. 3.3.2).

3.2.1 Word-level annotation

In the IAM-online dataset [54], the stylus pen movement on an electronic device’s screen pro-

vides the coordinates of the ground-truth point for stroke trajectory recovery. However, the

IAM-online dataset only provides the stroke’s ground truth for the line-level text. Therefore,

we use word detection to construct stroke annotations for words. Word detection generally

requires word bounding boxes to train the detection network, but the IAM-online dataset

does not include word bounding boxes. So, we propose to train the word detection on GNHK

[49] dataset and then applied to the IAM-online dataset. The images in the GNHK dataset

are sourced from different regions of Europe, North America, Africa, and Asia containing

39k+ words, sufficient to train a word detector with data augmentation [12]. Hence, it is a

diverse dataset regarding writing style and image quality as the penmanship varies in different

parts of the world, and camera quality varies for each captured image.

We explore three state-of-the-art detectors; one scene text detector [7] and two object

detectors for localizing the words in unconstrained handwritten text. A scene text detection

network identifies character regions in natural images and detects the words based on char-

acter regions and affinity scores between them [7]. However, the deterministic approach to

constructing bounding boxes around character region scores is not well suited for handwriting

word detection. Because in the handwritten text, adjacent lines may overlap, and characters

may have high affinity scores in adjacent lines, which misleads the word detection results.

This shortcoming of the scene text detector gives low detection accuracy for unconstrained

handwritten text (as shown in Fig. 3.4).

On the other hand, the object detector attributes words as objects and is more efficient for

detecting overlapping words in adjacent lines in a non-horizontal orientation. For our task,

a single-stage detector YOLO [12] performs better than a two-stage detector Faster R-CNN

[67, 36, 33]. Both are trained and evaluated on GNHK dataset [49]. In Table 3.1, we list the

quantitative results for word detection on GNHK dataset. Due to its best performance, we
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select the single-stage YOLO word detector [12] and apply it to IAM-online dataset [54] for

word detection.

Figure 3.3: (a) Word detection for the GNHK dataset [49], (b) word detection for IAM-online dataset [54],
(c) Words from IAM-online dataset used to train our network.

In Fig. 3.3(a,b), we show the word detection visualization for sample images from GNHK

dataset [49] and IAM-online dataset [54] respectively. The images in GNHK [49] vary in

handwriting style, background, and camera conditions. Therefore, the word detection trained

in GNHK dataset [49] has acceptable performance for the IAM-online dataset [54]. We

used the word-level annotations for the IAM-online dataset [54] to finetune and evaluate our

system. Word detection on the IAM-online dataset gives us 41,665 and 19,496 words for train

and test sets, respectively. Fig. 3.3(b) shows the word detection from lines from IAM-online,

and Fig. 3.3(c) shows the words used in our work to train the network.

Greeting card messages dataset

In our work, we propose a word-level stroke trajectory recovery.

To evaluate our system on unlabelled handwritten documents, we acquire approximately

2,000 greeting-cards handwritten messages (GHM) dataset from greeting cards company [72].

The GHM dataset shared1. Handwritten messages from the GHM dataset do not follow any

fixed template because it consists of user-uploaded handwritten messages to greeting cards

company [72]. The samples from the GHM dataset are shown in Fig. 3.4.

3.2.2 Evaluation metric

We used a distance-based evaluation metric to evaluate stroke trajectory recovery. The

average distance of points in the ground-truth (T ) stroke to its nearest predicted stroke (P)
1https://drive.google.com/file/d/1G-EZBfEhsHThR9dR1YtJdPE3Mg0ay0w-/view?usp=sharing
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Figure 3.4: Sample documents form GHM dataset with unlabelled handwriting images.

Loss function
distt,p
(mean)

distt,p
(std)

distp,t
(mean)

distp,t
(std)

ϵsos

DTWline [5] 0.01558 0.01402 0.02776 0.0353 0.1553
DTWword 0.01653 0.014862 0.01287 0.00965 0.1427

DTWword + Chamfer distance 0.01492 0.01042 0.01257 0.00946 0.1479

Table 3.2: The quantitative comparison for training on DTW loss for lines and words. The third row lists
the quantitative results for training with combined DTW and Chamfer distance loss between predicted and
ground-truth points

is denoted by distt,p. Similarly, the average distance of points in the predicted stroke (P)

to its nearest ground-truth stroke (T ) is denoted by distp,t. The metric distt,p signifies that

every ground-truth stroke point is close to the predicted point and vice versa for distp,t.

distt,p and distp,t are the same evaluation metrics as used in [5]. However, apart from the

mean (mean) of the distances between predicted and ground truth stroke points, we also

compute the standard deviation (std) of the metrics. We also compute the loss for predicting

the start-of-stroke token ϵsos. ϵsos should have the lowest value if the start-of-stroke token is

predicted correctly.

Loss function
distt,p
(mean)

distt,p
(std)

distp,t
(mean)

distp,t
(std)

c = 1 0.01492 0.01042 0.01257 0.00946
DTWword + Chamfer distance

c = 3 0.0177 0.0118 0.01859 0.0162

Table 3.3: The quantitative comparison of increasing the value of c from 1 to 3.
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3.3 Results

DTW and Chamfer distance are complementary loss functions to train our system. DTW loss

ensures that the predicted stroke sequences are similar to the ground truth stroke sequence.

The Chamfer distance between the predicted and ground truth point set ensures that there

are no spurious points/artifacts in predicted points; that is, no predicted points are far away

from ground truth points.

3.3.1 IAM-online dataset

Table 5.1 presents a quantitative comparison, where bold numbers show the best results

(lowest value). The first and second rows of Table 5.1 show the evaluation with line-level and

word-level input for DTW loss, respectively. We observe that both distt,p and distp,t metrics

are much lower for word-level than the line-level input. These results show that training the

stroke trajectory recovery with a word-level dataset, as we proposed, improves the results. We

also validated that Chamfer distance loss for predicted and ground truth point sets improves

the quantitative results. Both mean and standard deviation of distp,t and distt,p decrease by

adding Chamfer distance to the loss function. It means that the predicted strokes are better

at imitating the ground-truth strokes. The lower values of both distt,p and distp,t illustrate

that every ground-truth stroke has a close predicted stroke and vice versa. So, we do not

get spurious predicted strokes and yet do not miss to follow the shape of the ground-truth

strokes. We noticed that chamfer distance loss has minimal influence on start-of-stroke (ϵsos)

as shown in Table 5.1. In another experiment, we try the higher values of c (Eq. 3.6) as

shown in Table 3.3, but by increasing the value of c increases the std of distt,p and distp,t.

Therefore, we keep the value of c=1 in our work.

Figure 3.5: Samples of stroke trajectory recovery with (a) DTW loss and (b) DTW loss with Chamfer distance
on the predicted and ground truth point sets. The recovered stroke trajectory is shown by red, blue, and
green arrows, and the predicted start-of-stroke point is shown as an orange circle (best view in colored).

The visualization of the elimination of spurious predicted points/artifacts from the pre-
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dicted stroke trajectory by adding Chamfer distance loss is illustrated in Fig. 3.5. We can

see that extra stroke points cause more artifacts in (a) than in (b).

3.3.2 Greeting cards messages dataset

The previous methods on the IAM-online dataset work with line-level text for stroke trajec-

tory recovery [5], which is not scaleable to unconstrained handwritten text images without

line detection. This is one of the main reasons why we work with word-level text.

In one of the applications of the proposed work, we show the stroke trajectory recovery for

greeting-card handwritten messages [72]. We applied the developed method trained for word-

level annotation using DTW and Chamfer distance to the images containing greeting-card

handwritten messages. Handwriting images from greeting card messages do not follow any

fixed template because they consist of user-uploaded handwritten messages. Therefore, first,

we detect the words in greeting card handwritten messages with word detector described in

Sec. 3.2.1. Then we execute the trained STR model on each detected word. The recovery of

stroke trajectory for greeting card handwritten messages is the word-level stroke trajectory

recovery of each word.

We render the image from predicted stroke points as described in Fig . 3.6, where the

proposed STR system predicts the stroke trajectory recovery for each word. Whereas the

render image module converts stroke points into an image. Finally, we align the rendered

image to the location of the detected word.

Figure 3.6: The mechanism of image rendering from predicted stroke points.

The visual results of the proposed word-level STR system on handwritten greeting card

messages as shown in Fig. 3.7 are rendered word-wise by the image render module illustrated

in Fig. 3.6. Our proposed STR system can easily be applied to text with different orienta-

tions, as shown in Fig. 3.7. The left-hand images are input handwritten messages, and the

right-hand images are rendered from the recovered stroke trajectory for each word.
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Figure 3.7: The input image and the rendered image from predicted stroke trajectory recovery for GHM
dataset.
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3.4 Conclusions

In our proposed work, we trained a neural network with word-level annotations for the

IAM-online dataset using DTW and Chamfer distance loss functions. We demonstrated that

adding Chamfer distance loss to DTW is beneficial for removing artifacts and spurious stroke

points for better stroke trajectory recovery. We also proposed automatic evaluation methods

using image matching and readability consistency to evaluate the quality of stroke trajectory

recovery for unlabeled datasets. Finally, we demonstrate the ability of our proposed work to

work in unconstrained practical applications by applying and evaluating it on an unlabeled

handwriting greeting card messages dataset.
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Chapter 4

Automatic evaluation

In the previous stroke trajectory recovery evaluation system, we computed the distance be-

tween ground-truth stroke points and predicted stroke points. For this purpose, we require

the ground truth strokes’ coordinate information to compute the difference. However, adding

the coordinates information is extra work and requires extensive labor. Moreover, the exist-

ing handwriting datasets have limited availability of stroke coordinates information. Hence,

although the proposed system can be applied to handwriting datasets without stroke coor-

dinates information, it is impossible to evaluate the quality of its predicted strokes using the

existing methods. Therefore, we propose two measures for evaluating the quality of recov-

ered stroke trajectories when ground truth stroke information is not given, namely image

matching and readability.

4.1 Image matching

The LSTM predicts the stroke trajectory recovery point coordinates (x,y). We digitize the

obtained strokes (X, Y) by plotting the points (x,y) and constructing a digital image from all

the recovered stroke points (X, Y). As we compare the original and reconstructed image, the

dimensions of the reconstructed image are the same as the original image. However, since the

text is plotted with unit thickness, the thickness of the text in the input and reconstructed

image differs. To overcome this issue, we propose dilating the reconstructed images so that

the thickness of the text in the input and the reconstructed image are the same. We dilate for

the kernel size ranging from 0 to 10 and select the kernel size that yields the least number of

pixels in the absolute difference between the input and dilated images. Let Iinput be the input

handwritten text image, and let Ipredict denote the image reconstructed from the coordinates

of stroke points predicted by LSTM. Ipredict is reconstructed by digitalizing the predicted

stroke trajectory as described in Sec. 3.3.2. Hence all the words in Ipredict are one pixel thick.

Next, we dilate Ipredict with a dilation kernel k ∈ (1, 10), and denote the dilated image
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with kernel k as D(Ipredict, k). We compare two digital images by computing their symmetric

difference as

IDiff(k) = |Iinput −D(Ipredict, k)|. (4.1)

We define IDiff as the image IDiff(k) with the minimum number of foreground pixels for

k ∈ (0, 10). This allows for estimating the thickness of the input text in the reconstructed

image.

Next, we check the quality of the reconstructed image IDiff by performing connected

component analysis. Let C be the largest connected component in IDiff image. The ratio of

the number of foreground pixels in C to the total number of foreground pixels in Iinput gives

us the error in the stroke trajectory prediction, which is denoted as ϵ. This value can be

used as a quantitative measure of the predicted strokes. Empirically, we observed that if the

error ϵ is less than the threshold (T = 0.025), then the quality of stroke trajectory recovery

is good and vice versa.

The intuition of the proposed method is that the image IDiff has small scattered connected

components if stroke trajectory recovery is good. However, the IDiff(k) image has large and

quite noticeable connected components if stroke trajectory recovery is of poor quality. The

example of good and poor stroke trajectory recovery validated by the proposed method is

shown in Fig. 4.2.

4.2 Readability

The second part of the automatic evaluation checks the preservation of the readability of

the input text and the text from the recovered handwriting trajectory. To verify that the

recovered stroke trajectory is read the same as the input handwriting word, we recognize the

characters in both images. Let Ii and Ir be the two images for word from the input hand-

writing image and the one recovered from the proposed stroke trajectory recovery method,

respectively. The text recognition on Ii and Ir gives us the string of characters for input word

denoted by Wi = [w1, w2, ..., wm] and the string characters from recovered stroke trajectory

denoted by Wr = [w1, w2, ..., wn], where m and n are the total character recognized in Ii and

Ir. We utilize the pre-trained text recognition network [50] to compute Wi and Wr. The

difference between the two recognized strings is computed by the edit distance between the

two strings. In our work, we compute the edit distance between two strings Wi and Wr

with Levenshtein distance. Let the Levenshtein distance between two strings be dlev and the

number of characters in input string Wi is m. The readability error R is defined as dlev/m,

that is, the ratio of incorrect string matching to the total number of characters in the input
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string. Ideally, the Levenshtein distance (dlev) and readability error (R) are expected to be

zero for good stroke trajectory recovery. Empirically, we noticed that the R less than T = 0.1

results in satisfactory reconstruction, which we define as acceptable readability. This process

is illustrated in Fig. 4.1.

Figure 4.1: The readability module based on text recognition [50] utilized for our automatic evaluation. The
top-left text is the input and the bottom-left text is reconstructed from predicted stroke trajectory recovery.

4.3 Experiments

We also applied the proposed automated evaluation method to the GHM dataset. In Fig.

4.2, we show the input handwritten messages, the dilated image, and connected components

for IDiff . The recovered image is dilated to match the width of the words in the input

handwriting image as described in Sec. 4.1. According to the criteria defined in Sec. 4.1,

the Fig. 4.2(top) example shows the good stroke trajectory recovery with small scattered

connected components. Whereas, Fig. 4.2(bottom) shows the poor stroke trajectory recovery

as there are larger connected components in the difference image IDiff .

In Table 4.1, we listed the accuracy of the image matching and readability-based evaluation

proposed in our work. The first column in Table 4.1 shows the percentage of documents

with correctly recovered stroke trajectories according to our two proposed quality measures.

According to the thresholds defined in Sec 4.1 and Sec. 4.2, the accuracy of stroke recovery

from image matching and readability is 24.30% and 24.76%, respectively.

We manually verified the accuracy with user scoring.

If the threshold defined in image matching and readability evaluation classifies the image

from the recovered stroke trajectory as satisfactory and the user also gives a satisfactory

score to the recovered image, then a confidence score of 1 is assigned to that reconstruction.

The average confidence score (confidence) for all the images is computed. The user scores

the image in binary, scoring either 0 or 1. We applied this binary criterion to evaluate

the robustness of the thresholds defined in Sec. 4.1 and Sec. 4.2. The accuracy of image

matching and readability with the confidence score (confidence) are listed in Table 4.1.

Our observation shows that the automatic evaluation based on image matching is a better
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Figure 4.2: The input image, dilated image (after dilation is applied to the recovered image), and the
difference of the input and dilated images.

evaluation measure than the readability evaluation. One of the reasons is that the text

recognizer can correctly recognize words even if they are visually dissimilar to the input

handwritten words.

Method Accuracy Confidence

Image matching 24.30% 74.0%

Readability evaluation 24.76% 53.8%

Table 4.1: The quantitative analysis of automatic evaluation on greeting cards handwritten messages [72].
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Chapter 5

Local Feature Fusion with Character Shape

Refinement for Handwriting Imitation

Handwriting image generation is a critical problem in document analysis as it facilitates

handwriting recognition and writer’s order estimation. The variety of human handwriting

poses multiple challenges such as calligraphic style, slant, and font thickness imitation for

the handwriting image generation process. The current handwriting generation networks use

disentangled representation to learn the overall handwriting style. However, it is not sufficient

to mimic the local character shapes of the letters. Moreover, the previous methods utilized

the L1-loss function to match the ground truth and generated image, which overlooks to

match the unique calligraphic shapes of the characters. In our proposed work, we introduced

the loss function comprising pixel distribution matching in the ground truth and generated

images. This loss function captures the local calligraphic shape of the letter. Moreover,

we introduce the fusion of local attention features with global style features to improve the

unique calligraphic style representation. For the proposed method, the experimental analysis

gives 12.9% us better results for image generation for pixel distribution matching.

Although there are recent methods for generating photorealistic images for natural scenes,

generating handwriting images is still an open research problem. In contrast to the natural

scenes, handwriting images of varying lengths depend on the number of letters in each word.

Secondly, the handwriting images may contain arbitrary textual content containing words

out-of-vocabulary. Thirdly, humans have varying handwriting styles with different handwrit-

ing strokes, cursive ligatures, and font sizes. Therefore, no fixed templates could be followed

for handwriting image generation.

Recently, several studies have proposed GAN architecture for handwriting generation,

with most methods offering limited advantages for handwriting image generation. First

network [4] proposes GANs for synthesizing handwritten text images utilizing the entire word

embedding for style representation. However, this method can low visual qualities for OOV

words. ScrabbleGAN [22] can synthesize arbitrarily long handwritten texts by concatenating
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Figure 5.1: The overall network architecture

all the letter tokens, but it cannot imitate calligraphic styles of reference samples. [43]

proposed a few-shot style-conditioned handwritten word generation. However, it is limited

to synthesizing short words rather than long texts.

Moreover, Bhunia [10] proposed a transformer-based architecture for handwriting image

generation. .[10] takes a long to train with the help of recognition and writer identification

network and cannot perform style imitation.

Recently, [25] is proposed to utilize GAN based framework for handwriting image gen-

eration. It offers the advantage over the previous method, which could be trained using a

single-word image as a sample. On the other hand, the previous methods require at least 15

sample images to train the GAN architecture. The generated image quality is still unsuitable

for unique character details, and images are also blurred in overall quality. To offer the image

quality improvement to [25], a [26] proposed to include a patch discriminator to the GAN

architecture. These patch discriminator are fed by local patches of the image and trains to

improve the blur in the generated images.

The handwriting image generation methods mentioned above [10, 22, 25, 26, 43] are

promising for producing photorealistic images but cannot imitate the unique character styles

in sample images. The style encoder used in the previous methods utilizes a residual convo-

lutional network for style representation learning from the entire image.
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Figure 5.2: The generated and ground-truth image and their respective histograms

5.0.1 Problem statement

Every writer draws individual characters in a specific character shape, and the overall hand-

writing styles, such as slant, character spacing, and linkage in any handwriting style, are

different. In our work, we propose a solution for handwriting imitation conditioning on any

calligraphic style with particular attention to character shape x̂ = G(y)|E(w,c). The proposed

system learns the style embedding Es(w, c) from word images to capture the local charac-

ter shapes. Moreover, in our work, we introduce to incur loss based on the shape of the

characters. The shape of the characters in words is estimated by the distribution of fore-

ground pixels in the generated image. As a result, our handwriting imitation model generates

characters in words more similar to the sample handwriting style.
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5.1 Method

5.1.1 Network architecture

Textual content embedding

There are mainly two ways to encode the features from the textual content, first is to extract

features from an entire string of text and convert it into a fixed-length feature representation.

The explicit way is to encode each character embedding c and concatenate these character

tokens into a feature representation. This improves the generalizability of the generative

model as highlighted in [26]. In this way, our generative model is not restricted to learning

the character-level handwriting imitation limited to the words in the training corpus.

For the text content y = [y1, y2, ..., yl] with l-characters, the variable length feature map is

computed by concatenating features from each character as F = [fy, fy, ..., fy]. This feature

vector is provided as textual content embedding into a generative network to generate the

image for the sample handwriting style.

Adversarial generative model

The textual content features F are fed into generative model G along with character-attention

style embedding S. The generator network is fully convolutional to ensure the variable length

for image generation based on the number of characters in the textual content image. Our

style feature network is specifically designed to focus attention on the characters and calli-

graphic style of handwriting simultaneously to encode the character shape and calligraphic

style (text slant, font thickness, and ligature) into a unified character-attention style feature

embedding. Our generator network G aims to mimic the character’s unique shape as well as

the overall handwriting style.

Global and local patch discriminators

In our work, we leverage two discriminators, one for the entire generated image (global dis-

criminator) and the second one for the cropped patches from the generated image (local

discriminator). The global discriminator tried to classify a generated image as real/fake.

However, the local discriminator attempts to grade the cropped patches from images either

belonging to the generated image or to the training dataset. The global and local discrimi-

nators to refine the generated patches of handwriting are inspired by [26].

Supporting networks

In our framework, we used a pre-trained writer identification network to classify the hand-

writing images into their respective writers and it guided the generator to imitate the style of
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Method IS FID KID PSNR MSSIM WER ADP
ScrabbleGAN 1.3268 26.7758 2.9479 11.2562 0.1950 0.0740 -

ST-GAN 1.2443 33.9069 3.1314 12.0345 0.1845 0.1968 -
GANwriting 1.3267 20.5539 1.3927 10.8045 0.2038 0.2143 -

HWT 1.3620 19.6938 1.8003 10.7518 0.2319 0.1032 -
HiGAN 1.3298 18.3095 1.6688 11.7609 0.2459 0.0085 -
HiGAN+ 1.4059 5.9510 0.3709 12.3391 0.3322 0.0186 0.05917
λADP 1.4078 6.2809 0.3834 12.399 0.3375 0.0223 0.0515

Table 5.1: The quantitative comparison of our method with state of the art methods for the handwriting
imitation

Method IS FID KID PSNR MSSIM WER ADP
A λadv + λctc 1.2975 24.3985 2.2173 11.6510 0.2078 0.0243 -
B A + λrecn + λkl 1.3356 25.2118 2.0649 11.3832 0.2452 0.0080 -
C B + λid + λstyle 1.3298 18.3095 1.6688 11.7609 0.2459 0.0085 -
D C + λctx 1.3694 10.6346 0.7752 11.9286 0.2981 0.0085 -
E D + λpatch 1.4059 5.9510 0.3709 12.3391 0.3322 0.0186 0.05917
F λADP 1.3782 6.8078 0.4228 11.6530 0.2766 0.0231 0.1293
G λrecn + λADP 1.4078 6.2809 0.3834 12.3990 0.3375 0.0223 0.0515
H G + local attn. 1.3682 7.5499 0.4521 11.9364 0.2839 0.0361 0.0960
J H + λADP 1.3537 10.8053 0.7960 11.8857 0.2705 0.0809 0.0860

Table 5.2: The ablation study for different loss functions for handwriting imitation

the handwriting based on writer identification. The other pre-trained component in our sys-

tem is the word recognition network. The word recognition network ensures the generation

of readable text for the given textual content and style embedding.

character-attention style features

In our work, we propose a character patch self and cross attention to learn the style embedding

representation from sample style images. We crop the character patches from word images

by a character detection network described in Sec. 6.1.2. The character detection network is

trained without character bounding box annotations in a weakly supervised way with only

available character boxes for synthetic scene text datasets. Character detection provides us

with a reasonable estimation of the location of characters with unique shapes.

The attention scores of all the characters with themselves as well as with the entire word

are computed. For this purpose, we design a self and cross-attention encoder network. The

number of characters in each word is different so we introduce the blank image padding to

ensure the number of characters passes to the encoder remains the same despite the different

number of characters in each word. An attention mask is defined on the basis of the number

of characters in each word. we introduce an encoder attention mask to avoid the contribution
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of attention scores from padded images. The block diagram of the proposed architecture is

shown in Fig. 5.1.

5.1.2 Loss functions

shape matching loss

The previous handwriting imitation work [26] suggests the Euclidean L1-distance between

generated x̂ and ground-truth x image to penalize the difference between two images. The

Euclidean L1 distance works well for global image quality since it takes the average of the

difference of pixels in two images. However, it does not seem to be sensitive to the calligraphic

style of individual characters in handwriting. Therefore, in our work, we introduce to match

the distribution of pixels in generated x̂ and ground-truth x image in different orientations

as follows:

Lp(x, x̂) =
1

P

P∑
p=1

L1d (ϕp(x), ϕp(x̂)) (5.1)

where, ϕp(x) and ϕp(x̂) are the distribution of foreground pixels in pth orientation. To

the best of our knowledge, our work is the first to introduce distribution matching loss for

handwriting imitation.

Reconstruction loss

Global and local adversarial loss

In our network, we employed global and local adversarial losses. The generative network

G is trained both for global and local adversarial losses. The global adversarial loss LGadv

distinguishes between the fake images generated by the generator G given the textual content

and style representation of the sample image and real image sampled from the training

datasets for the same writer.

Let’s suppose, for the textual content T ∈ C and style representation s, G generates a

fake image x̂ = G(T |s), where the style features s is extracted from sample image w and set

of character patches c given as s = E(w,c).

LGadv
= Ex[logD(x)] + ET,s[log(1−D(G(T |s)))] (5.2)

The general adversarial loss is used to train the generative adversarial network. How-

ever, to produce a clear handwriting image with minimum local blur, we also employed an

adversarial loss on the handwriting image x̂ for local patches cropped from the generated

image. Similar to classifying the image as real or fake, we employed a patch discriminator
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P which classifies the patches of images as cropped from the real or fake image. For real

(ψx
i | i = 1 · · ·M) and fake (ψx̂

i | i = 1 · · ·M) patches, the patch adversarial loss inspired by

[26] is given as:

Lpatch =
1

M

M∑
i=1

{
Ex [logP (ψx

i )] + Ex̂

[
log
(
1− P

(
ψx̂
i

))]}
, (5.3)

where M is the total number of patches cropped from x and x̂. The examples of ground

truth and generated image with their corresponding histograms are shown in Fig. 6.5

5.2 Experimentation

5.2.1 Dataset

We will use the IAMonline dataset [54]. The dataset [2] consists of 11,192 lines of text with

58,844 words. DeepWriting provides characters for individual writer styles. There are 467

writers, out of which 372 writers are used for training the network and the rest are used to

evaluate the network’s performance.

5.2.2 Results

We compared our proposed method with previous state-of-the-art methods [10, 22, 25, 26, 43].

The previous methods are utilizing GAN architecture with style learning extracted from entire

image. The quantitative results of the proposed method are listed in Table 5.1. Here, we can

see that the proposed method λADP is performing better than the state-of-the-art method

for image generation evaluation in the case of image-similar learning metrics such as PNSR

and MSSIM. We also show an ablation study of the proposed method in Table 5.2.

There is an interesting observation that the inception feature-based evaluation metric is

better for state-of-the-art methods. Therefore, the distance between inception features (FID,

KID, IS) is not reflecting of image quality similarity between ground truth and generated

image. In Fig. 5.3, we also show some qualitative results for the proposed method compared

to the state-of-the-art method. We can see that the bottom-right block (local attention with

projection loss)shows better handwriting imitation compared to the rest of the methods.
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Figure 5.3: The quantitative comparison of previous [26] and proposed method
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Chapter 6

MS-CAP: Probabilistic Diffusion Model

Conditioned on Multi-Scale ChAracter Pairs

for Style in Handwriting Stroke’s Generation

Figure 6.1: The overall block diagram of diffusion model with multiscale attention features for the style
image. It also includes Dynamic Time Warping (DTW) loss for stroke sequence matching to train the
diffusion model.)

6.1 Method

The proposed method has four main components: multi-scale attention for style feature

extraction, text-style encoder, diffusion model, and loss function. A high-level block diagram

of the proposed method is shown in Fig. 6.1. We describe the multi-scale attention (MS )

features for handwriting images in Sec. 6.1.1. To include the additional style features that

signify the connectivity of character pairs, we introduce multi-scale character pair (MSCAP)

40



features for text-style encoder as elaborated in Sec. 6.1.2. The overview of the diffusion

model for handwriting stroke generation is described in Sec. 6.1.3. Finally, in Sec. 6.1.4, we

discuss the addition of Dynamic Time Warping (DTW) loss as an auxiliary loss to train the

diffusion model.

6.1.1 Multi-scale attention features

Generally, multi-head attention networks process images at a fixed resolution [89, 31]. How-

ever, handwriting images may constitute different font sizes, word spacing, and handwriting

styles. To extract the style features at different granularity levels in the calligraphic style, we

propose to compute multi-head attention features at multiple scales. Intuitively, multi-scale

attention focuses on details in the original resolution images and on more global calligraphic

style in the down-sampled variants.

The previous methods for handwriting imitation (via stroke generation) [53, 45] also com-

pute the features from the style template images. However, the style features in the earlier

methods are not distinctive for different handwriting styles since they are calculated from

pre-trained networks [53] trained on the natural images. These networks cannot extract

discriminative local features for character shapes and overall style. We propose the local

features from the handwriting-style template image at multiple scales to learn the character

shape with global handwriting styles. For this purpose, we consider images at three scales.

One at the original image resolution and two down-sampled variants with their aspect ratio

preserved (ARP). As we are using three scales, we divide the respective images (original

image and two variants) into equal-sized patches at each scale. The details of the multi-scale

attention network are as follows.

Patch embedding

In handwriting images, feature representation from the character shape and global style

plays a vital role in capturing the overall style for handwriting imitation. The proposed multi-

scale handwriting style representation helps to capture the global and local style information.

Patches from different scales enable the attention mechanism to aggregate information across

multiple scales and spatial locations.

The input for our multi-scale attention comprises the full-size image with height H, width

W, channel C, and two ARP resized variants using a Gaussian kernel. The downsampled

variants have height hk, width wk, channel C, where k = [1, 2] since we are using two resized

variants. The input image is a 128x1024 dimensional grayscale image. The two variants are

down-sampled at 96x768 and 64x512 resolution. In our work, the feature representation from

down-sampled images improves the quality of the feature’s representation and makes them

independent of the quality of the input handwriting image.
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Square patches of size P × P are extracted from each image in the multi-scale represen-

tation. We pad the image with zeros if the width or height is not multiples of P. A 5-layer

ResNet [37] learns the D dimensional patch embedding of each patch with a fully connected

layer of size D.

The patch embedding module is intended to compute the embedding of each patch, as-

signing a unique embedding to every patch across different scales. Consequently, patches

that look visually similar and are located in the same position may have different embed-

dings in each scale, despite their visual similarity. Yet, the ideal characteristic for positional

embedding is that spatially proximate patches should share the same positional embedding,

regardless of whether they belong to different scales.

To satisfy this property, we describe a spatial embedding in the next section, which ensures

that the spatially close patches in different scales have the same spatial embedding.

Figure 6.2: The architecture for multi-scale learning with attention via writer identification.

Spatial embedding

As we have mentioned before, we leverage patches from different scales for better style fea-

tures for handwritten images. It also imposes an additional constraint on the positional

embedding. The patches from different scales corresponding to the same image portions

should have the same spatial embedding. The spatial embedding is required to follow the

set of requirements such as 1) effectively encode the 2D spatial position of each patch to 1D
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sequence; 2) spatially close patches at different scales should have close spatial embedding;

3) efficient for computing the multiscale attention. On the other hand, traditional positional

embedding assigns different patch embedding to each patch and is not able to align the spa-

tially close patches from different scales. Based on that, we utilize hash-based 2D spatial

embedding (HSE). The patch at the location (row i, column j) is hashed to the corresponding

element in a Gh × Gw grid, where each element in the grid is a D-dimensional embedding.

HSE is defined by a learnable matrix T ∈ RGh×Gw×D. The input with resolution H ×W

is partitioned into H
P
× W

P
patches. For the patch at position (i, j), its spatial embedding is

defined by the element at position (ti, tj) in T where

ti =
i×Gh

H/P
, tj =

j ×Gw

W/P
(6.1)

The patch located at row i column j of the image is hashed to the corresponding ele-

ment (ti, tj) of matrix T. The D-dimensional spatial embedding Tti ,tj is added to the patch

embedding element-wisely as shown in Fig 6.2.

To ensure alignment of patches across different scales, we map the patch locations from

all scales onto a common grid T.

As a result, patches located closely in the image but from different scales are mapped to

spatially close embeddings in T, since i and H, as well as j and W, change proportionally to

the resizing factors. The hash spatial embedding is inspired by [44].

We selected the appropriate grid size through experimentation. As we know, handwriting

sentence has a longer length than their height, so using the same grid size for width and

height dimensions is not an appropriate choice. Therefore, we propose using the smaller grid

size for height compared to its width. For the IAM-online [54] dataset, we used [(Gh, Gw) ]=

[4x32] grid size as an appropriate choice, where Gh is a grid size for height and Gw is a grid

size of the width. Smaller Gw may result in a lot of collision between patches, making the

model unable to distinguish spatially close patches. Larger Gw requires large memory and

may need more diverse resolutions to train. The smaller size of Gh might result in overlapping

patches however the larger values of Gh would not be able to capture the local feature across

the height dimension of the handwriting. The block diagram of multi-scale attention with

patch and spatial embedding is shown in Fig. 6.2.

Scale embedding

The spatial embedding satisfies the condition to assign the same embedding to spatially close

patches in different scales. However, it does not distinguish information coming from different

scales. So, we define another embedding called scale embedding to help the attention model

to distinguish information coming from different scales effectively.
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Online writer ID

Methhod %acc

Baseline [53] 4.90

Multi-scale [4, 32] 32.35

Offline writer ID

Method %acc

Baseline [37] 87.07

Multi-scale [4,32] 95.60

Table 6.1: Classification accuracy for writer identification for online and offline handwriting. The multi-scale
attention outperforms the baseline for both online and offline by a large margin.

We define scale embedding as a learnable embedding Q ∈ R(K+1)D for the input image

and two downsampled variants. Following the spatial embedding, the first element Q0 ∈ RD

is added element-wise to all the D-dimensional patch embeddings from the original image

resolution. Qk ∈ RD k = 1, 2 are also added element-wisely to all the patch embeddings

from the downsampled variants. The sum of patch embedding, spatial embedding, and scale

embedding are fed into a multi-head attention network. We train our multi-scale attention

network for writer identification from handwriting images.

Table 6.1 shows the accuracy of writer identification for online and offline handwriting im-

ages. We compare the proposed methods with baseline mobile net [53] for online handwriting

and residual network [37] for offline handwriting. We can see that the multi-scale features

outperform the baseline for both online and offline by a large margin. Baseline methods

are CNN networks Which have the disadvantage of extracting features at fixed image size.

However, we extracted multi-scale features which improve the overall writer identification

accuracy.

The local patch features of dimensions 77x384 are extracted from the multi-scale attention

network before the classification layer. The 77 local patches each of dimensions 384 embeds

the local and global style information of handwriting style. These local patches with rich style

information are used to train the diffusion model in Sec 6.1.3. To the best of our knowledge,

the representation capabilities of multi-scale patch embedding, spatial embedding, and scale

embedding have not been explored before to represent handwritten images’ local character

and global style features. Our experimentation in Sec. 6.2.3 validates the effectiveness of

these features for handwriting stroke generation.
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Figure 6.3: (a) Block diagram of a text-style encoder for stroke diffusion [53], (b) Block diagram of a text-style
encoder for modifying style features with character style as well as the connection between characters.

6.1.2 MSCAP text-style encoder

The multi-scale (MS ) features introduced in the last section are effective in encoding a local

character shape as well as the global handwriting style. For style S conditioning, we first

extract N local patch features of each k dimensions from the handwriting image. The text

embedding module embeds each character from text string T into K -dimensional embedding

E. The attention attn mechanism computes the attention of each text character embedding

to each patch of the local style features. The block diagram to show the attention between

style features and text sequence is shown in Fig. 6.3(a). The attention output is then added

to the text sequence embeddings as E + attn(S, E ) before passing through a feedforward

network, which learns the compact style-text encoding.

Fig. 6.3(a) shows the compact text-style encoding based on local style patches and text

embedding. It encodes each character into the writer style. For instance, each character in

text (sentence) is utilized separately to attend to style features. However, it lacks the style

representation for character pairs such as ”se”, ”en”, ”nt”,... ”ce”. In our work, we propose a

style-text attention mechanism with the aim of enhancing the writer’s style by incorporating

the calligraphic element between pairs of characters.

Here, we get two sets of style features: one is character attention attn(S, T ), and the

other is character pair P attention attn(P, T ). The character attention computes the local

character shape of the writer’s style. However, the character pair’s attention captures the

connection between the characters. In our proposed work, we attend the character pairs such

as ”se”, ”en”, ”nt”,... ”ce” to the style features as well. Finally, we sum up three features,

namely character attention, character pair attention, and text embedding as E + attn(S, E )
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+ attn(P, E ) as shown in Fig. 6.3(b).

We condition the diffusion model on the proposed text-style features for handwriting

stroke generation. The style is extracted from the handwritten image template, and text

content is the given arbitrary text that we intend to generate in the same style as the style

template. This method of attention between style features and text sequence is effective

in conditioning the diffusion model for stroke prediction. Our feature extraction method

surpasses the baseline [39] for handwriting style features proposed in [53].

In Section 6.2, we demonstrate the effectiveness of our proposed text-style features for

handwriting imitation via stroke prediction. To the best of our knowledge, this is the first

study to explore the multi-scale handwriting style features as well as the character pair

attention to condition the diffusion model for handwriting stroke generation.

Figure 6.4: The internal layer-wise architecture of diffusion model for strokes prediction from handwriting
images for training and inference phase.
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6.1.3 Stroke diffusion Model

Our diffusion model is conditioned on text-style embedding from Sec. 6.1.2. It comprises a

set of convolutional layers with attention blocks. We iteratively add the Gaussian noise to

the ground truth stroke sequence. In general, the diffusion model employs Markov chains to

add noise and disrupt the structure of input data, this step is called the diffusion process.

In the reverse process, the model then learns to reverse the diffusion process and tries to

reconstruct the original data, this process is called the denoising process [74].

In the diffusion process, a sample x0 is initially drawn from a distribution x0 ≈ q(x0)

corresponding to the original data with the same dimensionality as x0. Adding a Gaussian

noise to this distribution produces a latent variable y1; noise is again added to y1, giving

latent variable y2, and so on, We repeat this process for T steps to form a series of latent

variables y1, y2,. . . ,yT during the diffusion process. In training a diffusion model, we define a

series of hyper-parameters β1, β2, ..., βT which collectively form a noise scheduling for adding

the Gaussian noise that perturbs the input

Let q(y0) be the data distribution, and let y1, ..., yT be a series of T latent variables with

the same dimensionality as y0. Mathematically, the diffusion process q(y1:T |y0) is defined as

a fixed Markov chain where Gaussian noise is added at each iteration based on a fixed noise

schedule β1, ..., βT as stated below:

q (y1:T | y0) =
T∏
t=1

q (yt | yt−1) (6.2)

q (yt | yt−1) = N
(
yt;
√

1− βtyt−1, βtI
)

(6.3)

In the diffusion process, we keep on adding the noise so that the final ground-truth strokes

become a pure Gaussian noise sample with no information about the original stroke sequence.

In the reverse (denoising) phase, a decoder network learns to gradually remove the noise

from the sampled distribution until it ends up with the original stroke sequence. The denois-

ing process is defined as a Markov chain parameterized by θ:

p (yT ) = N (yT ; 0, I) , pθ (y0:T ) = p (yT )
T∏
t=1

pθ (yt | yt−1) (6.4)

where pθ (yt−1 | yt) intends to reverse the effect of the noise adding process q (yt | yt−1) as

follows:

pθ (yt−1 | yt) = N (yt−1;µθ (yt, t) ,Σθ (yt, t)) (6.5)

where Σθ (yt, t) = σ2
t I and σ

2
t is a constant related to βt.

Note that our diffusion model consists of consecutive convolution layers and attention
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blocks as shown in Fig. 6.4. The attention block computes the attention between ground-

truth stroke sequence and text-style features. For training, the attention blocks condition the

diffusion model on text-style features and noisy ground truth stroke sequence. The decoder

part also includes a convolutional layer with upsampling layers which is designed to predict

the noise scores. We consider a diffusion model [65] as a score-based generative model, where

instead of learning to model the energy function itself from latent distribution, we learn the

score of the energy-based model as a neural network.

The success of the conditional diffusion model for image generation makes it a suitable

technique for generating handwriting images conditioned on the writer’s style for handwriting

imitation. The image generation in the diffusion model is learned by iteratively adding small

amounts of noise to an image and changing it into a random image during training. The

model learns to reverse this process, generating realistic images by removing noise. The

emerging image generation models are based on diffusion models [65, 19, 15]. However,

image generation is a computationally expensive process. Therefore, our work proposes to

generate the stroke sequences using a diffusion model conditioned on the writer’s style and

textual content. It could be trained in a reasonable amount of time (see Table 6.5). It can

also predict additional temporal information in the form of stroke sequence for the writer’s

handwriting which is not available for image generation [25, 26, 57, 10, 59].

Inference

During sampling, diffusion models iteratively remove the noise added in the diffusion process,

by sampling yt1 for t = T, ... , 1. The stroke sequence yt1 at time step T-1 is computed with

the equation below.

yt−1 =
1

√
at

(
yt −

βt√
1− ᾱt

ϵθ (yt, t)

)
+ σtz (6.6)

where z ≈ N(0; I) and αt is a constant related to βt. For our experiments, we used α2
t = βt.

In our diffusion model, we sample uniform noise to provide an input stroke sequence to

predict the stroke sequence in the desired style for given textual content. The diffusion model

is provided with the text-style embedding of the desired style from the image and textual

content from a text string. In this way, we do not need the ground truth strokes in the

inference phase and the learned diffuion model effectively generates strokes from noise given

text-style embedding. During inference, we perform diffusion and denoising process with the

addition of sampling process as shown in Fig. 6.4. Our diffusion model design facilitates us

to generate strokes for any arbitrary calligraphic style given any arbitrary text content.

48



6.1.4 Loss function

Diffusion loss

The output of our handwriting stroke generation x is composed of a sequence of N vectors

x1 . . . xN .

Each vector in the sequence xi is composed of a real-valued pair, which represents the pen

offset from the previous stroke in the x and y direction along with a binary entry that has a

value of 0 if the pen was writing the stroke and 1 otherwise.

Each handwritten sequence is associated with a discrete character sequence C describing

the text. Each sequence is also associated with an offline image containing the writer’s style

information, denoted by S. Since We cannot parameterize the binary variable representing

whether the stroke was drawn by a Gaussian distribution as we did for the real-valued pen

strokes. Instead, we parameterize it with a Bernoulli distribution. For this purpose, we split

each data point xi into two sequences yi and di of equal length, with yi representing the real

valued pen strokes, and di representing whether the stroke was drawn. At each step t, our

model dθ returns an estimate d̂i of whether the pen was down.

Lstroke (θ) =
∥∥ϵ− ϵθ

(
yt, c, s,

√
ᾱ
)∥∥2

2
(6.7)

Ldrawn (θ) = −d0 log
(
d̂0

)
− (1− d0) log

(
1− d̂0

)
(6.8)

Diffusion models are generally trained with diffusion loss, as mentioned above. However,

recent attempts on image generation [32, 90, 87] have shown that the additional loss would

help the diffusion network to generate more realistic results. As in [90, 87] a diffusion loss is

applied on image patches to improve the quality of the generated image. Following a similar

motivation, but with the goal to improve the quality of generated strokes, we propose to

train the diffusion model with Dynamic Time Warping loss (DTW).

Dynamic time warping

In general, DTW [9] computes the optimal match between ground-truth (GT) T = (t1, t2, t3, ..., tm)

and predicted sequences P = (p1, p2, p3, ..., pn) of different lengths by finding the warping path

between two sequences. In DTW loss, the cost matrix is calculated as:

cost(i, j) = ||pi − tj||2 (6.9)

The accumulative cost matrix (A) is given as,

A(i, j) = cost(i, j) +min[A(i− 1, j), A(i− 1, j − 1), (6.10)

A(i, j − 1)] (6.11)
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for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Given matrix A, DTW computes the optimal warping path from A(n,m) to A(1, 1) as

an alignment of points in P to points in T expressed as index mapping α : {1, . . . , n} →
{1, . . . ,m}, where α is an onto function.

LDTW (P, T ) =
n∑

i=1

||pi − tα(i)||. (6.12)

We sample the stroke points at each training iteration in the diffusion model with N=60 de-

noising steps to predict the stroke sequence. Then we apply DTW loss on each predicted and

ground-truth stroke sequence. In our work, we take the sum of both the DTW LDTW (P, T )

and diffusion Ldiffusion losses as our final loss LDTW (P, T ) + Ldiffusion,

In our experience of training the diffusion model with auxiliary DTW loss, it seems that the

diffusion model is very vulnerable to diverging if the magnitude of auxiliary loss (LDTW (P, T ))

gets more prominent than the diffusion loss LDTW . To prevent model divergence during

training, we reduced the learning rate to 10−6 so that we can avoid learning divergence.

Figure 6.5: A real image and a generated image, and their respective histograms. We show all the six rotated
image pairs and their histogram.
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Method distp,t (mean) distp,t (std) distt,p (mean) distt,p (std)

Stroke Diffusion [53] 0.1513 0.1580 0.1184 0.0646

MS 0.1377 0.1139 0.1116 0.0997

MSdtw 0.1382 0.1121 0.1094 0.1071

MSCAP 0.1368 0.1129 0.1050 0.0787

MSCAPdtw 0.2184 0.1050 0.0594 0.0487

Table 6.2: The distance of nearest predicted to GT points distp,t and the distance of nearest GT to predicted
points distt,p for different style features.

Method IS ↑ FID ↓ PSNR ↑ MSSIM ↑ Style ↓ Projected shape ↓
HiGAN+ [26] 1.594 2.310 11.749 0.6853 0.3390 0.0925

Trace [5] 1.590 0.6515 17.185 0.9030 0.2923 0.1398
Stroke diffusion [53] 1.572 0.4718 13.220 0.7490 0.3754 0.0658

Our(MS) 1.595 0.3895 13.122 0.7563 0.2296 0.0649
Our(MS˙dtw) 1.580 0.3819 13.166 0.7583 0.2265 0.0656
Our(MSCAP) 1.570 0.3860 13.177 0.7590 0.2112 0.0645

Our(MSCAP˙dtw) 1.560 0.3880 13.192 0.7590 0.2222 0.0643

Table 6.3: Long sentences: Quantitative comparison of our method with state-of-the-art methods for hand-
writing imitation. The style input is an online handwritten image from the IAM-online dataset.

6.2 Experiments

We evaluate our proposed method based on sequence-matching evaluation metrics and gen-

erated image quality. We will briefly describe the evaluation metrics used to evaluate the

proposed method.

6.2.1 Strokes-based metrics

We used a distance-based evaluation metric to evaluate stroke sequence generation. The

average distance of points in ground-truth (T ) stroke to its nearest predicted stroke (P) is

Method IS ↑ FID ↓ PSNR ↑ MSSIM ↑ Style ↓ Projected shape ↓
HiGAN+ [26] 1.862 0.8052 10.9619 0.5523 0.04425 0.0833
wordstylist [57] 1.8613 0.9106 10.2720 0.5017 0.0583 0.0869

Strokes diffusion [53] 1.8681 1.939 9.4200 0.5001 0.1061 0.08135
Ours(MS) 1.8583 1.960 9.4276 0.5008 0.0967 0.0840

Ours(MSdtw) 1.8660 1.959 9.4086 0.5027 0.0982 0.0846
Ours(MSCAP ) 1.8749 1.992 9.4773 0.5111 0.1034 0.08177

Ours(MSCAPdtw) 1.8791 2.0466 9.4778 0.5102 0.1074 0.08154

Table 6.4: Words only: Quantitative comparison of our method with state-of-the-art methods for handwriting
imitation. The style input is an offline handwritten image from the IAM-offline dataset.
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denoted by distt,p. Similarly, the average distance of points in the predicted stroke (P) to its

nearest ground-truth stroke (T ) is denoted by distp,t. The metric distt,p signifies that every

ground-truth stroke point is close to the predicted point and vice versa for distp,t. distt,p

and distp,t are the same evaluation metrics as used in [5]. However, apart from the mean

(mean) of the distances between predicted and ground truth stroke points, we also compute

the standard deviation (std) of the metrics.

6.2.2 Image-based metrics

IS, FID:

In addition to the distance-based metric, we also use perceptive scores such as Inception Score

(IS) and Fréchet inception distance (FID) to evaluate the quality of the generated image as

used in the previous works [26, 57, 59, 10]. A higher value of IS signifies that the generated

images are diverse and contain meaningful and distinct objects. However, IS has limitations

and does not compare real and generated images. To compare real and generated images,

we use FID, which measures the similarity between the distribution of real and generated

images.

FID score is computed with the mean and covariance of IS for real and generated images

as follows:

FID = ∥µreal − µgen ∥2 + Tr
(
Σreal + Σgen − 2 (Σreal Σgen )

1/2
)

(6.13)

µreal and µgen are the means and Σreal and Σgenare the covariance matrix of the real and

generated image. Tr denotes the trace of a covariance matrix. A lower FID score indicates

better similarity between the real and generated image distributions. FID is a better measure

since it captures both image quality and diversity.

PNSR, MSSIM:

PSNR, or Peak Signal-to-Noise Ratio, is a metric commonly used to measure the quality of

reconstructed or generated images. A higher PSNR generally indicates better image quality.

The PSNR is calculated using the mean squared error (MSE) between the real and generated

images as follows:

PSNR = 10 · log10
(
MAX2

MSE

)
, (6.14)

whereMAX is the maximum pixel value of the image (255). A higher PSNR value is desirable

as it indicates less perceptual loss in the generated image. However, PSNR relies on mean

squared error, which does not always align well with human perception. In some cases,

improvements in PSNR may not necessarily correspond to visually more pleasing images.
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On the other hand, the Mean Structural Similarity Index (MSSIM) measures the quality of

an image in terms of structural information, taking into account luminance, contrast, and

structure. These components are combined to provide an overall measure of similarity:

MSSIM(x, y) =
1

N

N∑
i=1

(2µxi
µyi + c1) · (2σxiyi + c2)(

µ2
xi
+ µ2

yi
+ c1

)
·
(
σ2
xi
+ σ2

yi
+ c2

) (6.15)

Here, µ is the mean, σ is the standard deviation, σxiyi is the covariance for the i
th and jth

local region in image x and y. N is the total number of regions in the images. c1 and c2 are

small constants to avoid instability when the denominators are close to zero. The MSSIM

metric ranges from -1 to 1, where 1 indicates identical images, 0 indicates no similarity, and

-1 indicates complete dissimilarity. Since we generate a stroke sequence, we plot the stroke

sequence in the form of an image before applying conventional (IS, FID, MSSIM,PSNR)

image evaluation methods.

Style distance

The evaluation metrics described above are designed to evaluate the image generation quality

for natural scenes. In natural scenes, IS can signify objectness as a fair measure. Similarly,

MSSIM accounts for luminance, contrast, and structure comparison, which are useful mea-

sures to evaluate the quality of generated images in the case of natural images. However, the

conventional metrics [28, 86] such as IS, FID, PSNR, and MSSIM are insufficient to evaluate

the quality of handwriting images.

Therefore, we propose to use style features to compute the similarity of the calligraphic

style of the real and the generated image. We train the convolutional network based on

transformer architecture (Sec. 6.1.1) to learn the handwriting style. The writer ID is used

to train the network with cross-entropy loss. The style features are extracted from the fully

connected layer before the classification layer. We compute the L1 distance between the style

features of the real and generated image. This evaluation metric gives better similarity for

the generated images resembling the overall (global) style of the real image. Style distance

evaluates closeness in calligraphic style and does not give much attention to background

texture. The explicit focus on calligraphy style is missing in conventional metrics (IS, FID,

MSSIM, PSNR). The results for online and offline handwriting are listed in Table 6.3 and

Table 6.4.

Projection character shape matching

The calligraphic style of the handwriting is captured by the evaluation measure described

in Section 6.2.2. In this section, we introduce a more granular measure to evaluate the
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Figure 6.6: Visual comparison with previous image generation methods.

local character shape in addition to the overall calligraphic style of the handwriting. In our

work, we propose to use the distribution of pixel histograms in real and generated images to

calculate the similarity between local character shapes.

The previous handwriting imitation work [26] suggests the L1-distance between ground-

truth x and generated x̂ image to calculate the similarity between two images. The L1

distance works well for global image quality since it takes the average of the difference of

pixels in two images. However, it does not seem sensitive to the individual characters’ shape

in handwriting, so we introduce a projection character shape matching.

To calculate the character shape matching, we measure the distribution distances on

multiple 1D projections as shown in Fig 6.5. We first binarize the images, then we construct

the histogram of pixel distribution along the x-axis for real and generated images at six

different orientations (0, 15, 30, 45, 60, and 75). In Fig. 6.5, we show the generated images

before training the diffusion model to highlight the clear difference between the histogram

distribution of real and generated images.

We use KL-divergence to measure the distance of the distribution of the foreground pixels

in the generated x̂ and ground-truth x images at the pth orientation as follows.

Lpc−kl(Y , Ŷ ) =
1

P

P∑
p=1

KL

(
ϕp(Y )∑
ϕp(Y )

,
ϕp(Ŷ )∑
ϕp(Ŷ )

)
(6.16)

where ϕp(Y ) and ϕp(Ŷ ) is the distribution of foreground pixels in pth orientation. To

the best of our knowledge, our work is the first to introduce projection character shape

matching to evaluate the quality of the calligraphic shapes of the character in handwriting

image generation.
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Figure 6.7: Visual comparison of the proposed method with the state-of-the-art handwriting image generation
methods for offline handwriting word samples.

6.2.3 Results

Handwriting stroke prediction

We utilized IAM-online [54] dataset to train our diffusion network. It includes the images

of handwritten text, the textual content in the image as a string of characters, and the x,

and y coordinates of the strokes with a pen-up and down information. The previous method

for handwriting image generation via stroke generation [53] compares the results only for the

quality of the generated image (Sec. 6.2.2). We present a comprehensive analysis to evaluate

the quality of the handwriting stroke generation network with the set of metrics described in

Sec 6.2.1.

Table 6.2 compares the distance between predicted and ground-truth stroke sequences.

We can see that the proposed multi-scale attention network with character pair features

outperforms image features extracted from network [39] trained on Imagenet [46]. In our

experimentation, MS gives better results than the baseline [53] for both distp,t (mean) and

distt,p (mean). Applying DTW loss and diffusion loss with MSCAP improves the results

compared to MS. In addition, applying DTW loss with MSCAPdtw gives excellent results

for distt,p (mean). On the other hand, MSCAPdtw gives a slightly higher value for distp,t

(mean), as DTW loss may introduce stray points in predicted stroke sequence as highlighted

in previous work [34]. This is the drawback of DTW loss since it incurs the loss by finding the

accumulative cost matrix as shown in Equation 6.10. Apart from the occasional introduction

of stray points, the overall quality of stroke generation improves with DTW loss as shown in

Fig. 6.6 and discussed in detail later in Sec 6.2.4.
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Handwriting image generation

To evaluate the quality of image generation, we divide our analysis into two scenarios, online

and offline input sample image. In the first scenario of online handwriting images, we provide

the style image generated via stroke generation. These images have no texture and only

contain black handwriting on a white background. Sample input style images are shown in

the leftmost column in Fig. 6.6. In the second scenario, the offline handwriting image serves

as a style image. Offline handwriting images may contain handwriting background and may

contain words with variable font thickness as shown in the leftmost column of Fig. 6.7.

We evaluate our proposed method for online handwriting as listed in Table 6.3. We

evaluate our method based on conventional image generation metrics and proposed evaluation

metrics (style distance and projected character matching). HiGAN+ [26], which generates

state-of-the-art results for handwriting image generation, seems to have failed to imitate

online sample images. It does not give satisfactory results based on conventional methods

(IS, FID, PSNR, MSSIM) as well as the proposed evaluation metrics. The poor performance

of HiGAN+ on online images might be because it over-fitted during training to predict texture

as well, even though there is no texture in the online style images.

On the other hand, both Trace [5] and stroke diffusion [53] are stroke sequence prediction

networks. There is no issue with background texture in generated handwriting for them. They

both produce satisfactory results with Trace even better in terms of PSNR and MSSIM. The

style distance is reasonable for Trace [5] but it produces a larger projected character matching

error. The lack of character shape matching is because the Trace model is based on LSTM

[27] network and trained only with DTW loss. The DTW loss is helpful for overall style

matching but does not give sufficient importance to local character shapes. Stroke diffusion

model [53] produces good results for conventional and proposed metrics, except it cannot

replicate style well as shown in Table 6.3(style). The stroke diffusion does not follow the

style template because its style features are trained on natural images [39]. The proposed

multi-scale style features with DTW loss MSdtw give the lowest FID scores with low values

of style distance and projection character shape matching error.

Our proposed method for multi-scale character pair features with DTW loss MSCAPdtw,

improves the results of FID scores, style distance, and Projected character shape matching.

The multi-scale attention-based features for character pairs MSCAP produce reasonable

style. The DTW loss further improves the projected character shape matching error which

strengthens our claim that DTW loss along with diffusion loss could improve overall hand-

writing stroke generation.

The qualitative examples in Fig. 6.6 show that the stroke generation with proposed

methods produces better stroke generation as compared to LSTM architecture [5] (Trace),

stroke diffusion model [53], and HiGAN+ [26]. [53] extract style features from [39] trained
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Figure 6.8: Visual comparison of multi-scale attention style features and the Dynamic Time Warping (DTW)
loss.

Method # of Params Training time Writer ID Refinment Recognition Unseen style Strokes

Proposed(MSCAP) 16.8 M 6 hours ✓ ✓
Proposed(MSCAPdtw) 16.8 M 24 hours ✓ ✓
Wordstylist 40.4 M 7 days ✓
HiGAN+ 14.0 M 3 days ✓ ✓ ✓

Table 6.5: Comparison of model size and architecture with the state-of-the-art methods.

on natural images. The Trace [5] also extracts style features from resnet layer before feeding

it into LSTM architecture for stroke prediction. Whereas [57] does not extract style features

from the images. Rather, it learns the style from integer input for writer ID. Therefore, [57]

shows the least generalization and style similarity and our method MSCAPdtw shows the

highest style similarity.

To depict the generalization ability of our methods as compared to previous methods,

we compute the evaluation metrics on offline handwriting images. These images differ from

online images in terms of background texture, writing styles, and font thickness. The offline

and online IAM datasets [54] are composed of words and lines of text, respectively, which

is another prominent difference between them. Since previous methods [26, 57] are trained

on images of words from IAM-online datasets, we also evaluated our method against them

using the same offline word images. These word images from the IAM-offline dataset are

completely unseen for our proposed diffusion model. It can be seen from Table 6.4 that

the HiGAN produces good results for all the evaluation metrics except for the projected

character shape matching. The reason for the extraordinary results of HiGAN+ [26] on

the offline datasets and its inability to generate any reasonable images in the online dataset

(Table 6.3) suggests that the network lacks generalization ability. It may work only on offline

words, which restricts its capability to diverse style images. [53] produces reasonable results;

however, it cannot imitate style since its features are trained on natural images. Our proposed

method is trained only on online images [54], but it can still produce competitive results for
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offline image samples. It shows that our diffusion model has better generalization ability

than GAN architecture [26].

6.2.4 Discussion

Our multi-scale style feature extraction can imitate style from template images. The addition

of DTW loss with MSCAP gives us the best (lowest) projected character shape matching

error as shown in the last column of Table 6.4 (projected shape). For the qualitative exam-

ples shown in Fig. 6.7 the state-of-the-art HiGAN+ [26] produces nearly perfect results in

the case of offline sample images, but HiGAN+ has poor generalizability since it does not

perform reasonably on online sample images. On the other hand, [57] does not extract style

features from the images. Rather, it learns the style from integer input for writer ID. There-

fore, [57] shows the least generalization and style similarity. Our method shows the highest

style similarity as well as generalizability. Notably, [57] cannot process multiple words with-

out modifying input interfacing. However, the proposed diffusion-based handwriting image

generation method can generate short and long text without additional effort.

We also compared visual results for variants MS, MSdtw, MSCAP, and MSCAPdtw of our

method in Fig. 6.8. We observe that the character shapes are good for all variants, but the

overall style is better imitated for MSCAP as we focus on character pair features. We can

also validate in Fig 6.8 that the stroke generated with the diffusion model produces readable

text even though we have not leveraged any text recognition module.

Some qualitative results of our methodMSCAPdtw in comparison with the previous meth-

ods [26, 53] are shown in Fig. 6.9. Here, we stress the capability of our method to perform

well on unseen text content. We can see that our method (MSCAPdtw) can imitate the

unseen text well as compared to stroke diffusion [53]. Moreover, our method also performs

well compared to the state-of-the-art image generation method (HiGAN+ [26]).

Some of the previous methods [57, 10, 59] can only perform inference on single words

as textual input; therefore they cannot be applied to long sentences. However, our stroke

generation method does not have such restriction and it applies to long sentences as a textual

input.

Finally, we highlight the training time and auxiliary networks used in previous methods

[26, 53] and our proposed method in Table 6.5. HiGAN+ [26] utilizes text recognition, patch

refinement, and writer ID module. It takes 3 days on a single NVIDIA A100 GPU. The

diffusion model for handwriting image generation [53], does not include a text recognition

module but it still takes a longer time to train due to the iterative learning of diffusion

networks. Our proposed method MSCAP only takes 6 hours to complete 60k iterations

to converge the learning of stroke generation with the diffusion model. Our model takes

significantly less time since we generate strokes rather than images; the number of predicted
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strokes is much smaller than the number of pixels in the image. In addition, adding DTW

lossMSCAPdtw increases the training time to around 24 hours because we perform sampling

during training.

6.3 Conclusion

We have demonstrated that the diffusion model conditioned on multi-scale character pair

features improves the calligraphic style imitation for handwriting stroke generation. Impor-

tantly, the proposed method MSCAPdtw not only outperforms stroke generation from online

sample images, but it also produces competitive results for unseen offline sample images. We

also introduce evaluation metrics for handwriting image quality evaluation based on calli-

graphic style and character shape matching. Our quantitative and qualitative analysis also

suggest that effective style features MSCAP features help the diffusion model with efficient

features to imitate handwriting style. This work with the diffusion model would provide

the foundations for future work to generate handwriting strokes for arbitrary text in any

calligraphic style.
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Figure 6.9: Exemplar qualitative results of image generation through stroke generation on the IAM-online
dataset. For each example, the text content is shown in a dotted rectangular block with the input style image
and generated images below it.
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[3] Alberti, M., Vögtlin, L., Pondenkandath, V., Seuret, M., Ingold, R., Liwicki, M.:

Labeling, cutting, grouping: an efficient text line segmentation method for medieval

manuscripts. In: 2019 International Conference on Document Analysis and Recognition

(ICDAR). pp. 1200–1206. IEEE (2019)

[4] Alonso, E., Moysset, B., Messina, R.: Adversarial generation of handwritten text images

conditioned on sequences. In: 2019 international conference on document analysis and

recognition (ICDAR). pp. 481–486. IEEE (2019)

[5] Archibald, T., Poggemann, M., Chan, A., Martinez, T.: Trace: A differentiable approach

to line-level stroke recovery for offline handwritten text. arXiv preprint arXiv:2105.11559

(2021)

[6] Axler, G., Wolf, L.: Toward a dataset-agnostic word segmentation method. In: 2018

25th IEEE International Conference on Image Processing (ICIP). pp. 2635–2639. IEEE

(2018)

[7] Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character region awareness for text de-

tection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. pp. 9365–9374 (2019)

[8] Barakat, B.K., El-Sana, J., Rabaev, I.: The pinkas dataset. In: 2019 International

Conference on Document Analysis and Recognition (ICDAR). pp. 732–737. IEEE (2019)

[9] Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series.

In: KDD workshop. vol. 10, pp. 359–370. Seattle, WA, USA: (1994)

61



[10] Bhunia, A.K., Khan, S., Cholakkal, H., Anwer, R.M., Khan, F.S., Shah, M.: Hand-

writing transformers. In: Proceedings of the IEEE/CVF international conference on

computer vision. pp. 1086–1094 (2021)

[11] Bhunia, A.K., Bhowmick, A., Bhunia, A.K., Konwer, A., Banerjee, P., Roy, P.P., Pal,

U.: Handwriting trajectory recovery using end-to-end deep encoder-decoder network.

In: 2018 24th International Conference on Pattern Recognition (ICPR). pp. 3639–3644.

IEEE (2018)

[12] Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint arXiv:2004.10934 (2020)

[13] Boillet, M., Kermorvant, C., Paquet, T.: Multiple document datasets pre-training im-

proves text line detection with deep neural networks. In: 2020 25th International Con-

ference on Pattern Recognition (ICPR). pp. 2134–2141. IEEE (2021)

[14] Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection. In:

Proceedings of the IEEE conference on computer vision and pattern recognition. pp.

6154–6162 (2018)

[15] Cheng, S.I., Chen, Y.J., Chiu, W.C., Tseng, H.Y., Lee, H.Y.: Adaptively-realistic im-

age generation from stroke and sketch with diffusion model. In: Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 4054–4062

(2023)

[16] Davis, B., Tensmeyer, C., Price, B., Wigington, C., Morse, B., Jain, R.: Text

and style conditioned gan for generation of offline handwriting lines. arXiv preprint

arXiv:2009.00678 (2020)

[17] Davis, B., Tensmeyer, C., Price, B., Wigington, C., Morse, B., Jain, R.: Text

and style conditioned gan for generation of offline handwriting lines. arXiv preprint

arXiv:2009.00678 (2020)
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