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Abstract

We describe a new hierarchical representation for two-
dimensional objects that captures shape information at mul
tiple levels of resolution. The representation is based on a
hierarchical description of an object’s boundary, and can
be used in an elastic matching framework, both for com-
paring pairs of objects and for detecting objects in clutter
images. In contrast to classical elastic models, our repre-
sentation explicitly captures global shape informatiohisT
leads to richer geometric models and more accurate recog-
nition results. Our experiments demonstrate classificatio
results that are significantly better than the current state
of-the-art in several shape datasets. We also show initial
experiments in matching shapes to cluttered imdges.

1. Introduction

Humans can often recognize objects using shape infor-
mation alone. This has proven to be a difficult task for com-
puter vision systems. One of the difficulties is in develgpin
representations that can capture important shape vansatio
Moreover, we need to consider how a shape representatio
can be used computationally for solving vision problems.

We want to be able to compare different objects and detect

objects in cluttered images. The computational complex-
ity of these tasks and the recognition accuracy obtained ar
highly dependent on the choice of the representation.

This paper describes an approach for matching shape
based on a hierarchical description of their boundariess Th
approach can be used both for determining the similarity
between two shapes and for matching a deformable shap
model to a cluttered image. By using a hierarchical model,
we are able to develop simple elastic matching algorithms
that can take global geometric information into account.

Our matching algorithms are based on a compositional

procedure. We combine matchings between adjacent seg
ments on two curves to form matchings between longer seg-

1This material is based upon work supported by the Nationairei
Foundation under Grant No. 0534820.
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Figure 1. The composition of matchings between adjacent seg-
ments on two curves to form a matching between longer segments.

ments. This approach makes it possible to consider the ge-
ometric arrangement among the endpoints of the matchings
being combined. For long matchings, the endpoints are far
away, which means that our measure of deformation cap-
tures global geometric properties. Figure 1 illustrates th
procedure, where we combine a matching frdamto B;

with a matching fromA, to B, to obtain a longer matching
between two curves. The quality of the combination de-
pends on both the quality of the matchings being combined
and the similarity between the geometric arrangements of

%Oints(plvp%pfi) and(qi, g2, q3).

We have tested the hierarchical representation and com-
positional matching procedure in a variety of situationg an
obtained excellent performance. In classification tasks, w
obtain better recognition results than other methods on sev
eral shape datasets, including the MPEG-7 shape dataset

TlS], a Swedish leaf dataset [25], and a silhouette dataset

from Brown University [23]. We have also used the ETHZ
dataset [11] to demonstrate how hierarchical matching can
e used for matching shapes to real, cluttered images. These
experiments illustrate how the approach is not restriated t
matching pre-segmented shapes. Instead, we can match a
model shape directly to an unorganized set of contours ex-
tracted from natural images.
" Most of the previous elastic matching methods look for
maps between two curves while minimizing a measure of
local bending and stretching (see [2], [22] and references
within). The methods in [6] and [12] use a similar idea



rithm for matching shapes to cluttered images, like that of

[11], works by linking edge contours.
Figure 2. (a) Two curves that are almost indistinguishable by local  There are many other methods for representing, match-
proper.ties .alo'ne.. (b) Two objects that are similar at a coarse Ieveling and recognizing shapes. These include methods based
but quite dissimilar at a local level. on the medial axis transform and the shock graph [5], [24],
[23], procrustes analysis [7], shape contexts [3] and the in
ner distance [16]. We experimentally compare our algo-
rithm to several of these approaches in Section 5.

The methods in [1] and [9] use triangulated graphs to
represent shapes and to model deformations of objects. Our
work is related since we use the geometric arrangement of
sets of three points to capture shape information. Our algo-

(@) (b)

to match a curve to cluttered images. Local deformation
models are appealing from an algorithmic perspective —
usually dynamic programming can be used to find optimal

matchings. However, as described in [22] these methodsz' The Shape-Tree

can only address some aspects of shape similarity. Con- e start by describing our hierarchical representation for
sider the curves in Figure 2(a) While they represent dif- open curves. Letd be an open curve Specified by a se-
ferent characters6(and U) they can be transformed into  quence of sample pointss, ..., a,). Leta; be a midpoint
each other without much beﬂding and StretChing. The two on A. For examp|e' we usua”y take= LT)/ZJ Another
shapes are essentially indistinguishable if we focus aalloc  gption is to choose the sample point such that the coarse
properties alone. On the other hand, while the objects in curve (ay, a;, a, ) approximatesd as well as possible. Let
Figure 2(b) are perceptually similar, they have completely 1,(4;|a;, a,,) denote the location af; relative toa; anda,,.
different local boundary properties. The locations of the first and last sample points can be used
Our hierarchical representation captures geometric prop-to define a coordinate frame where we measure the loca-
erties at different levels of resolution. At the finest level tion of the midpoint. The first and last sample points define
these properties are related to standard local description a canonical scale and orientation, so the relative location
(capturing local curvature, for example). At coarser lsvel  [.(a;|a1, a,,) is invariant to similarity transformations.
the properties capture global shape aspects. As in classic The choice of a midpointy,;, breaks the original curve
elastic matching approaches, we use a dynamic programinto two halvesA; = (a1, ...,a;) andAs = (a;, ..., a,).
ming algorithm for matching. But, as opposed to these other The hierarchical description of is defined recursively, we
methods, ours does not solve a shortest path problem due t@eep track ofl.(a;|, a1, a,) and the hierarchical description
its compositional nature. Our compositional approach-is re of A4, and A,. This hierarchical description can be repre-
lated to the work in [4]. sented by a binary tree, as illustrated in Figure 3. We call
Hierarchical representations have proven to be useful inthis representation thghape-treeof a curve. Each node in
a variety of situations. The arc-tree in [13] gives a hierar- the shape-tree stores the relative location of a midpoitht wi
chical description of a curve based on recursive selectionrespect to the start and end point of a subcurve. The left
of midpoints. This representation was used to perform geo-child of a node describes the subcurve from the start to the
metric queries such as detecting intersections between twanidpoint while the right child describes the subcurve from
curves. Our representation can be thought of as a modifiedthe midpoint to the end. The leaves of this tree represent
arc-tree in which the only information kept at each node locations of sample points,, relative to their neighboring
is the relative position of the selected midpoint. Rec@rsiv points,a;_; anda;, ;. Note that a subtree rooted at a node
midpoint selection is also a standard method used for poly-corresponds to the shape-tree of a subcurve.
gon simplification in computer graphics [21]. Nodes in the bottom of the shape-tree represent relative
In vision, multiscale representations such as the curva-locations of three sequential points along the curve. These
ture scale-space (CSS) have been previously used for shapeodes capture local geometric properties such as the an-
recognition [20, 19, 27]. The CSS captures critical curva- gle formed at a point (which is a measure of curvature)
ture points of a contour at different levels of smoothingr Ou and the relative distance between adjacent sample points.
representation is also based on a multiresolution approachOn the other hand, nodes near the root of the tree capture
but we rely only on subsampling to define coarse geometricmore global information encoded by the relative locations
properties. The method in [27] uses dynamic programming of points that are far from each other. This is a local prop-
for matching multiscale descriptions, but this method is no erty of a subsampled version of the original curve. The
compositional in contrast to ours. Other hierarchical meth shape-tree contains only the locations of points relative t
ods include the hierarchical graphical models in [8] and hi- two other points. This makes the representation invar@nt t
erarchical procrustes matching [18]. similarity transformations.
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Figure 4. Random deformations obtained by adding independent
noise to the nodes in a shape-tree representation of an object. The

deformed squares illustrate how the method preserves important
global properties while generating a wide range of variation.

Figure 3. A shape-tree. The filled circles on each curve repre-

sent endpoints of subcurves and the unfilled circles represent mid-

points. Each node stores the location of a midpoint relative to the midpoint in the shape-tree. Let, v, andvs be three dis-
endpoints. The midpoint becomes an endpoint when a subcurve iginct points. There exists a unique similarity transforiomat
broken up at the level below. that mapsv; to (—0.5,0) and v, to (0.5,0). This trans-
formation maps; to a location that we call thBookstein
coordinateof v3 with respect ta;, andwvs.

Figure 4 shows some examples where we added indepen-
dent noise to the Bookstein coordinates of each midpoint in
a shape-tree before reconstructing a curve. The results are
curves that are perceptually similar to the originals. Note
hat in the case of the square the deformed objects still seem
o have four sides that meet at a right angle, even though the
sides are quite deformed.

Given the tree representation fdr, along with the lo-
cation of its start and end points anda,,, the curve can
be recursively reconstructed. First, the start and endigoin
of the curve are placed. Because the location of a midpoint
of A relative to the start and the end is known, it can be
placed. This process continues down the shape-tree untit
we have placed every sample point4f By placing the
initial pointsa; anda,, at arbitrary locations, a translated,
rotated and scaled version dfcan be obtained. . .

A closed curve can be represented in a similar fashion.s' Elastic Matching

Let B be a closed curve, specified by a sequence of sam- | ot 4 and B be two open curves. When matching these

ple points(by, ..., b,), whereb, = by. Now letb; be a  ¢,rves; we build a shape-tree fdrand look for a mapping
midpoint onB. The open curves3; = (bi,...,bi) and  fom points inA to points inB such that the shape-tree of
By = (bi, ..., by) can each be represented by a shape-tree. 4 js deformed as little as possitleHere, we measure the

Given a shape-tree representation of each side of a closegta| amount of deformation as a sum over deformations ap-
curve and a location for the start/end point and the first mid- plied to each node in the shape-tree/of The hierarchical
point, the curve can be reconstructed at any location, orien nagre of the shape-tree ensures that both local and global
tation, and size. We simply reconstruct each side using thegeometric properties are preserved by a good matching. In
procedure outlined above. o _ practice, we use use a non-uniform weighting over deforma-

~ We note that for a continuous curve it is possible to de- tions applied to different nodes in the shape-tree. We allow
fine an infinite shape-tree. This infinite tree gives a dense|arger deformations near the bottom of a shape-tree as these
sampling of the points in the curve, fully capturing its ge- (o not change the global appearance of an object.

ometry up to similarity transformations. Supposed = (ai,...,a,) andB = (by,...,b,). We
) assume thai; maps toh; while a,, maps ta,,,. The shape-
2.1. Deformations tree of A defines a midpoint; dividing the curve into two

halvesA; andA,. The best match froml to B can be de-
fined by a search for a poih on B wherea; maps to. This
I_point is used to divideB into two halvesB; and B, where
A; and A; map to respectively. We say and B are sim-
ilar if we can find a midpoint o3 such thatA; is similar

We can deform a curve by perturbing the relative loca-
tions stored in its shape-tree representation. To explose t
idea we need to pick a particular representation for the re
ative locations of the midpoints in a curve.

Bookstein coordinates [7] encode the relative locations

of three points as a point in.the plar)e. They give a sim- 2The method described here is not symmetric. Its possible toedafin
ple way to represent the relative locatidi{a;|a1, a,,), of a symmetric method but that leads to a more complex algorithm.




to By, A, is similar to B, and the relative locations of the
midpoints L(a;|a1, a,) and L(b;|b1,b,,,) are similar. The
similarity between subcurves is defined in the same man-
ner. The cost of matchingl to B can be expressed by a
recursive equation,

Y(A,B) = gilei%(l/}(AhBl) + ¢(Ag, Ba) +

)‘A * dif (L(ai|a1, an), L(bj|bl, bm>)) (1)

wheredif measures the difference between the relative lo-
cations of the midpoints oA and B and\ 4 is a weighting
factor. For the experiments in this paper we used a weight-
ing proportional on the length ofl (the curve being de-
formed), giving a higher weights to deforming the relative
locations of points that are far away. We use the full pro-
crustes distance [7] faif .

For the base case we need to defiriel, B) when either © )

A or B have wo sample points. A curve with two sample Figure 5. Detecting a bottle in an image. The input image is shown

points is just a line segment. We let the cost of matching i (a). The soft edge map is shown in (b). In (c), we have the image
one line segment with another be zero, while the cost of contours extracted from (b). Our final detection is shown in (d).

matching a line segment with a curve be exactly what it

would be if the line segment was further subdivided to have

the same number of sample points as the curve. The formulation above assumes that each past bés a
The recursive equation (1) can be solved using dynamiccorresponding part oB. In many situations two curves are

programming over the shape-tree 4f Letv be a node  similar except that one of them has a missing or extra part.

in the shape-tree offl. Consider the subcurvd’ corre- To make the matching robust to these transformations we

sponding to the subtree rootedqat Let T'(v) be a table  bound(A’, B’) from above using a cost proportional to

of costs wherél'(v)[s, €] is the cost of matching!’ to the Aarx (JA'| + | B’|), Intuitively this models a process where

subcurve ofB given by (b, ...,b.). The tableT’(v) can be  we replace a subcurve of with a subcurve of3. Note

computed using equation (1) once the tables for the childrenthat since the shape-tree dfis fixed in advance, this pro-

of v have been computed. The algorithm computes all ta- cess can only replace certain parts4fTo allow for more

bles by starting at the leaves of the shape-tree and workingflexibility in dealing with occlusions, we usually compute

in order of decreasing depth. The cost of matchintp B matchings using 2 to 4 different shape-trees and pick the

is T'(r)[1, m], wherer is the root of the shape-tree. best one. Itis also possible to give a dynamic programming
There areO(n) tables to be computed, and each table algorithm that allows arbitrary parts of and B to be re-

hasO(m?) entries. To compute an entry, we have to search placed, but that algorithm runs ®(n*m?) time.

for an ideal midpoint orB. So, the dynamic programming

procedure take®(nm?) time overall. After all tables are 4 Matching to Cluttered Images

computed, we can find the best matching fréimo B by

tracing back from the root of the shape-tree to the leaves, as Generalizing the ideas from the last section, we can also

in standard dynamic programming procedures. match a model curve to a cluttered image. This algorithm
WhenA andB are closed curves, we first bredkin two proceeds in four stages. First, given a color image, we com-
halves,4; = (aq,...,a;) and Ay = (a;,...,a,), Where, pute an edge strength map. Then, we extract a set of image

as beforeq; equalsa,. We match each node in the shape- contours from the edge map. After this, we match each im-
trees of A; and A, to each subcurve oB. The cost of age contour to all sub-countors of our model using dynamic
matching A to B, as a function of wherea; anda; map programming. Finally, we use a second dynamic program-

to, is given byT’ (r1)[s, €] + T>(r2)[e, s]. Herer, andr;, ming procedure to compose these matches together, form-
are the roots in the shape-treesAf and A,, while s and ing an optimal matching between the model and a subset of
e are locations inB which a; anda; map to. This leads the image contours. These stages are illustrated in Figure 5
to an O(nm?) algorithm for matching closed curves. In For the first stage, we use the PB edge operator [17] to

practice, we use between 50 and 100 sample points in eacltompute an edge strength map. For the second stage, we
curve. Our current implementation takes about 0.5 seconddrace smooth contours in the edge map using the method
to compute a matching in a 3Ghz computer. from [10]. The result is a set of salient contours in the im-



age. An example can be found in Figure 5(c). b c
Let M be a model curve( be the set of contours ex-
tracted from an image ankl denote the set of endpoints of
contours inC. Our goal is to find a matching betwe@r
and a subset d@. Leta andb be sample points i/, while
p andq are points inP. We useMatch(a, b, p, ¢) to denote
a matching from the subcurve af from a to b to a subset
of the contours i€ such that: maps top andb maps tog. e
In the third stage of the algorithm, we compute the best : i
matching between each contourdrand each subcurve of (@) Model (b) Image contours  (c) Final result
M. This is done using the method from the last section. It Figure 6. The initial matchingVlatch(a, b, p,q) can be com-
takesO(nm?) time to compute a table giving the cost of posed with the gap matcklatch(b, ¢, ¢, ) to form a matching
deforming an image contour with sample points to ev-  Match(a,c,p,r). Becauses andt are close, the initial match-
ery possible subcurve in a model with sample points.  ings Match(c, d,r, s) and Match(d, e, t,u) can be composed to
Thus, the overall running time of the third stage is lin- form a matchingMatch(c,e,r,u). At this point, matchings
ear in the total length of the contoufsand cubic in the ~ Match(a, ¢, p,7) andMatch(c, e, 7, u) could be composed. Con-
length of the model. This stage generates a set of matching§'nu'ng in this way, we stitch together the boundary of the object.
Match(a, b, p, q) that are stitched together to form larger

matchings in the last stage. . ~in P. In the future we plan to use the algorithm in [14] to
We use the following compositional rule to stitch partial  compute optimal matches even faster. That method would
matchings together. Let andr be two points inP such  compose matchings in order of their quality to avoid consid-

that||g — || < 7, for some small threshold. If we have  ering many possibilities that are considered by the dynamic
two matchingsMatch(a, b, p, ) and Match(b, ¢,r, s) then  programming procedure.

we can compose them to get a matchMgtch(a, ¢, p, s).

WQ allow ¢ andr to be Qiﬁerent S0 that We can compose 5_Experiments

adjacent contours in the image even if their endpoints do not

exactly align. Mismatches between endpoint locations can5.1. Shape Classification

be caused by the edge d(_etec_tion or gdge tracing procedurqleEG_7 Shape Database

In analogy to the expression in equation (1), the cost of the

composed matching is the sum of the costs of the matchingsThe MPEG-7 shape database [15] is a widely used dataset
being composed plus a measure of the differences betweeffor testing shape recognition methods. The database has
the relative locations of the midpoints in the model and the 1400 silhouette images, with 20 images per object class
image. Here we take the “midpoint” in the image to be the from a total of 70 different classes. Figure 7 shows some of
averaggq +)/2. the images in the database. The standard method for mea-

Because of occlusions and missing edges we would likesuring the recognition rate of an algorithm in this dataset
to allow a subcurve of the model to be left unmatched evenis as follows. For every image in the database, we look at
though regions around it are matched. This is captured bythe 40 most similar images and count how many of those
considering “gap matchedatch(a, b, p, ¢) for every pair ~ are in the same class as the query image. The final score of
of sample points, andb in the model and points andg in the test is the ratio of the overall number of correct hits ob-
P. In these matchings is mapped tgp andb is mapped to  tained to the best possible number of correct hits. The best
¢ while the subcurve betweenandb is lefted unmatched. ~ Possible number is 1400 * 20 since there are 1400 query im-
The cost of a gap match is proportional to the arclength of ages and 20 images per class. This is a hard dataset due to
the subcurve froma to b. the large intraclass variability in each category. Tablists |

A complete match betweel and a subset of the con- the recognition rate we obtained using the shape-tree-defor
tours is given by a pair of matchinddatch(a, b, p, q) and mation method, together with results from _other algorithms
Match(b, a, ¢’ p'), where botH|p’ — p|| and||¢/ — g|| areat ~ Note that our method outperforms all previous systems.

mostT. Figure 6 illustrates the .stitchirj\g procedure. We Can gy edish Leaf Database
find the best complete matching using a second dynamic

programming step. We sequentially compute the cheapesiThe Swedish leaf dataset [25] has pictures of 15 species
matching of typeMatch(a, b, p, q) in order of increasing ar-  of leaves, with 75 images per species for a total of 1125
clength of subcurves in the model. This stage of the al- images. Figure 8 shows some example images from this
gorithm runs inO(m?3k?) time, wherem is the number of ~ dataset. Note that some species are indistinguishableto th

sample points in the model aikds the number of endpoints  untrained eye. Similar to the methods in [25] and [16], we
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Figure 7. Some of the objects in the MPEG-7 dataset. One image per aldiss fst 40 classes (the database has 70 classes).

Method Recognition rate
Shape-tree 87.70% . * . * q ‘ ‘ ’
Hierarchical Procrustes [18] 86.35% i '
IDSC + DP [16] 85.40% ¥
Generative Models [26] 80.03% . =z , ‘ ? ’ ’
Curve Edit [22] 78.14% = \

SC+TPS [3] 76.51% Figure 8. Leaves from the Swedish leaf dataset, one leaf per
Visual Parts [15] 76.45% species. Note the similarity among some species.
CSS[19] 75.44%

Table 1. Classification results on the MPEG-7 dataset. \, ‘ m x » " % 0_ \
Method Recognition rate \(
Shape-tree 96.28% s h x 4 ' W‘—/

IDSC + DP [16] 94.13% Figure 9. Images from the Brown dataset. Two per category.
SC + DP [16] 88.12%
Fourier descriptors [16] 89.60%

Soderkvist [25] 82.40%

Table 2. Classification results on the Swedish leaf dataset. ﬁ )/?

randomly select 25 training images from each species an
classify the remaining images using a nearest neighbor ap
proach. Table 2 compares our classification rate to the other

methods that have been tested on this dataset. The shapg 2 Matching in Cluttered Images

tree matching algorithm outperforms the other methods by
a significant amount. To test our matching algorithm on cluttered images, we

ran experiments on a set of 80 images of swans and bot-
tles from the ETHZ dataset [11]. Matching for each class is
done with a single hand-drawn model shown in Figure 10.
We also tested the shape-tree matching algorithm on the sil-This makes this dataset a good test for elastic matching.
houette database from [23]. The dataset has 11 example3he objects in each image often have substantially difteren
from 9 different object categories for a total of 99 images. shape from the model. Interestingly, several images in the
One interesting aspect of this dataset is that many of thedataset are paintings, drawings, or computerized rengterin
shapes have missing parts and added clutter. Figure 9 showsf scenes. Our algorithm performs very well on these im-
some of the images. The recognition results in this datasetages. A sampling of our results can be found in Figures 11
are measured as follows. For each shape in the database, wend 12. Note that our current implementation simply finds
check if the 10 closest matches are in the same category athe best match in each picture.

the query shape. Table 3 summarizes the results of differ-

ent methods. Again, we see that our algorithm has a higherg Summary

recognition rate than previous methods. With our method,

all of the 7 best matches for each shape are in the correct We introduced a hierarchical shape representation with
category. In the best previous algorithms, only the top 3 the goal of explicitly capturing both global and local geo-
matches were all correct. metric properties of an object. This representation is cap-

dFlgure 10. The models used for matching in the ETHZ dataset.

Brown Database



Method 1st| 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th
Shape-tree 99 | 99 | 99 | 99 | 99 | 99 | 99 | 97 | 93 | 86
IDSC + DP [16] 99 | 99 | 99 | 98 | 98 | 97 | 97 | 98 | 94 | 79
Shock-Graph Edit[23]] 99 | 99 | 99 | 98 | 98 | 97 | 96 | 95 | 93 | 82
Generative Models [26] 99 | 97 | 99 | 98 | 96 | 96 | 94 | 83 | 75 | 48

Table 3. Retrieval results on the dataset from [23].

Ideally the top 10hmsatof each of the 99 shapes would be a shape in the same

category. The table summarizes the number of correct matches imadch

tured by a tree, which we term tishape-treeof an object.
We can define deformations of an object in terms of inde-

[12] U. Grenander, Y. Chow, and D. KeenaHands: A Pattern

Theoretic Study of Biological Shap&pringer-Verlag, 1991.

pendent deformations applied to each node in its shape-treg[13] O. Gunther and E. Wong. The arc tree: An approximation

Since some of the nodes in the shape-tree capture global ge-
ometric information, the process of applying a small defor-

scheme to represent arbitrary curved shapg@smputer Vi-
sion, Graphics, and Image Processijrtd :313-337, 1990.

pects of the object’s shape.

mation Processing Letter§(1):1-5, February 1977.

We have used the shape-tree deformation model to dellS] L. Latecki, R. Lakamper, and U. Eckhardt. Shape descriptors

velop a simple and efficient algorithm for matching curves.
Our experimental results show that this method is very ac-
curate when used for classifying objects from several large
databases. Moreover, the matching algorithm can be ex-
tended to detecting deformable objects in cluttered images [17]
Our future work will be directed towards refining and eval-
uating this process.

[16]
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Figure 11. Some example results of matching a bottle to images in the ETHzetatnly the best match in each image is shown. Most
of the gaps in each matching are due to missing edges.

Figure 12. Some example results of matching a swan to images in the ETteigetdaOnly the best match in each image is shown. The
third image on the top shows a mistake, due to missing edges on the swaxtranebiges on the water.



