Extraction of Most Significant Frames from
MPEG Data

Jeremy W. Sheaffer

December 11, 2002



Why?
Why do we want to extract significant frames?

good can it do us?

One obvious use is to produce storyboards, or sequences of
frames that tell the story of the whole video, to allow Internet
users to preview a movie before committing to downloading it.

Another less obvious application could perhaps be a smart fast—
forward feature in digital VCRS.



What do we mean by Most Significant Frames?

How do we determine a frame’'s significance?

We consider a frame significant if it has bearing on the course
of the video. Obviously, the decision of a frames significance is
somewhat arbitrary. Typically there is very little change between
two frames within the same scene, but over the course of a
scene, things could change severely.

We need a with which we can winnow out a set of
frames which will describe the entire story.



Methodologies

Many methods have been explored in the literature for key—
framing video sequences. Among the more complex is one in-
volving integration of the 2—space projection of the curve in time
of the Euclidean N—space features of the data set. It's rather
ugly and quite unintuitive. Occam’s Razor suggests we go for
a simpler approach.

Last semester I worked with Dr. Latecki and Dr. Vucetic on a
similar project to this. The end goal was the same. The means:
clustering on the feature space using k—means. Over the feature
space as a whole, the results were really quite poor.



Global Clustering on Mr. Bean and Wallace
and Gromit

A

1708 2056 2092 2332

669 736 757

You can't really tell what is going on here.



Applying some shot detection, and a little bit of filtering to
avoid overlaid, ghosted frames causing the appearance of two
simultaneous scene changes, I next applied k—means on individ-
ual scenes. The results were much better. One might even
argue that they were quite good.



Mr. Bean frames with shot detection and
k—means clustering

l

2016 2093 2159

W

2203 2240 2335 2371




Walter and Grommet frames with shot
detection and k—means clustering

This data set is from a clip with far more action than Mr. Bean,
as well as noise from image ghosting and low frame rate.



But any algorithm that involves k—means or shot detection is
not truly an algorithm—it is a heuristic, because the shot de-
tection is arbitrary, and the clustering algorithm is randomized.
Though the method produces consistently good results, it does
not consistently produce identical results, which is a very un-
desirable trait. Furthermore, it seems to work very poorly on
small data sets.

This semester, Dr. Latecki asked me to use his new algorithm,
the same which several of you used, and attempt to solve the
same problem. Furthermore, it is undesirable to use any form
of shot detection, as this introduces an arbitrary factor into the
calculation of key—frames.



Running Dr. Latecki’s algorithm on a machine with a 933MHz
processor and 512MBs of RAM, and an average utilization of
97%, and depending of the parameters passed to the algorithm,
on the Mr. Bean data set which contains 2381 63 dimensional
points, the algorithm often requires over two hours to complete.

I ran the algorithm in a for loop:



The obligatory MatLab code.

files = {’wg.bft’; ’mrbeantu.bft’; ’BladeRunner.bft’;
’HouseTour.bft’; ’Mov00085.bft’; ’Movl.bft’;
’Mov3.bft’; ’kylie.bft’; ’seciurityl.bft’;
’seciurity7.bft’; ’lion.bft’};

for i = 1 : length(files)
out = [char(files(i)) ’.out’];
f = fopen(out, ’w’);

for j = 30 : 15 : 105
for k= .03 : .03 : .3
[kf] = latecki_global(char(files(i)), j, k);
fprintf(f, ’for %f and %d mnp, frames are:’, k, j);
fprintf(f, ’%d, ’, kf);
fprintf (’\n\n’) ;
clear kf;
end
end

fclose(f);
end



It took over a week

And the last data set, lion.bft, I have never managed to com-
plete. It takes quite a bit longer than Mr. Bean, and the system
administrators get annoyed.

The sub—routine latecki global() is a front—end to firstautol(),
our own Venugopal's implementation of Dr. Latecki’s clustering
algorithm, which normalizes the data set before passing it on to
be clustered, and then sorts the results before returning.

The large range of parameters tested in the nested loops in the
previous slide were an attempt to determine some parameters
for which the algorithm works consistently well for many data
sets.



I do not believe I achieved this end.

For the larger data sets, like Wallace and Grommet, and Mr. Bean,
even small variations in the parameters tend to yield vastly dif-
ferent results. For small data sets, results are consistent, but
choosing parameters for which results are good in most or all
data sets seems unlikely.

The quality of the results with the Mr. Bean data are similar
to those shown above, as are those achieved for Wallace and
Grommet:



Mr. Bean with Dr. Latecki’'s clustering algorithm

1608 1853 1928 2296

This set is the result of a 75 frames per cluster minimum and
12% delay parameter. It seems to miss some important points,
like the woman at the door, but what is not obvious from these

images is that it did very well with respect to choosing frames
from different shots.



Wallace and Grit with Dr. Latecki’'s cluting algorithm

I feel that this set is actually quite good. It has all the major points of
the story. This clip is less than % the size of Mr. Bean. This set used the
parameters of 30 frames per cluster minimum and 12% delay.



On small data sets, with few or no scene changes, this algo-
rithm works very well. The k—means based algorithm faired

very poorly on such data. Dr. Latecki's algorithm consistently
returns results similar to these:

Movl: 30 minimum frames per cluster and 21% delay

107 221 287 359




Security 1: Many different parameter settings yielded this result

32 128 347




Conclusions:

We have developed a method to extract significant frames from
MPEG video streams.

The method seems to work well in instances of small movies,
but in instances of large movies, the values of the parameters
to the clustering algorithm far too greatly affect the result of
the computation—The chosen frames give a feel for the movie.

However, the method is very computationally intensive and slow,
thus rendering it, at least in the near future, impractical for real—
time applications such as smart fast—forward.



