1. Matrix operations.

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 3 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix}, \quad D = \begin{bmatrix} 9 & 6 & 5 \\ 8 & 4 & 3 \\ 7 & 2 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

What is:

- \(A + 2B \)
- \((A - B)^T \)
- \(B \cdot B \cdot C \)
- \(C \cdot C^T \)
- \(C^T \cdot C \)
- \(D \cdot A \)
- \(A \cdot D \cdot C \)
- \(D \cdot D^T \)
- \(D + D^T \)
- \((D + D^T)^T \)
- \(D \cdot D \)
- \(D^T \cdot D \)

2. You can easily manipulate with rows and columns of a matrix by multiplying it with another matrix. You will see how by answering the following questions.

a) Show that multiplying \(D \) from left with \(E \), \(E \cdot D \), transforms matrix \(D \) such that its first row is multiplied by two, and its second and third rows are swapped.

b) How does multiplying \(D \) from right with \(E \), \(D \cdot E \), transform matrix \(D \)?

c) Create matrix \(E \), such that multiplying \(D \) from left with \(E \), \(E \cdot D \), transforms \(D \) such that its second row is divided by 2 and its first and third rows are swapped.

d) Create matrix \(E \), such that multiplying \(D \) from left with \(E \), \(E \cdot D \), transforms \(D \) such that its second row is the original second row minus the original first row of \(D \).