Section 7.5
Equivalence Relations

Now we group properties of relations together to define
new types of important relations.

Definition: A relation R on aset A is an equivalence
relation iff Ris

e reflexive
e symmetric
and

e frangsitive

It is easy to recognize equivalence relations using
digraphs.

» The subset of all elements related to a particular
element forms a universal relation (contains all possible
arcs) on that subset. The (sub)digraph representing the
subset is called a complete (sub)digraph. All arcs are
present.

* The number of such subsetsis called the rank of the
equivalence relation
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Examples:

A has 3 elements:

0 Y

&

rank = 3

rank = 2
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rank = 2

rank = 2
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rank = 1
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» Each of the subsets is called an equivalence class.

A bracket around an element means the equivalence
classin which the element lies.

[X] ={y | <X, y>isinR}

» The element in the bracket is called a representative
of the equivalence class. We could have chosen any one.

Examples:

o)

[a] ={a, c},[c] = {a, c}, [b] = {b}.

rank = 2

An interesting counting problem:
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Count the number of equivalence relations on a set A with
n elements. Can you find a recurrence relation?

The answers are
elforn=1
«3forn=2
e5forn=3

How many for n = 4?

Definition: Let S1, S, . . ., Sy be acollection of subsets
of A. Then the collection forms a partition of A if the
subsets are nonempty, digoint and exhaust A:

° SI 1 [F

«SCS=AIifit]

eJUS=A

Discrete Mathematics by Section 6.5
and Its Applications 4/E Kenneth Rosen TP5



Theorem: The equivalence classes of an equivalence
relation R partition the set A into digoint nonempty
subsets whose union is the entire set.
This partition is denoted A/R and called
* the quotient set, or
* the partition of A induced by R, or,
« Amodulo R.
no. of partitions: B_n+1=sum_k=0"n B_n*C(n,k)
Examples:
«Ex. 1, p. 508
« Ex. 4, p. 509
* EX. 9, p. 512, problem 18, p. 514
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A=[a]E [b] =[a] E[c] ={a} E{b,c}
rank = 2

Theorem: Let R be an equivalence relation on A. Then
either
[a] = [b]
or

[alClh] = A&

Theorem: If R; and Rz are equivalence relations on A
then R1C Rz is an equivalence relation on A.

Proof: It suffices to show that the intersection of

 reflexive relationsis reflexive,
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» symmetric relations is symmetric,
and
e trangitive relations is transitive.

Y ou provide the details.

Definition: Let R be arelation on A. Then the reflexive,
symmetric, transitive closure of R, tsr(R), isan
equivalence relation on A, called the equivalence relation
induced by R.

Example:

a b
() @

>@®
d C
R
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tsr(R)
rank = 2
A =[ak[b] = {a}e{b, c, d}

AR = {{a}, {b, c, d}}

Theorem: tsr(R) isan equivalence relation
Proof:

We have to be careful and show that tsr(R) is still
symmetric and reflexive.

» Since we only add arcs vs. deleting arcs when
computing closures it must be that tsr(R) is reflexive since
all loops <x, x> on the diagraph must be present when
constructing r(R).

o If thereis an arc <x, y> then the symmetric closure
of r(R) ensures thereisan arc <y, x>.
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* Now argue that if we construct the transitive closure
of sr(R) and we add an edge <x, z> because there is a path
from X to z, then there must also exist a path from z to x
(why?) and hence we also must add an edge <z, x>. Hence
the transitive closure of sr(R) is symmetric.

Q. E.D.

Discrete Mathematics by Section 6.5
and Its Applications 4/E Kenneth Rosen TP 10



