Parallel Processing Letters, Vol. 10, No. 4 (2000) 279-294
© World Scientific Publishing Company

ON FINDING A HAMILTONIAN PATH IN A TOURNAMENT
USING SEMI-HEAP*

JIE WU

Department of Computer Science and Engineering
Florida Atlantic University, Boca Raton, FL 33431
E-mail: jieQcse.fau.edu

Received September 1999
Revised November 1999
Accepted by 1. Stojmenovic

ABSTRACT

The problem of sorting an intransitive total ordered set, a generalization of regular
sorting, is considered. This generalized sorting is based on the fact that there exists a
special linear ordering (also called a generalized sorted sequence) for any intransitive
total ordered set, or equivalently, the existence of a Hamiltonian path in a tournament.
A new data structure called semi-heap is proposed to construct an optimal ©(n logn)
sorting algorithm. We also provide a cost-optimal parallel algorithm using semi-heap.
The run time of this algorithm is ©(n) with ©(logn) processors under the EREW
PRAM model. The use of a Hamiltonian path (generalized sorting sequence) as an
approximation of a ranking system in a tournament is also discussed.

Keywords: Data structure, directed graph, Hamiltonian path, heap, sorting, total order.

1 Introduction

Sorting is one of the fundamental problems in computer science for which different
solutions have been proposed [6]. Given a sequence of n numbers (n,ns, ...,n,) as
an input, a sorting algorithm generates a permutation (reordering) (n;,ny,...,n.,)
of the input sequence such that n’l > n; >...> n;l.

We consider a generalization of the sorting problem by replacing > with >,
where > is a total order without the transitive property, i.e., it is intransitive. That
is, if n; > n; and n; > ng, it is not necessary that n; > ny. The total order requires
that for any two elements n; and nj, either n; > n; or n; = n;, but not both
(antisymmetric).

The set N of n elements exhibiting intransitive total order can be represented
by a directed graph, where n; > n; represents a directed edge from vertex n; to

*This work was supported in part by NSF grants CCR 9900646 and ANI 0073736. A preliminary

version of this paper appeared in the Proceedings of the 14th International Parallel & Distributed
Processing Symposium.

279

280 J. Wu

vertex n;. The underlying graph is a complete graph. This graph is also called a
tournament [2], representing a tournament of n players where every possible pair of
players plays one game to decide the winner (and the loser) between them. Sorting
on N corresponds to finding a Hamiltonian path (also called a generalized sorted
sequence, or simply, a sorted sequence) in the tournament. The existence of a
Hamiltonian path in any tournament was first proved in [7]. Other properties
related to tournament can be found in [12].

Hell and Rosenfeld [4] proved that the bound on finding a Hamiltonian path is
O(nlogn), the same bound as the regular sorting. They also considered bounds on
finding some generalized Hamiltonian paths. It is easy to prove that many regular
sorting algorithms can be used to find a Hamiltonian path in a tournament, such
as bubble sort, insertion sort, binary insertion sort, and merge sort.

In this paper, we propose a new data structure called semi-heap, which is an
extension of a regular heap structure. An optimal ©(nlogn) algorithm that deter-
mines a Hamiltonian path in a tournament based on the semi-heap structure is also
proposed. We introduce a cost-optimal parallel sorting algorithm using semi-heap
in the EREW PRAM model. EREW PRAM stands for the exclusive read exclusive
write parallel random access machine. The EREW PRAM model does not allow
simultaneous access (read or write) to a single memory location. The concurrent
read exclusive write (CREW) PRAM model allows simultaneous read instructions
only. The concurrent read concurrent write (CRCW) PRAM allows simultaneous
read and write instructions. A sorting algorithm is cost-optimal [5] if the product
of run time and the number of processors is ©(nlogn), the bound for sequential so-
lutions. An algorithm is cost-optimal in the strong sense if it produces the ultimate
speed, measured by the total number of operations, that can be achieved without
compromising the cost. Specifically, the pipeline technique is used to reduce the run
time of the sequential algorithm from ©(nlogn) to ©(n) using O(logn) processors
with different processors handling activities of different levels of the heap.

Among parallel sorting algorithms, even-odd merge sort can still be applied to
solve the generalized sorting problem. However, heap sort and quick sort cannot be
used. Bar-Noy and Naor [1] studied different parallel solutions based on different
models and the number of processors. They showed that under the CRCW PRAM
model, the generalized sorting problem can be solved in ©(logn) using ©(n) pro-
cessors. Other fast parallel algorithms under different models can be found in [11];
however, cost-optimal in the strong sense in still open for the EREW PRAM model.

The rest of the paper is organized as follows: Section 2 shows a constructive
proof of the existence of a Hamiltonian path in any given tournament, and then,
proposes the semi-heap structure. Section 3 demonstrates why the regular heapsort
cannot be directly applied to the semi-heap structure, and then, presents an op-
timal generalized sorting algorithm using semi-heap. Section 4 presents a parallel
version of the generalized sorting algorithm using pipeline. This algorithm is based
on the semi-heap structure and it is cost-optimal with @(n) time using ©(logn)
processors. Section 5 discusses the Hamiltonian path (generalized sorted sequence)
as an approximation for ranking players in a tournament and its relationship with

A Hamiltonian Path in a Tournament Using Semi-Heap 281

other ranking systems. Section 6 concludes the paper and discusses future work.

2 Semi-Heap Data Structure

In this section, we first show the existence of a Hamiltonian path in any given tour-
nament, and then, propose the semi-heap data structure. Unlike proofs presented
in many textbooks of graph theory, we provide a constructive proof which serves as
the base for insertion sort.

Theorem 1 [7] Consider a set N (|N| = n) with any two elements n; and n;,
either n; = nj or nj > n;, but not both. Then elements in N can be arranged in a
linear order ny = My > ... > | >N,

Proof. We prove this theorem by induction. When n = 1, the result is obvious.
Assume that the theorem holds for n =k, i.e.,

’ ' '
nq >-n2>...>—nk

When n = k41, any k elements can be arranged in a linear order as above. We
then insert the (k + 1)th element n',c 41 in front of n;, where 7 is the largest index
such that n, 41" n;. That is,

7 I ! ! !
Ny - Ny - nk+1 - n;... - Ny

If such an index 7 does not exist, n’k 41 is placed as the last element in the linear
order:

My > Ty > e > Mg = Mgy
O

The proposition states that a Hamiltonian path may exist in any given tourna-
ment, but not necessary for a Hamiltonian circle. That is, we can always arrange
n players in a linear order from left to right such that each player beats the one to
its right. Figure 1 shows a directed graph with five vertices. One sorted sequence
is ng = ng > ng > ns > n1. When > is transitive, the sorted sequence arrange-
ment is reduced to a regular sorting problem. Unlike the regular sorting problem,
more than one solution may exist for the generalized sorting problem. For example,
ny > Ng > Ng > N > ng is another sorted sequence for the example of Figure
1. The insertion sort with a complexity of ©(n?) can be easily constructed based
on the above proof. In the following, we propose the semi-heap data structure,
and then, present a sorting algorithm with a complexity of ©(nlogn) based on the
semi-heap.

Consider three elements n1,ng,n3 in N, denote n; = max{ny,na,ng} if ny > ngy
and n; > nz. Note that in a total order without the transitive property, the
maximum element may not exist among three elements. For example, if ny = ng,
ny > n3, and ng > ni, max{ni,ns,ng} does not exist. Next we introduce a new
concept of the maximum element based on .

Definition 1 n; = max, {ni,ne,n3} if both ny = max{ni,n2,n3} and nzy =
max{ni,nz,n3} are false.

282 J. Wu

Fig. 1: A directed graph with a complete underlying graph.

Note that when n; = max{ni,ns,ns} are false for all i = 1,2,3, every n; is a
maximum element.

A semi-heap is any array object that can be viewed as a complete binary tree,
like a regular heap. A complete binary tree of height h is a binary tree that is full
down to level h — 1, with level h filled in from left to right. However, the regular
heap property is changed. Let L(n') and R(n') represent left and right child nodes
of n, respectively. When a child, say R(n'), does not exist, the relation n’ > R(n)
automatically holds.

Definition 2 A semi-heap for a given intransitive total order > is a complete bi-
nary tree. For every node n' in the tree, n' = max, {n', L(n'), R(n')}.

When an array A is used to represent a semi-heap, I(i) and r(i) are used as
indices of the left and right child nodes of i; they can be computed simply by
(i) = 2i and r(¢) = 2 + 1. Figure 2 (a) shows a semi-heap with 10 elements.
A semi-heap can be viewed as a set of overlapping triangles, with each triangle
consisting of A[i], A[l(¢)], A[r(¢)]. Figure 3 shows four possible configurations of a
triangle under relation ». In this figure, if Afi] = A[l(z)] is true, a directed edge
is drawn from Ali] to A[l(i)]. Note that A[i] = max, {A[i], A[l(3)], A[r(:)]} for all
cases. In cases (a) and (b) condition A[i] = max{A[i], A[l(i)], A[r(i)]} also holds.

To simplify the presentation, we fill in a special symbol * representing a smaller
value than any one in the semi-heap for entries that are outside the semi-heap.
That is, A[i] > A[j] is true for any ¢ inside the semi-heap and any j outside the
semi-heap. Specifically, A[i] is an element of the semi-heap if 1 < i < heapsize (see
Figure 2 (b)). A[j] is an element outside the semi-heap if j > heapsize.

3 Generalized Sorting Using Semi-Heap

Although a semi-heap resembles a heap, the traditional heapsort algorithm cannot
be directly applied to a semi-heap to generate a generalized sorted sequence. Recall
that with the transitive property, root A[1] of the heap is always the maximum

A Hamiltonian Path in a Tournament Using Semi-Heap 283

1 i 2i 2i+1 heapsize

| | All) I |A[l(i)] l A[r(i)]‘ I * L

(@) (b)

Fig. 2: A semi-heap structure as a set of overlapping triangles.

element in the heap, i.e., the player at the root “beats” all the other players in
the tournament. When we “discard” the root, it is “replaced” by the last element
A[n] in the heap, and then, the heap is reconstructed by pushing A[n] down in the
heap so that the new root is the maximum element among the remaining elements.
However, in a semi-heap, we may face a situation in which A[n] beats all A[1], A[2],
and A[3], which is an impossible situation in a regular heap. A[n], the new root,
cannot be selected (and be removed from the semi-heap) in the next round to be
placed after A[1], the previously selected element, because A[n] beats A[1]. On the
other hand, because A[n] beats A[2], its left child, and A[3], its right child, A[n]
cannot be pushed down in the semi-heap. Therefore, a different strategy has to be
developed for semi-heap.

We follow closely the notation used in Cormen, Leiserson, and Rivest’s book
[3]. The sorting using semi-heap consists of four modules: SEMI-HEAPIFY(A,1),
BUILD-SEMI-HEAP(A), REPLACE(A4,4), and SEMI-HEAP-SORT(A). SEMI-
HEAPIFY(A,%) constructs a semi-heap rooted at A[i], provided that binary trees
rooted at A[l(7)] and A[r(¢)] are semi-heaps (see Figure 3). The cost of SEMI-
HEAPIFY is the height of node A[i], measured by the number of edges on the
longest simple downward path from the node to a leaf. That is, the cost of SEMI-
HEAPIFY is O(logn), where n = heapsize. BUILD-SEMI-HEAP uses the proce-
dure SEMI-HEAPIFY in a bottom-up manner to convert an arbitrary array A into
a semi-heap. The cost of BUILD-SEMI-HEAP is ©(n), which is the same cost of
building a regular heap.

Generalized sorting is done through SEMI-HEAP-SORT by repeatly printing
and removing the root of the binary tree (which is initially a semi-heap). The root
is replaced by either its leftchild or rightchild through REPLACE. The selected
child is replaced by one of its child nodes. The process continues until reaching one
of the leaf nodes and the entry for that leaf node is replaced by , i.e., that leaf node
is removed from the tree. A new tree derived is no longer a semi-heap; however,
each overlapping triangle in the tree still meets the maximum element requirement
in Definition 2. The cost of REPLACE is the height of the current tree, which
is bounded by the height of the original semi-heap, ©(logn). Therefore, the cost

284 J. Wu

a1 @———@ aran

(@)

All®] Alr(i)]

©

Al @=———@ are

®)

N
Al Alr(®)]

@

Fig. 3: Four possible configurations of a triangle in a semi-heap.

of SEMI-HEAP-SORT is ©(nlogn). Without loss of generality, we assume that
n > 1.
SEML-HEAPIFY (A, i)
1 if Afs] # max, {A[], A[[(:)], A[r(5)]}
2 then find winner such that Alwinner] +— max{A[i], A[{(?)], A[r(©)]}
3 exchange A[i] +— A[winner]
4 SEMI-HEAPIFY (A, winner)
BUILD-SEMI-HEAP(A)
1 for i<— |heagsize| qownto 1
2 do SEMI-HEAPIFY(A,1)
REPLACE(A4, i)
Lif (Al(@)] = =) A (A[r(D)] = =)
2 then Afi] +— *
3 else if (A[i] > A[l(2)]) A (A[L(2)] = A[r(3)])
4 then A[i] «— A[l(7)]
5 REPLACE(4, I[i])
6 else A[] «— Alr(3)]
7 REPLACE(A, r[i])
SEMI-HEAP-SORT(A)
1 BUILD-SEMI-HEAP(A)
2 while (A[I(1)] # %) V (A[r(1)] # %)
3 do print(A[1])
4 REPLACE(4, 1)
5 print(A[1])
Theorem 2 BUILD-SEMI-HEAP constructs a semi-heap for any given complete
binary tree.

Proof. The procedure BUILD-SEMI-HEAP goes through nodes that have at least
one child node and runs SEMI-HEAPIFY on these nodes. The order in which these
nodes are processed guarantees that the subtrees rooted at child nodes of A[i] are
semi-heap before SEMI-HEAPIFY runs at A[].

A Hamiltonian Path in a Tournament Using Semi-Heap 285

All@)
Alrd@]

Fig. 4: The construction of a semi-heap using SEMI-HEAPIFY.

When SEMI-HEAPIFY is called at A[d], if A[¢] is the maximum element among
Alg], All(3)], and A[r(7)] based on >, the binary tree rooted at A[z] is automatically
a semi-heap. Otherwise and without loss of generality, one of the child nodes, say
A[l(4)], is the winner among the three, i.e., A[I(i)] beats both A[i] and A[r(i)]. In
this case, A[l(¢)] is swapped with A[i], which ensures that node A[¢] and its child
nodes satisfy the semi-heap property. However, node A[/()] now has the original
Ali], and thus, the subtree rooted at A[l(7)] may violate the semi-heap property.
Therefore, SEMI-HEAPIFY must be called recursively on that subtree.

A new problem (that does not appear in the original heap structure) is how
to ensure that the resultant root A[l(3)], after applying SEMI-HEAPIFY at A[l(3)],
will not violate the semi-heap property among A[3], A[l(z)], and A[r(i)]. In aregular
heap, A[i] is the maximum element in the tree rooted at A[i], the heap property
among A[i], A[l(¢)], and A[r(:)] automatically holds. In a semi-heap, we need to
prove that the newly selected root A[l(¢)] (other than the original value A[i]), which
is either A[l(I(3))] or A[r(l(3))] in the original tree, cannot beat both A[i] (the
original A[l(7)]) and A[r(7)]. In fact, we prove that A[i] (the original A[l(¢)]) always
beats the newly selected A[l(¢)] (the original A[l(1(¢))] or A[r(I(¢))]). We consider
the following two cases in the original tree with a semi-heap rooted at A[l(7)] (see
Figure 4):

o If A[l(¢)] beats both A[I(1(:))] and A[r(1(2))]. The problem is solved because in
the resultant tree node A[i(¢)] becomes A[i] and either A[l(I(3))] or A[r(1(3))]
becomes A[l(7)].

o If A[l(4)] beats only one child node, then without loss of generality, we assume
that A[l(2)] (which is now A[i]) beats A[l(1(3))], A[I(L())] beats A[r(I(2))],
and A[r(1(¢))] beats A[l(7)]. To select a winner among the original A[i] (now
A[l(3)]), A[L(L(3))], Alr(1(2))], other than A[l(3)], A[l({(?))] is the only choice
(since A[r(l(z))] has lost to A[l(1(¢))]). Consequently, A[l(I(:))] becomes the
newly selected root of the left subtree of A[i], based on the assumption, A[i]
(the original A[i(7)]) beats A[l(¢)] (the original A[I(I(z))]) in the resultant tree.

286 J. Wu

@ (®)

Fig. 5: An example tree: (a) the initial configuration, (b) the semi-heap configuration, after
applying BUILD-SEMI-HEAP.

O

Consider a complete binary tree with eight vertices, i.e., heapsize = 8. The
initial configuration of array A is ny, ng, ns, n4, ns, ng, n7, and ng. The tournament
is represented by an 8 x 8 matrix M given below, where M[i, j] = 1 if n; beats n;
(ie., n; > n;) and M[i,j] = 0 if n; is beaten by n; (ie., n; > n;). M[i,i] = —
represents an impossible situation. Note that M[i, j] = 1 if and only if M[j,4] = 0.

-0 1 0 1 0 1 1
1 — 0 1 0 1 0 1
01 — 0 0 1 0 0
1 0 1 — 1 1 0 1
M=1149 11 0 -1 1 1
1 0 0 0 0 — 0 0
01 1 1 0 1 - 0
00 1 0 0 1 1 -

Figure 5 (a) shows the initial configuration of this complete binary tree in array
A, where the corresponding tree structure is represented by a set of overlapping
triangles. Three edges among three vertices in each triangle represent tournament
results between three pairs of players in the triangle. That is, an edge directed from
n; to n; exists if M[i, j] = 1 in matrix M. Relationships between two vertices from
different triangles are not shown in the figure. Figure 5 (b) shows the resultant semi-
heap after applying BUILD-SEMI-HEAP. A[j] is filled with * for j > 8. Actually,
it is sufficient to define the size of A to be 2 x heapsize. A step-by-step application
of REPLACE(A,1) to the example of Figure 5 is shown in Figure 6, where the
selected (printed) elements are placed beside the root in a left-to-right order. In
this example, the final output sequence is ny > ny = ng > Ny > ng > N5 > ng > Ng.
Once all elements are printed, all entries in array A are filled with *. The correctness
of this result can be easily verified through the given matrix M.

A Hamiltonian Path in a Tournament Using Semi-Heap 287

@@@ . @@@@

Fig. 6: A step-by-step application of REPLACE(A, i) in the example of Figure 5.

288 J. Wu

Note that although the REPLACE process destroys the semi-heap structure
(since the resultant tree is no longer a complete binary tree), each overlapping
triangle in the corresponding binary tree still maintains one of the four possible
configurations of a semi-heap as shown in Figure 3. Therefore, it always generates
a generalized sorted sequence for any given semi-heap.

Theorem 3 For any given semi-heap, SEMI-HEAP-SORT generates a generalized
sorted sequence.

Proof. It suffices to show that REPLACE always replaces the current root by an
element beaten by the root. In addition, each overlapping triangle in the binary
tree is still one of the four possible configurations of a triangle in a semi-heap, i.e.,
the root of each triangle is the maximum element based on > in the triangle. Based
on the definition of REPLACE, the current root A[i] is replaced by A[l(¢)] for cases
(a) and (c) and by A[r(¢)] for cases (b) and (d) of Figure 3. The replacing element,
say A[l(2)], is itself replaced by an element in the triangle rooted at A[l(¢)]. This
process continues iteratively down the semi-heap. In addition, the new root Ali]
beats both of its child nodes (if any). This property ensures when a child node is
missing (i.e., the corresponding triangle contains only two nodes), A[i] can still be
replaced by another child node without causing any problem. Therefore, the root
of each triangle is still the maximum element based on > in the triangle. O

4 Parallel Generalized Sorting Using Semi-Heap

In the sequential solution, procedure BUILD-SEMI-HEAP(A) takes only ©(n), no
speed up is necessary for this part. Procedure SEMI-HEAP-SORT can be improved
by assigning one processor to each level of the binary tree, which initially is a semi-
heap. REPLACE(A,1) is pipelined level to level and this procedure is called at
every other step, because each node is shared by two processors at the two adjacent
levels, a passive step is inserted between two calls. The run time of SEMI-HEAP-
SORT is reduced to ©(n) using ©(logn) processors. This parallel algorithm runs on
the CREW PRAM model, since two adjacent processors may access (read) vertices
in two overlapping triangles of the tree. However, simultaneous accesses can be
avoided by creating a copy of each vertex that appears in two overlapping triangles.
The enhanced version runs on the EREW PRAM model.

We use the network model to illustrate the parallel algorithm. The network
model [13] can be viewed as a graph where each node represents a processor, and each
directed edge (P;, P;) represents a two-way communication link between processors
P; and P;. It is easy to convert the algorithm back to the EREW PRAM model
by replacing send and receive commands in the network model by read and write
commands in the EREW PRAM model. Shared elements are duplicated and stored
in local memory of adjacent processors. Processors are connected as a linear array,
where each processor communicates with up to two adjacent processors.

The level of each node in the semi-heap is its distance to the root. Clearly,
h = [log(n + 1)] is the maximum level and is called the depth of the semi-heap. A
linear array of h processors are used where processors are labeled as Py, Py, ..., Pp—1-

A Hamiltonian Path in a Tournament Using Semi-Heap 289

......................

P P P P P
0 1 2i-1 2 2+l
P P P P P
(1] 1 2i-l 2i 2i+l

Fig. 7: Active and passive steps of processors.

Processor P; has a copy of elements in levels 7 and i+ 1 of the semi-heap. In general,
P; is assigned with 2¢ triangles (i.e., 3 x 2% consecutive elements in array A). Figure 8
shows the above assignment of the example in Figure 5 (b), where the semi-heap
is represented as a tree structure without showing the detail orientation of each
triangle.

In the proposed parallel algorithm, each processor alternates between an active
step and a passive step. Processors with even ID’s take active steps in even steps,
while those with odd ID’s take active steps in odd steps. That is, at an even step,
processors Fy, Py, Py, ... take the active step and processors Py, Ps, Ps ... take the
passive step. The role of active and passive among these processors exchanges in
the next step, which is an odd step (see Figure 7). Active and passive steps include
the following activities:

o At an active step, each processor performs local update and sends relevant
messages to the two adjacent processors (if they exist).

e At a passive step, each processor receives messages from the two adjacent
processors (if they exist) and saves them.

In the implementation using the network model, processor P, initiates the sort-
ing process and the rest P;’s are activated in sequence. Processor P, also generates
a termination signal which is passed down the linear array of processors once the job
is completed. To make our algorithm more general, some activities are not ordered
within a step.

Py at an active step (starts from step 0):

1. Prints root A[1].

2. If both child nodes are %, A[1] is replaced by *, and then, Py sends a termi-
nation signal to P; and stops.

If at least one child node is not *, A[1] is replaced by one of two child nodes,
A[2] or A[3], following the rule in REPLACE. If A[2] is selected, P, sends
id = 2 to processor P;; otherwise, id = 3 is sent. In the next step (a passive

200 J. Wu

Fig. 8: An assignment of the semi-heap in Figure 5 (b) in a linear array.

step), Py receives (id, replacement) from P;, and then, performs the update
Alid] := replacement.

FP;, i > 0, at a passive step:

If P; receives (id, replacement) from P;iq, it performs the update Afid] :=
replacement.

If P; receives signal id = j from P;_4, it performs the following activities in
next active step:

1. If both child nodes are *, A[j] is replaced by *; otherwise, A[j] is replaced
by either A[25] or A[2j + 1] based the replacement rule.

2. Send (], A[]]) to Pi—l-

3. If either A[2j] or A[2j + 1] is selected to replace A[j], the corresponding
id (2 or 2j + 1) is sent to P;11, provided P; is not the last processor
(i.e., i # h — 1); otherwise, the selected element is replaced by *.

If P; receives the termination signal from P;_;, it forwards the termination
signal to the next processor P;; (if it exists) in the next active step, and
then, P; stops.

Note that in the above algorithm, although each processor is assigned a different
number of triangles, its workload stays the same: each processor operates on at most
two triangles in a passive step and at most one triangle in an active step. When a
child node exceeds the boundary of the semi-heap, it has a default value of * and no
replacement is needed. The step-by-step illustration of the above algorithm is shown
in Figure 9 for the first three steps of Figure 6, where the semi-heap is represented
as a tree structure without showing the detail orientation of each triangle. In this
example, each step of Figure 6 corresponds to two steps in Figure 9. Replacement
activities are shown using dashed lines.

Theorem 4 The proposed parallel implementation is cost-optimal with a Tun time
of ©(n) using O(logn) processors.

A Hamiltonian Path in a Tournament Using Semi-Heap 291

Proof. It is clear that ©(logn) processors are used. Also, one element is selected
(printed) in every other step and all n elements are printed in 2n steps, and hence,
the run time is ©(n). Because the product of run time and the number of processors
used matches the lower bound ©(nlogn) for a sequential algorithm, the proposed
parallel implementation is cost-optimal. O

The proposed implementation can be extended without having to identify the
last processor. This extension can be done by adding one extra processor P, which
handles the last level of the semi-heap (this last level is also duplicated). Clearly,
each child node of any element in the last level is an *. Therefore, no other processor
will be activated by Py. Also, each processor can terminate itself without using a
termination signal originated from P,. P; terminates itself once all 3 x 2° elements
(that it controls) become *; however, the bookkeeping process is more complicated
than the one in the original design.

5 Discussion

The generalized sorted sequence can also be viewed as an approximation for ranking
players in a tournament. In general, the tournament ranking problem [10] is a
difficult one without exhibiting “fairness”. Suppose 1,2, ...,n is a ranking of players
with 1 representing the champion and ¢ representing the ith place winner. Without
loss of generality, we assume that player u; is ranked in the ith place. For any pair
of players u;,u; with i < 7, a happiness means that u; beats u; while an upset means
that u; beats u;. Clearly, a good ranking should have the minimum number of total
upsets. A median order is defined as a ranking of players with a minimum number
of total upsets. However, the problem of finding a median order in a tournament is
NP-complete.

Several approximations have been proposed and local median order is one of
them. Let’s denote N(i,5) as the sub-tournament induced by the players u;, u;y1,
.-+, u;. A ranking sequence 1,2,..,n of players is called a local median order if, in
any local places u;, ..., u; with 4 < 7,

1. the number of wins by wu; in the sub-tournament N(i,) is greater than the
number of losses by u; in the sub-tournament N (¢, 5), and

2. the number wins by u; in the sub-tournament N (4, j) is less than the number
of losses by u; in the sub-tournament N (i, j).

While the notion of local median order for ranking players in a tournament is
not as ideal as the notion of median order, the problem of finding a local median
order is no longer NP-complete. However, the best known algorithm for finding a
local median order is still in the order of ©(n?).

Recently, the concept of sorted sequence of kings has been proposed by the author
[8]. An algorithm with a complexity of ©(n?) in the worst case and ©(nlogn) in
the average case has been provided in [14] to a find a sorted sequence of kings in
any tournament as an approximation of median order. A king u in a tournament
[9] is a player who beats (>~) any other player v directly or indirectly via a third

202 J. Wu

Fig. 9: A step-by-step illustration of the first three steps of Figure 7.

A Hamiltonian Path in a Tournament Using Semi-Heap 293

sorting sequence

sorting sequence of kings

local median order

Fig. 10: Relationship between different ranking systems.

player; that is, either u > v or there exists a third player w such that u > w and
w > v. A sorted sequence of kings [8] in a tournament of n players is a sequence
of players, uy, us, ..., Un, such that u; > u;4; and u; is a king in sub-tournament
{us, Uig1, . un} fori =1,2,..,n — 1.

Wu [14] has shown the nested relationship among the different approximations
as shown in Figure 10. In this figure, if a model A contains a model B, then any
instance of B is also an instance of A. For example, a median order is a local median
order. A local median order is a sorted sequence of kings which in turns is a sorted
sequence.

6 Conclusions

We have proposed a data structure called semi-heap which is a generalization of the
traditional heap structure. The semi-heap structure is used to find a Hamiltonian
path (also called a generalized sorted sequence) in a tournament. We have shown
that the generalized sorting problem can be solved optimally using semi-heap. The
solution can be easily extended to a cost-optimal EREW PRAM algorithm with
O(n) in run time using O(logn) processors. An implementation of this parallel
algorithm under the network model is shown in which processors are connected as a
linear array. We are currently studying the problem of generalized merging in which
the relation between elements does not have the transitive property. The result of
this study will be reported in a separate paper [15].

Acknowledgements

I would like to express my thanks to Stephan Olariu for discussing this problem,
and to my student Hailan Li, for proofreading this manuscript.

References

1. A. Bar-Noy and J. Naor. Sorting, minimal feedback sets, and Hamilton paths in
tournaments. SIAM Journal of Discrete Mathematics. 3, (1), Feb. 1990, 7-20.

294

10.

11.

12.
13.
14.

15.

J. Wu

. J. A. Bondy and U.S.R. Murthy. Graph Theory and Applications. The Macmillan
Press. 1976.

. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press. 1994.

. P. Hell and M. Rosenfeld. The complexity of finding generalized paths in tourna-
ments. Journal of Algorithms. 1983, 4, 303-309.

. J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Com-
pany. 1992.

. D. Knuth. The Art of Computer Programming, Vol 8, Sorting and Searching.
Addison-Wesley Publishing Company, second edition. 1998.

. H. G. Landau. On dominance relations and the structure of animal societies, III:
The condition for score structure. Bull. Math. Biophys. 15, 1953, 143-148.

. W. Lou, J. Wu, and L. Sheng. On the existence of a sorted sequence of kings in a
tournament. Proc. of the 31th Southeastern Int’l Conf. on Combinatorics, Graph
Theory, and Computing. March 2000.

. S. B. Maurer. The king chicken theorems. Math. Mag. 53, 1980, 67-80.

K. B. Reid and L. W. Beineke. Tournaments. Chapter 7 in: L. W. Beineke and R.
Wilson, eds., Selected Topics in Graph Theory, Academic Press, New York, 1979.

D. Soroker. Fast parallel algorithms for finding Hamilton paths and cycles in a
tournament. Journal of Algorithms. 1988, 276-286.

D. B. West. Introduction to Graph Theory. Prentice Hall, Inc. 1996.
J. Wu. Distributed Systems Design. The CRC Press. 1999.

J. Wu. A quicksort algorithm for a sequence of kings in a tournament. TR-CSE-00-
13, Technical Report, FAU, April 2000.

J. Wu and S. Olariu. On optimal merge of two intransitive sequences. in preparation.

