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Algorithm design patterns and antipatterns

Algorithm design patterns.

Algorithm design antipatterns.

Greedy.

Divide and conquer.
Dynamic programming.
Duality.

Reductions.

Local search.
Randomization.

NP-completeness.
PSPACE-completeness.
Undecidability.

O(n*) algorithm unlikely.
O(n*) certification algorithm unlikely.
No algorithm possible.



Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

|

von Neumann Nash Godel Cobham Edmonds Rabin
(1953) (1955) (1956) (1964) (1965) (1966)

Turing machine, word RAM, uniform circuits, ...

4

Theory. Definition is broad and robust.

constants tend to be small, e.g., 3n?2

'

Practice. Poly-time algorithms scale to huge problems.



Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes probably no

shortest path longest path
min cut max cut
2-satisfiability 3-satisfiability
planar 4-colorability planar 3-colorability
bipartite vertex cover vertex cover
matching 3d-matching
primality testing factoring

linear programming integer linear programming



Classify problems

Desiderata. Classify problems according to those that can be solved in
polynomial time and those that cannot.
input size = ¢ + log k
Provably requires exponential time. /
* Given a constant-size program, does it halt in at most k steps?
* Given a board position in an n-by-n generalization of checkers,
can black guarantee a win? N

using forced capture rule

A
% T
@@ (40

\\t ©© EE

Frustrating news. Huge number of fundamental problems have defied
classification for decades.



Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

« Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

\

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

_ : Algorithm : _
instance | : : solution S to |
: for Y :

(of X)

Algorithm for X



Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

« Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

Notation. X=<,Y.

Note. We pay for time to write down instances of Y sent to oracle =
instances of ¥ must be of polynomial size.

Novice mistake. Confusing X <, Y with Y <; X.



Polynomial transformations

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary
instances of problem X can be solved using:

« Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any
instance x of X, we can construct an instance y of Y such that x is a yes
instance of X iff y is a yes instance of Y. T

we require |y| to be of size polynomial in | x|

Note. Polynomial transformation is polynomial reduction with just one call
to oracle for Y, exactly at the end of the algorithm for X. Almost all previous
reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

T

we abuse notation <, and blur distinction

27



Intractability: quiz 1

Suppose that X <, Y. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.

D. If Y cannot be solved in polynomial time, then neither can X.



Intractability: quiz 2

Which of the following poly-time reductions are known?

FIND-MAX-FLOW <, FIND-MIN-CUT.
FIND-MIN-CUT <, FIND-MAX-FLOW.

Both A and B.

°c N w p

Neither A nor B.

10



Poly-time reductions

Design algorithms. If X<, Y and Y can be solved in polynomial time,
then X can be solved in polynomial time.

Establish intractability. If X<, Y and X cannot be solved in polynomial time,
then Y cannot be solved in polynomial time.

Establish equivalence. If both X<, Y and Y <, X, we use notation X=,Y.
In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

11
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Independent set

INDEPENDENT-SET. Given a graph G =(V,E) and an integer k, is there
a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size =67
Ex. Is there an independent set of size =77

‘ independent set of size 6

e 6 (o ©
O—@ @ —OUO—=O0

13



Vertex cover

VERTEX-COVER. Given a graph G =(V, E) and an integer k, is there a
subset of k (or fewer) vertices such that each edge is incident to
at least one vertex in the subset?

Ex. Is there a vertex cover of size <47?
Ex. Is there a vertex cover of size <37?

‘ independent set of size 6

Q vertex cover of size 4

@ o (O
O—@ @ —OUO—=O0

14



Intractability: quiz 3

Consider the following graph G. Which are true?

The white vertices are a vertex cover of size 7.

The black vertices are an independent set of size 3.

Both A and B.

°c N w p

Neither A nor B.

@ @ @ ()

15



Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET =, VERTEX-COVER.

Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n—k.

‘ independent set of size 6

Q vertex cover of size 4

16



Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET =, VERTEX-COVER.
Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n—k.

=

* Let S be any independent set of size «.

V-Sis of size n —k.

Consider an arbitrary edge (u,v) EE.
S independent = eitheru &S, or v&S, or both.

= eitherue V-5, orve V-5, or both.
Thus, V- S covers (u,v). =

17



Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET =, VERTEX-COVER.

Pf. We show S is an independent set of size k iff V- S is a vertex cover

of size n —k.

<=

Let V- S be any vertex cover of size n—k.

S is of size k.

Consider an arbitrary edge (u,v) EE.

V-Sis a vertex cover = eitheruev-S5,orveVv-S, or both.
= eitheru & S, or v& S, or both.

Thus, S is an independent set. =

18



Set cover

SET-CoVER. Given a set U of elements, a collection S of subsets of U, and an
integer k, are there <k of these subsets whose union is equal to U?

Sample application.
* m available pieces of software.
* Set U of n capabilities that we would like our system to have.
* The i piece of software provides the set §; C U of capabilities.
* Goal: achieve all n capabilities using fewest pieces of software.

U={ 1,2,3,4,5,6,7}

S.,={3.7}% Sp={2,4}%
(S ={3,4,5,6}) S,={5}
S,={1} (Sf_{1267})
k=2

a set cover instance

19



Intractability: quiz 4

Given the universe U =1{ 1, 2, 3, 4, 5, 6, 7 } and the following sets,
which is the minimum size of a set cover?

A. 1  U={1,2,3,4,5,6,7}

B. 2 - S,={1,4,6} S,={1.6,7}
C. 3 5.={1.23.6)  §={1.357}
D. None of the above. 5.=12,6,7; 5= 13,45

20



Vertex cover reduces to set cover

Theorem. VERTEX-COVER < p SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a

SET-COVER instance (U, S, k) that has a set cover of size k iff G has a
vertex cover of size «k.

Construction.
* Universe U=F.
* Include one subset for each nodeveV:S ={e€E: eincidentto v }.

(@) ®

67 82 €3 64 E U={1a293’4a536>7}
i Sa:{3a7} Sb:{274}
@ % @ . 5.={3,4,5,6} S,={5}
e es S, ={1)} S =1{1,2,6,7}
vertex cover instance set cover instance

(k = 2) (k = 2)

21



Vertex cover reduces to set cover

Lemma. G =(V,E)contains a vertex cover of size k iff (U, S, k) contains
a set cover of size «.

Pf. = Let X C V be a vertex cover of size kin G. “ves” instances of VERTEX-COVER
] ] are solved correctly
* ThenY={S,:veEX}is aset cover of size k. =

67 62 €3 64 E U={1727394957697}
5 S.=13,7} Sp,=12,4}
6 ©6 G  (5.={3.4,5.6}) $,={5}
e, s g S,={1} (Sf_{1267})
vertex cover instance set cover instance
(k = 2) (k = 2)

22



Vertex cover reduces to set cover

Lemma. G =(V,E)contains a vertex cover of size k iff (U, S, k) contains
a set cover of size «.

Pf. < LetY C S be a set cover of size kin (U, S, k). “no” instances of VERTEX-COVER

are solved correctly

* ThenX={v:S, €Y} is avertex cover of size kin G. =

" - . U={1,2,3,4,5,6,7}
- 5.={37) Sy={2,4}
0 ©6 G (S—{3456}) S,={5}
e, @ @ s . S5,={1} (Sf_{1267})
vertex cover instance set cover instance
(k = 2) (k = 2)

23
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Satisfiability

Literal. A Boolean variable or its negation. X; Or X,
Clause. A disjunction of literals. C, =X, VX, V X
Conjunctive normal form (CNF). A propositional ® = CArCon Ca C,

formula ® that is a conjunction of clauses.

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

-----------------------------------------------------------------------------------------------------------

yes instance: x; = true, X, = true, x; = false, x, = false

Key application. Electronic design automation (EDA).

25



Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to P # NP conjecture.

i Donald J. Trump @ :
- y @realDonaldTrump
Computer Scientists have so much funding and

time and can't even figure out the boolean
satisfiability problem. SAT!

RETWEETS LIKES

16,936 50,195 MBS oRNEE 2 2

6:31 AM - 17 Apr 2017

26



P vs. NP

P: the existence of an algorithm so/ving the task in polynomial time
NP: an answer to the task that can be verified in polynomial time
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N = NP? TIs there a problem harder to compute than to verify: could not be
solved in polynomial time, but the answer could be verified in polynomial time?
NP complete: any NP problem can be transformed into an NP-complete problem.
First NP complete problem: Boolean Satisfaction Problem (Cook-Levin)



3-satisfiability reduces to independent set

Theorem. 3-SAT <p INDEPENDENT-SET.
Pf. Given an instance ® of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k=|®| iff ® is satisfiable.

Construction.
* G contains 3 nodes for each clause, one for each literal.
« Connect 3 literals in a clause in a triangle.
« Connect literal to each of its negations.

27



3-satisfiability reduces to independent set

Lemma. @ is satisfiable iff G contains an independent set of size k=|®]|.

Pf. = Consider any satisfying assignment for ®.

“ves” instances of 3-SAT

« Select one true literal from each clause/triangle. are solved correctly

* This is an independent set of size k=|®|. =

28



3-satisfiability reduces to independent set

Lemma. @ is satisfiable iff G contains an independent set of size k=|®]|.

Pf. < Let S be independent set of size .

“no” instances of 3-SAT

* § must contain exactly one node in each triangle. are solved correctly

* Set these literals to rrue (and remaining literals consistently).

* All clauses in ® are satisfied. =

29



Review

Basic reduction strategies.
- Simple equivalence: INDEPENDENT-SET =, VERTEX-COVER.
 Special case to general case: VERTEX-COVER <, SET-COVER.
- Encoding with gadgets: 3-SAT <, INDEPENDENT-SET.

Transitivity. If X<, Yand Y=<, Z, then X<, Z.
Pf idea. Compose the two algorithms.

Ex. 3-SAT =<, INDEPENDENT-SET =<, VERTEX-COVER =<, SET-COVER.

30



DECISION, SEARCH, AND OPTIMIZATION PROBLEMS

Decision problem. Does there exist a vertex cover of size < k?
Search problem. Find a vertex cover of size < k.
Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

31
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Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G=(V,E), does there exist a
cycle I" that visits every node exactly once?

yes

35



Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G =(V, E), does there exist a
cycle I" that visits every node exactly once?

& ©® G

@ ® © ©
()

no

36



Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph G =(V,E), does there exist
a directed cycle I that visits every node exactly once?

Theorem. DIRECTED-HAMILTON-CYCLE <, HAMILTON-CYCLE.

Pf. Given a directed graph G =(V, E), construct a graph G’ with 3n nodes.

ONCNGC

directed graph G undirected graph G’

37



Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. =
* Suppose G has a directed Hamilton cycle T..
* Then G' has an undirected Hamilton cycle (same order). =

Pf. <
Suppose G' has an undirected Hamilton cycle I"'.

I'" must visit nodes in G’ using one of following two orders:
..., black, white, blue, black, white, blue, black, white, blue, ...
..., black, blue, white, black, blue, white, black, blue, white, ...
Black nodes in I'' comprise either a directed Hamilton cycle T in G,

or reverse of one. =

38



3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-SAT <, DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance ® of 3-SAT, we construct an instance G of
DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff ® is satisfiable.

Construction overview. Let n denote the number of variables in ®.
We will construct a graph G that has 2" Hamilton cycles, with each cycle
corresponding to one of the 2" possible truth assignments.

39



3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance @ with n variables x; and k clauses.
* Construct G to have 2" Hamilton cycles.
« Intuition: traverse path i from left to right < set variable x; = true.

| ¥

X1

i
0
Q
Q0

X3

40



Intractability: quiz 5 I/

Which is truth assignment corresponding to Hamilton cycle below?

A. x,=true,x,=true,x;= true C. x,=false,x,=false, x;= true

B. x,=true,x,=true,x;=false D. x,=false,x,=false,x,=false

41



3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and & clauses.
« For each clause: add a node and 2 edges per literal.

node for clause j node for clause k

connect in this way
if x; appears in clause C; \

R

connect in this way
/ if x; appears in clause Ci

K IR AR A T

Xi = true >

< xi = false

42



3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance @ with n variables x; and k clauses.
« For each clause: add a node and 2 edges per literal.

(Cl —=x1V To \/333) clause node 1 clause node 2 (C’Q = 1 V X9 V x_g)

X1

X2

X3

43




3-satisfiability reduces to directed Hamilton cycle

Lemma. o is satisfiable iff G has a Hamilton cycle.

Pf. =
* Suppose 3-SAT instance ® has satisfying assignment x*.

* Then, define Hamilton cycle I" in G as follows:
- if xi=1true, traverse row i from left to right
- if x% = false, traverse row i from right to left
- for each clause C;, there will be at least one row i in which we are
going in “correct” direction to splice clause node C;into cycle
(and we splice in C; exactly once) =

44



3-satisfiability reduces to directed Hamilton cycle

Lemma. o is satisfiable iff G has a Hamilton cycle.

Pf. <
* Suppose G has a Hamilton cycle T.

If I enters clause node C;, it must depart on mate edge.

- nodes immediately before and after C;are connected by an edge e€ E

- removing C; from cycle, and replacing it with edge e yields Hamilton
cycle on G-{C;}

Continuing in this way, we are left with a Hamilton cycle I'" in

G-{C;{,Cy,..., C\}.

Set xi=rwrue if I'' traverses row i left-to-right; otherwise, set x} = false.

traversed in “correct” direction, and each clause is satisfied. =

45



Poly-time reductions

constraint satisfaction

INDEPENDENT-SET DIR-HAM-CYCLE

v v

VERTEX-COVER HAM-CYCLE

v
SET-COVER

packing and covering sequencing

46
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My hobby

MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

% C H OTCHK\ES RESTAURA uTE

> APPENZERS —
MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE SALAD 3.35
HOT WINGS 3.55

MOZZARELA STICKS 420
SAMPLER PLATE 5.80

RARRFILE £ 8%

WED LIKE EXACTLY §15.05
WORTH OF APPETIZERS, PLEASE..

\ . EXACTLY?  UHH..

HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE Six OTHER
TABLES TO GET TD —

= AS FAST AS POSSIBLE (F (DURSE. WANT
SOMETHING ON TRavsum SALESNAN?

%smw

70


http://xkcd.com/287

Subset sum

SUBSET-SUM. Given n natural numbers w,, ...,w_and an integer W, is there a
subset that adds up to exactly w?

Ex. {215,215,275,275, 355, 355, 420, 420, 580, 580, 655, 655 }, W =1505.
Yes. 215+ 355+ 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary.
Poly-time reduction must be polynomial in binary encoding.

71



Subset sum

Theorem. 3-SAT =<, SUBSET-SUM.

Pf. Given an instance ® of 3-SAT, we construct an instance of SUBSET-SUM
that has solution iff ® is satisfiable.

72



3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance ® with n variables and k clauses,
form 2n + 2k decimal integers, each having n + k digits:
* Include one digit for each variable x; and one digit for each clause C..
* Include two numbers for each variable x..

* Include two numbers for each clause C;.

Sum of each x; digit is 1;

T xx 1 0 0 0 1 0 100,010
sum of each C; digit is 4. o1 o o N o 01
x O | 0 1 0 0 10,100
Key property. No carries possible = -x, O 1 0 0 1 1 10,011
each digit yields one equation. xx 0 0 1 1T 1 0 1,110
-x; O 0 1 0 0 | 1,001
. 0 0 0 1 0 0 100
------------------------------------------------------- O 0 0 2 0 0 200
Ci= —xp V x2 vV A3 dummies to get clause 0 0O 0 O ] 0 10
C, = - - columns to sum to 4 0 0 0 0 5 0 20
o 0 0 0 0 1 1

C3 = =x1 V x2 V —x3

2

3SaT instance W IIIIII--- 11,444

SUBSET-SUM instance



3-satisfiability reduces to subset sum

Lemma. @ is satisfiable iff there exists a subset that sums to W.
Pf. = Suppose 3-SAT instance ® has satisfying assignment x*.
o If xi=rtrue, select integer in row x;;
otherwise, select integer in row - x..

Each x; digit sums to 1.

Since @ is satisfiable, each C; digit sums

x 1 0 0 0 1 0 100,010
to at least 1 from x; and = x;rows. 2w 1 0 0 1 0 1 100101

« Select dummy integers to make 5 0 1 0 1 0 0 10,100
C; digits sum to 4. = ~x, O 1 0 0 1 1 10,011

s 0 0 1 1 1 o0 1,110

~xs 0O 0 1 0 0 1 1,001

- 0 0 0 1 0 0 100

------------------------------------------------------- O 0 0 2 0 O 200
Ci= —-x1 V x2 Vv A3 dummies to get clause 0 O 0 O ] 0 10
C, = X{ V oaxy V - columns to sum to 4 0 0 0 0 > 0 20
O 0 0 0 0 I 1

C3 = —x1 V x2 V —x3 5

3SaT instance W IIIIII--- 11,444

SUBSET-SUM instance



3-satisfiability reduces to subset sum

Lemma. @ is satisfiable iff there exists a subset that sums to W.
Pf. —= Suppose there exists a subset $* that sums to W.
* Digit x; forces subset S*to select either row x; or row -x; (but not both).
- If row x; selected, assign xi=rrue ; otherwise, assign x: = false.
Digit C; forces subset S*to select

at least one literal in clause. =

x 1 0 0 0 1 0 100,010
o 1 0 1 100,101

1 0 1 0 0 10,100
o o 1 1 10,011
11 1 0 1,110
1 1,001
100
200
10
20
0 1 1
' . 2

saimnc + NN -

SUBSET-SUM instance

o

-1 X1
X2
X2
X3

—|x3

dummies to get clause
columns to sum to 4

o O O O

®
[\
[
=
<
|
S
[\
<
S
(V)
=
© O © © ©O/lo o o o

o O O O O] o o
o O O O O
o O O N

N




SUBSET SUM REDUCES TO KNAPSACK

SUBSET-SUM. Given n natural numbers w,,...,w, and an integer W, is there a
subset that adds up to exactly w?

KNAPSACK. Given a set of items X, weights u; =0, values v; =0, a weight limit
U, and a target value V, is there a subset § C X such that:

2{:1% fg l], :E: V; Ei V

1€S 1€S8

Recall. O U) dynamic programming algorithm for KNAPSACK.

Challenge. Prove SUBSET-SUM <p KNAPSACK.
Pf. Given instance (wi, ..., w,, W) of SUBSET-SUM, create KNAPSACK instance:

76



Poly-time reductions

constraint satisfaction

il
Ce K
ol SE
\\,\,\((\OQ§<
,‘QO\ <8<<§
W
2N o\
INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM
v v
VERTEX-COVER HAM-CYCLE KNAPSACK
v
SET-COVER

packing and covering sequencing partitioning numerical

77



Karp’s 20 poly-time reductions from satisfiability

SATISFIABILITY
CLIQUE 0~-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE _ . . _ SET
COVER PACKING CHROMATIC NUMBER

7 NI\

FEEDBACK FEEDBACK DIRECTED

SET
NODE SET ARC SET HAMILTON
CIRCUIT COVERING
UNDIRECTED
HAMILTON
CIRCUIT

.;ﬁ;ﬂ
Dick Karp (1972)
1985 Turing Award

EXACT
COVER

AN

3-DIMENSIONAL KNAPSACK HITTING STEINER

MATCHING ///// \\\\ SET TREE

SEQUENCING PARTITION

MAX CUT

FIGURE 1 - Complete Problems

CLIQUE
COVER

96

AV ‘W QIdVHOI

78
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