Chapter 7
Network Flow

\ Algunh Jesion

JON KLEINBERG - EVA TARDOS

PEARSON



Soviet Rail Network, 1955

Two different views: Russians on max flow, Americans on min cut
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Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Maximum Flow and Minimum Cut

Max flow and min cut. Q ) Q,)
= Two very rich algorithmic problems. (s (7))
= Cornerstone problems in combinatorial optimization. \Y:/ }—<
= Beautiful mathematical duality. /:J "'/:<
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Nonftrivial applications / reductions.
= Data mining. = Network reliability.
= Open-pit mining. = Distributed computing.
= Project selection. = Egalitarian stable matching.
= Airline scheduling. = Security of statistical data.
= Bipartite matching. = Network intrusion detection.
= Baseball elimination. = Multi-camera scene reconstruction.
= Image segmentation. = Many many more ...

= Network connectivity.



Efficient Implementation of Max-Flow: Edmonds-Karp 1972

Prof. Richard Karp, Turing Laureate, visited CIS Temple U. in 2012



Minimum Cut Problem

Flow network.
. Abstraction for material flowing through the edges.
. 6 =(V, E) = directed graph, no parallel edges.
« Two distinguished nodes: s = source, T = sink.
. c(e) = capacity of edge e.
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Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B)is:  cap(4,B) = Y c(e)
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Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B)is:  cap(4,B) = Y c(e)
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Minimum Cut Problem

Min s-1 cut problem. Find an s-t cut of minimum capacity.




Flows

Def. An s-t flow is a function that satisfies:

. Foreache ¢ E: 0 < f(e) < c(e) [capacity]
« ForeachveV-{s,t}: Y1) = Y f(e [conservation]
eintov eoutofv
Def. The value of a flow fis: v(f) = X f(e) .
eoutof s
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Flows

Def. An s-t flow is a function that satisfies:

. Foreache ¢ E: 0 < f(e) < c(e) [capacity]
« ForeachveV-{s,t}: Y1) = Y f(e [conservation]
eintov eoutofv
Def. The value of a flow fis: v(f) = X f(e) .
eoutof s
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Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fe) = 2fle) = wf)

e out of 4 einto A
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.
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e out of 4 einto A
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fe) = 2fle) = wf)

e out of 4 einto A
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then
2. fle)— 2 fle)= v(f).

e out of 4 einto 4
Pf. w(f) = fo (e)

by flow conservation, all terms — = )’ (é > fle) — 2 f(e)j

exceptv=sareQ v €4 \eoutofv eintov

= X fle— X fle).

e out of 4 einto A
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Flows and Cuts

Weak dudlity. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cuft.

Cut capacity =30 = Flow value < 30
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Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) < cap(A, B).

Pf.

W) = 2 fle)= 2 fle)

e out of 4 einto A
< X fle)

e out of 4
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e out of 4

= cap(4,B) .
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Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
« Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
« Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
» Augment flow along path P.
» Repeat until you get stuck.

N\ locally optimality = global optimality
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Residual Graph

Original edge: e =(u,v) € E. Y capacity
. Flow f(e), capacity c(e). @ 30 @
20
N flow

Residual edge.
- "Undo" flow sent.
. e=(u,v)and eR = (v, u).

« Residual capacity: @< /Q

(@) :{c(e)— fle) if ecE
f f(e) if R cE ™ residual capacity

r'e5|dual capacity

Residual graph: Gf = (V, Ef).
- Residual edges with positive residual capacity.
- Er={e:f(e)<c(e)} v {e*: f(e)> 0}
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Ford-Fulkerson Algorithm
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Augmenting Path Algorithm

forward edge

reverse edge
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(|||) = (i)
Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.
. By definitionof A, s € A.
. By definition of f, t ¢ A.

v(f) 2 fle)— 2 fle)

eoutof 4 einto A A

= 2 e

e out of 4

= cap(4,B) =

original network
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Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cs (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < mC iterations,
where m is the number of edges.

Pf. Each augmentation increase value by at least 1. =

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.
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7.3 Choosing Good Augmenting Paths




Ford-Fulkerson: Large Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?
m (# of edges),{'(# of nodes), and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 1
1 X 0 1 X X 1
C C C C
1 X1 1 ¥XO
C

29



Ford-Fulkerson: Large Number of Augmentations

C=100




Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
« Some choices lead to exponential algorithms.
« Clever choices lead to polynomial algorithms.
« If capacities are irrational, algorithm not guaranteed to terminatel

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with:
« Both are strongly polynomial algorithms: O(mn)
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Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

« Maintain scaling parameter A,
. Let G¢ (A) be the subgraph of the residual graph consisting of only

arcs with capacity at least A.
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Capacity Scaling
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Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.
Correctness. If the algorithm terminates, then f is a max flow.

Pf.

« By integrality invariant, when A =1 = G¢(A) = G+
- Upon termination of A = 1 phase, there are no augmenting paths.
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Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +[log, C| times.
Pf. Initially C<A<2C. A decreases by a factor of 2 each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the value
of the maximum flow is at most v(f) + m A, — proof on next slide
Lemma 3. There are at most 2m augmentations per scaling phase.

. Let f be the flow at the end of the previous scaling phase.

« L2 = v(f*) < v(f) + m (2A).

« Each augmentation in a A-phase increases v(f) by at least A.

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to runin O(m? log C) time.

Still pseudo polynormal | The followings are strongly polynormal and O(mn)
« Aug. path with fewest # of edges [Edmonds-Karp 1972, Dinitz 1970].
« Preflow-push maximum-flow (notion of node height) [Goldberg 1986].
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Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Pf. (almost identical to proof of max-flow min-cut theorem)
« We show that at the end of a A-phase, there exists a cut (A, B)
such that cap(A, B) < v(f)+mA.
= Choose A to be the set of nodes reachable from s in G¢(A).
. By definitionof A, s € A.
By definition of f, t ¢ A.

. . :
v(if) = 2 fle)— X fle)
eoutof 4 einto A
> 2 (ce)-A) - 2 A
eoutof 4 einto 4
= 2 cde)- 2 A- XA R
eout of 4 e out of 4 einto A4

> cap(A,B) - mA "

original network
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