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Chapter 6

Dynamic Programming
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Algorithmic Paradigms

Greedy.  Build up a solution incrementally, myopically optimizing some 

local criterion.

Divide-and-conquer.  Break up a problem into sub-problems, solve each 

sub-problem independently, and combine solution to sub-problems to 

form solution to original problem. 

Dynamic programming.  Break up a problem into a series of overlapping 

and/or multiple sub-problems (in sequence) and build up solutions to 

larger sub-problems until the original problem.
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Algorithmic Paradigms

Keys 

• Identify a recurrence 

• Follow a natural linear sequence

• Generalize the problem (adding a new variable)

• Avoid redundancy

• Memorization 

• Removing recursion

• Tower of Hanoi (n disks on three pegs, 2n-1 moves)

• Multiple subproblems in sequence

• Tower of Brahma (64 disks, end of the world)

• Optimization for 4 or more pegs is still open
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Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"

"something not even a Congressman could object to"



5

Dynamic Programming Applications

Areas. 

Bioinformatics.

Control theory.

Information theory.

Operations research.

Computer science:  theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms. 

Unix diff for comparing two files.

Viterbi for hidden Markov models.

Smith-Waterman for genetic sequence alignment.

Bellman-Ford for shortest path routing in networks.

Cocke-Kasami-Younger for parsing context free grammars.



6.1  Weighted Interval Scheduling

Follow a natural linear sequence, but binary choice
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Weighted Interval Scheduling

Weighted interval scheduling problem.

Job j starts at sj, finishes at fj, and has weight or value vj . 

Two jobs compatible if they don't overlap.

Goal:  find maximum weight subset of mutually compatible jobs.

Time
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Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1.

Consider jobs in ascending order of finish time.

Add job to subset if it is compatible with previously chosen jobs.

Observation.  Greedy algorithm can fail spectacularly if arbitrary 

weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1   f2   . . .  fn .

Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8
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1
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5



10

Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem consisting 

of job requests 1, 2, ..., j.

Case 1:  OPT selects job j.

– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

Case 2:  OPT does not select job j.

– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

  

 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1)  otherwise

 
 
 

optimal substructure
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

if (j = 0)

return 0

else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.

demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of 

redundant sub-problems   exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows 

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0



13

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache;

lookup as needed.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.

Sort by finish time:  O(n log n).

Computing p() :  O(n log n) via sorting by start time.

M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

Progress measure  = # nonempty entries of M[].

– initially  = 0,  throughout   n. 

– (ii) increases  by 1   at most 2n recursive calls.

Overall running time of M-Compute-Opt(n) is O(n).   ▪

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.

What if we want the solution itself?

A.  Do some post-processing.

# of recursive calls  n   O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

if (j = 0)

output nothing

else if (vj + M[p(j)] > M[j-1])

print j

Find-Solution(p(j))

else

Find-Solution(j-1)

}
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion for tail-recursion.

Dijkstra’s 1968 letter: Go To Statement Considered Harmful.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

}



6.3  Segmented Least Squares

Follow a natural linear sequence, but multiway choice
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Segmented Least Squares

Least squares.

Foundational problem in statistic and numerical analysis.

Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).

Find a line y = ax + b that minimizes the sum of the squared error: 

Solution.  Calculus   min error is achieved when

  

 

SSE = ( yi − axi − b)2

i=1

n



  

 

a =
n xi yi − ( xi )i ( yi )ii

n xi
2

− ( xi )
2

ii
, b =

yi − a xiii

n

x

y
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Segmented Least Squares

Segmented least squares.

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and 

parsimony?

x

y

goodness of fit

number of lines
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Segmented Least Squares

Segmented least squares.

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

Tradeoff function:  E + c L, for some constant c > 0.

x

y



21

Dynamic Programming:  Multiway Choice

Notation.

OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

Last segment uses points pi, pi+1 , . . . , pj for some i.

Cost = e(i, j) + c + OPT(i-1).

  

 

OPT ( j) =
0 if  j = 0

min
1 i  j

e(i, j) + c + OPT (i −1)  otherwise

 
 
 

  
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Segmented Least Squares:  Algorithm

Running time.  O(n3).

Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

M[0] = 0

for j = 1 to n

for i = j down to 1

compute the least square error eij for

the segment pi,…, pj

for j = 1 to n

M[j] = min 1  i  j (eij + c + M[i-1])

return M[n]

}

can be improved to O(n2) by pre-computing various statistics



6.4  Knapsack Problem

Generalize the problem (by adding a new variable)
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Knapsack Problem

Knapsack problem.

Given n objects and a "knapsack."

Item i weighs wi  > 0 kilograms and has value vi > 0.

Knapsack has capacity of W kilograms.

Goal:  fill knapsack to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.

Ex: { 5, 2, 1 } achieves only value = 35   greedy not optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2
W = 11
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } 

Case 2:  OPT selects item i.

– accepting item i does not immediately imply that we will have to 

reject other items

– without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion.  Need more sub-problems!
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Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

Case 2:  OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

  

 

OPT(i, w) =

0 if  i = 0

OPT(i −1, w) if  wi  w

max OPT(i −1, w), vi + OPT(i −1, w − wi )  otherwise

 

 
 

 
 
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Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up

Knapsack.  Fill up an n-by-W array.
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Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40
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Knapsack Problem:  Running Time

Running time.  (n W).

Not polynomial in input size!

"Pseudo-polynomial."

Decision version of Knapsack is NP-complete.  [Chapter 8]

Knapsack approximation algorithm.  There exists a poly-time algorithm 

that produces a feasible solution that has value within 0.01% of 

optimum.  [Section 11.8]
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A sequence of matrix multiplication: A1A2…An, where Ai: pi-1 x pi

# of different parameterizations: Catalan number Ω(n4/n3/2)

Example:  A1: 10 x 100, A2: 100 x 5, A3: 5 x 50

((A1 A2) A3): 10 x 100 x 5 + 10 x 5 x 50 = 7,500

(A1 (A2 A3)):  100 x 5 x 50 + 10 x 100 x 50 = 25,000

M[i, j]: minimum cost from Ai to Aj, then M[1, n] 

s table gives index (location)

Matrix-chain Multiplication
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Generalize the problem by solving all subproblems: 

m[i, j] with j-i = k: 1, 2, 3, … n-1

Solution: bottom-up from small ranges to the final range [1, n]

Complexity: O(n3)

Solution: Build a pyramid bottom-up
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Shortest path:  greedy (Dijkstra) and dynamic programming solutions

Both are based on optimal-substructure property

However, Dijkstra’s solution fails when there is a negative edge 

Add a positive number to all edges does not work 

(see the right figure each +3 is added to each edge.)

Bellman-Ford OPT(i, v): shortest path from v to the dest. with i edge

Original problem: OPT(n-1, s)

Pull or Push implementation

Shortest path: using a new variable i 
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Floyd-Warshall algorithm with complexity O(n3)

Key: increase the size k of intermediate node set {1, 2,…, k}

step by step (using a special matrix multiplication)

All-Pair Shortest Path: using a new set



6.5  RNA Secondary Structure

Multiple subproblems

Bioinformatics: methods and software tools for understanding biological data, 

when the data sets are large and complex.

RNA (Ribonucleic acid) and mRNA (messenger RNA)

mRNA vaccine:  teach our cells how to make a protein that will trigger an immune 

response inside our bodies.
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RNA Secondary Structure

RNA.  String B = b1b2bn over alphabet { A, C, G, U }.

Secondary structure.  RNA is single-stranded so it tends to loop back 

and form base pairs with itself. This structure is essential for 

understanding behavior of molecule.

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs:  A-U, C-G



36

RNA Secondary Structure

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy:

[Watson-Crick.] S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.

[No sharp turns.] The ends of each pair are separated by at least 4 

intervening bases.  If (bi, bj)  S, then i < j - 4.

[Non-crossing.] If (bi, bj)  and (bk, bl) are two pairs in S, then we 

cannot have i < k < j < l.

Free energy.  Usual hypothesis is that an RNA molecule will form the 

secondary structure with the optimum total free energy.

Goal.  Given an RNA molecule B = b1b2bn, find a secondary structure S 

that maximizes the number of base pairs.

approximate by number of base pairs
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RNA Secondary Structure:  Examples

Examples.

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G

4

base pair
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RNA Secondary Structure:  Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary 

structure of the substring  b1b2bj.

Difficulty. Results in two sub-problems.

Finding secondary structure in: b1b2bt-1.

Finding secondary structure in: bt+1bt+2bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems
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Dynamic Programming Over Intervals

Notation.  OPT(i, j) = maximum number of base pairs in a secondary 

structure of the substring  bibi+1bj.

Case 1.  If i  j - 4.

– OPT(i, j) = 0 by no-sharp turns condition.

Case 2.  Base bj is not involved in a pair.

– OPT(i, j) = OPT(i, j-1)

Case 3.  Base bj pairs with bt for some i  t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark.  Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i  t < j-4 and
bt and bj are Watson-Crick complements
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Bottom Up Dynamic Programming Over Intervals

Q.  What order to solve the sub-problems?

A.  Do shortest intervals first.

Running time.  O(n3).

RNA(b1,…,bn) {

for k = 5, 6, …, n-1

for i = 1, 2, …, n-k

j = i + k

Compute M[i, j]

return M[1, n]

}
using recurrence

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j
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Dynamic Programming Summary

Recipe.

Characterize structure of problem.

Recursively define value of optimal solution.

Compute value of optimal solution.

Construct optimal solution from computed information.

Dynamic programming techniques.

Linear sequence with binary choice:  weighted interval scheduling.

Linear sequence with multi-way choice:  segmented least squares.

Adding a new variable:  knapsack and shortest path

Adding a new set: all-pair shortest paths

All subproblems: sequence of matrix multiplications.

Multiple subproblems :  RNA secondary structure.

Top-down vs. bottom-up:  recursion vs. iteration



6.6  Sequence Alignment

Multiple subproblems

Computational biology: development and application of data-analytical and

theoretical methods, mathematical modelling and computational simulation

techniques to the study of biological, ecological, behavioral, and social systems.
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String Similarity

How similar are two strings?

ocurrance

occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
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Applications.

Basis for Unix diff.

Speech recognition.

Computational biology.

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

Gap penalty ; mismatch penalty pq.

Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

Edit Distance
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Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find 

alignment of minimum cost.

Def.  An alignment M is a set of ordered pairs xi-yj such that each item 

occurs in at most one pair and no crossings.

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.

Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

 

cost(M ) =  xi y j
(xi , y j )  M



mismatch

+ 
i : xi unmatched

 + 
j : y j  unmatched



gap

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6
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Sequence Alignment:  Problem Structure

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

Case 1:  OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

Case 2a:  OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

Case 2b:  OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

 

OPT (i, j) =

 

 

 
  

 

 
 
 

j if  i = 0

min  

 xi y j
+OPT (i −1, j −1)

 +OPT (i −1, j)

 +OPT (i, j −1)

 

 
 

 
 

otherwise

i if  j = 0
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Sequence Alignment:  Algorithm

Analysis.  (mn) time and space.

English words or sentences:  m, n   10.

Computational biology:  m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {

for i = 0 to m

M[i, 0] = i

for j = 0 to n

M[0, j] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

return M[m, n]

}



6.7  Sequence Alignment in Linear Space

Dynamic programming combined with divide-and-conquer
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Sequence Alignment:  Linear Space

Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.

Compute OPT(i, •) from OPT(i-1, •).

No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and 

O(mn) time.

Clever combination of divide-and-conquer and dynamic programming.

Inspired by idea of Savitch from complexity theory.
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Edit distance graph.

Let f(i, j) be shortest path from (0,0) to (i, j).

Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





  

 

xi y j
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Edit distance graph.

Let f(i, j) be shortest path from (0,0) to (i, j).

Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j



52

Edit distance graph.

Let g(i, j) be shortest path from (i, j) to (m, n).

Can compute by reversing the edge orientations and inverting the 

roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





  

 

xi y j
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Edit distance graph.

Let g(i, j) be shortest path from (i, j) to (m, n).

Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j
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Observation 1.  The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j). 

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). 

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q



56

Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Apply recursive calls sequentially and reuse the working space from one 

call to the next.

Sequence Alignment:  Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

q

n / 2

m-n
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Example:  match “mean” with “name”

gap: 2, mismatch: 1 or 3 (vowel with consonant) 
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length at most m and n. T(m, n) = O(mn log n).

Remark.  Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2).  In next slide, we save log n factor.
 

T (m, n)    2T (m, n /2)  +  O(mn)      T (m, n)  =  O(mn log n)
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length m and n. T(m, n) = O(mn).

Pf.  (by induction on n)

O(mn) time to compute f( •, n/2) and g ( •, n/2) and find index q.

T(q, n/2) + T(m - q, n/2) time for two recursive calls. 

Choose constant c so that:

Base cases: m = 2 or n = 2. 

Inductive hypothesis:  T(m, n)  2cmn.

Sequence Alignment:  Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(

=

+−+=

+−+

+−+

  

 

T(m, 2)  cm

T(2, n)  cn

T(m, n)  cmn + T(q, n /2) + T(m − q, n /2)
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Parsimony theory

Principle of parsimony 

• A theory should provide the simplest possible explanation for a phenomenon.

Occam’s razor

The simplest of two competing theories is to be preferred.

The KISS principle

Keep in Simple, Stupid!

Good theory

Exhibits an aesthetic quality, that a good theory is beautiful or natural.

Examples

Dijkstra, “Self-stabilizing systems in spite of distributed control”, Comm. 

of the ACM, 17 (11): 643–644, 1974.

Kleinberg, "Navigation in a small world”, Nature, 406 (6798): 845. 2000.
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Searching for the Simplest Solution!

House connections in a village: n houses are connected using cables and 

switches to form a tree, where interior nodes are switches. 

1. Find two houses that are the farthest apart in the connection, assuming 

each cable section has a different length. 

1. Suppose each household has an occupancy limit and each cable section has 

bandwidth limit. Links should support all possible simultaneous pairwise 

telephone conversations (unit bandwidth) between houses (i.e., hose model). 

What is the schedule of m (> n) persons to houses with the maximum 

elasticity for future grow (i.e., maximum uniform growth in occupancy)?

Example: n=5 and m=8


