
1

Chapter 4

Greedy
Algorithms



2

Greedy algorithms

Greedy approaches 

Seek to maximize the overall utility of some process by making the 
immediately optimal choice at each sub-stage of the process.

Greedy solutions

May solve some problems optimally, but not for many others.



3

Greedy Analysis Strategies

Greedy algorithm stays ahead (e.g. Interval Scheduling).  

Show that after each step of the greedy algorithm, its solution is at 
least as good as any other algorithm's. 

Structural (e.g. Interval Partition).

Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

Exchange argument (e.g. Scheduling to Minimize Lateness).  

Gradually transform any solution to the one found by the greedy 
algorithm without hurting its quality.

Other greedy algorithms.  Dijkstra* (for shortest path),  Prim (for 
minimum spanning tree), Huffman (for efficient coding), …



4.1  Interval Scheduling

Greed is good. Greed is right. Greed works. 
Greed clarifies, cuts through, and captures the 
essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)



5

Interval Scheduling

Interval scheduling.
! Job j starts at sj and finishes at fj.
! Two jobs compatible if they don't overlap.
! Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d



6

Interval Scheduling:  Greedy Algorithms

Greedy template.  Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

! [Earliest start time] Consider jobs in ascending order of sj.

! [Earliest finish time] Consider jobs in ascending order of fj.

! [Shortest interval] Consider jobs in ascending order of fj - sj.

! [Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.



7

Interval Scheduling:  Greedy Algorithms

Greedy template.  Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts



8

Greedy algorithm.  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the ones already taken.

Implementation.  O(n log n).
! Remember job j* that was added last to A.
! Job j is compatible with A if sj ³ fj*.

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

A ¬ f
for j = 1 to n {

if (job j compatible with A)
A ¬ A È {j}

}
return A  

set of jobs selected 

Interval Scheduling:  Greedy Algorithm



9

Interval Scheduling:  Analysis

Theorem.  Greedy algorithm is optimal.

Pf.  (by contradiction)
! Assume greedy is not optimal, and let's see what happens.
! Let i1, i2, ... ik denote set of jobs selected by greedy.
! Let j1, j2, ... jm  denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1



10

j1 j2 jr

i1 i2 ir ir+1

Interval Scheduling:  Analysis

Theorem.  Greedy algorithm is optimal.

Pf.  (by contradiction)
! Assume greedy is not optimal, and let's see what happens.
! Let i1, i2, ... ik denote set of jobs selected by greedy.
! Let j1, j2, ... jm  denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal, 
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1



Interval Scheduling: Extensions

Online: must make decisions as time proceeds, without knowledge of 
future inputs.

Weighted Interval Scheduling Problems: Each request has a different 
value. Dynamic programming solution.



4.1  Interval Partitioning



13

Interval Partitioning

Interval partitioning.
! Lecture j starts at sj and finishes at fj.
! Goal:  find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex:  This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4



14

Interval Partitioning

Interval partitioning.
! Lecture j starts at sj and finishes at fj.
! Goal:  find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex:  This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3



15

Interval Partitioning:  Lower Bound on Optimal Solution

Def.  The depth of a set of open intervals is the maximum number that 
contain any given time.

Key observation.  Number of classrooms needed  ³ depth.

Ex:  Depth of schedule below = 3  Þ schedule below is optimal.

Q.  Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

1

2

3



16

Interval Partitioning:  Greedy Algorithm

Greedy algorithm.  Consider lectures in increasing order of start time:  
assign lecture to any compatible classroom.

Implementation.  O(n log n).
! For each classroom k, maintain the finish time of the last job added.
! Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 £ s2 £ ... £ sn.
d ¬ 0

for j = 1 to n {
if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¬ d + 1

}    

number of allocated classrooms



17

Interval Partitioning:  Greedy Analysis

Observation.  Greedy algorithm never schedules two incompatible 
lectures in the same classroom.

Theorem.  Greedy algorithm is optimal.
Pf.  
! Let d = number of classrooms that the greedy algorithm allocates.
! Classroom d is opened because we needed to schedule a job, say j, 

that is incompatible with all d-1 other classrooms.
! These d jobs each end after sj.
! Since we sorted by start time, all these incompatibilities are caused 

by lectures that start no later than sj.
! Thus, we have d lectures overlapping at time sj + e.
! Key observation  Þ all schedules use ³ d classrooms.  ▪



4.2  Scheduling to Minimize Lateness



19

Scheduling to Minimizing Lateness

Minimizing lateness problem.
! Single resource processes one job at a time.
! Job j requires tj units of processing time and is due at time dj.
! If j starts at time sj, it finishes at time fj = sj + tj. 
! Lateness:  !j = max { 0,  fj - dj }.
! Goal:  schedule all jobs to minimize maximum lateness L = max !j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6



20

Minimizing Lateness:  Greedy Algorithms

Greedy template.  Consider jobs in some order. 

! [Shortest processing time first] Consider jobs in ascending order 
of processing time tj.

! [Earliest deadline first] Consider jobs in ascending order of 
deadline dj.

! [Smallest slack] Consider jobs in ascending order of slack dj - tj.



21

Greedy template.  Consider jobs in some order. 

! [Shortest processing time first] Consider jobs in ascending order 
of processing time tj.

! [Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness:  Greedy Algorithms



22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 £ d2 £ … £ dn

t ¬ 0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj ¬ t, fj ¬ t + tj
t ¬ t + tj

output intervals [sj, fj]

Minimizing Lateness:  Greedy Algorithm

Greedy algorithm.  Earliest deadline first.



23

Minimizing Lateness: No Idle Time

Observation.  There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12



24

Minimizing Lateness: Inversions

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j but j scheduled before i.

Observation.  Greedy schedule has no inversions.

Observation.  If a schedule (with no idle time) has an inversion, it has 
one with a pair of inverted jobs scheduled consecutively.

ijbefore swap

fi

inversion

[ as before, we assume jobs are numbered so that d1 £ d2 £ … £ dn ]



25

Minimizing Lateness: Inversions

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j but j scheduled before i.

Claim.  Swapping two consecutive, inverted jobs reduces the number of 
inversions by one and does not increase the max lateness.

Pf.  Let ! be the lateness before the swap, and let ! ' be it afterwards.
! ! 'k = !k for all k ¹ i, j
! ! 'i £ !i
! If job j is late:

ij

i j

before swap

after swap

!!

 

¢ "!j = ¢ f j - d j (definition)
= fi - d j ( j finishes at time fi )
£ fi - di (i < j)
£ " i (definition)

f'j

fi

inversion



26

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem.  Greedy schedule S is optimal.
Pf.  Define S* to be an optimal schedule that has the fewest number of 
inversions, and let's see what happens.
! Can assume S* has no idle time.
! If S* has no inversions, then S = S*.
! If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and 
strictly decreases the number of inversions

– this contradicts definition of S*  ▪



Minimizing Lateness : Extension

Each job has a different starting time, instead of one common starting 
time.

The earliest starting time is called release time.

Interval partition with different release time is hard (NP-hard).



General Job Scheduling

Job with precedence order: task precedence graphs

Jobs with communication: task communication graphs

Pipeline models: There are m jobs and n machines, with each job runs on 
these machines following a certain order

Flow shop:  in a common order by all jobs
Job shop:   in a particular order by its own
Open shop: in an arbitrary order

Manufactory assemble lines

Offloading ML code in edge computing:
a pipeline from mobile device to edge/cloud



29

A Bigger Picture: Computational Thinking

Computational thinking (CT) includes

• Problem abstraction and decomposition
• Heuristic reasoning
• Search strategies
• … 
• Other knowledge of computer science concepts like parallel     

processing, distributed algorithms, machine learning, and recursion

CT components: Data, Modeling, Problem Solving, and Systems

Defining Computational Thinking for Mathematics and Science 
Classrooms (northwestern.edu)

https://ccl.northwestern.edu/2015/Weintrop%20et%20al.%20-%202015%20-%20Defining%20Computational%20Thinking%20for%20Mathematics%20an.pdf


30

General Design and Proof Strategies

Proof by Contradiction

Proof by Induction 

Design and Proof by Mapping to a New Problem (e.g., Ant Lifetime)

Proof by Accounting Method (e.g., Group Size)

Design and Proof by a More General Problem (e.g., Shortest Paths) 

Easy Solution but Difficult Proof (e.g., Optimal Caching)

Difficult Problem but Easy Solution and Proof (e.g., Shortest Paths)



Ant Lifetime Problem

Comm. of ACM, March 2013

! Ants always march at 1 cm/sec in whichever direction they are facing, 
and reverse directions when they collide

! Ant X stays in the middle of 25 ants on a 1 meter-long stick
! How long must we wait before X has fallen off the stick? 

31



Ant Lifetime Problem: Solution

Solution: Introduce a new variable: a hat on each ant

Exchange hats when two ants collide

New problem: Lifetime of each hat (1-to-1 bijection between hat and ant)

32



33

Group Size Problem 

A group of students (n>1) is partitioned into k groups in 2021 and then is re-
partitioned into k+1 groups in 2022. (Each group has at least one student.)

Proof that there exist at least 2 students. Their 2022 group size is smaller 
than 2021 group size. 

E.g. for k=3

2021: (1, 3), (4, 5, 6, 10), (2, 7, 8, 9)

2022:  (1, 2), (7, 8), (4, 6, 9), (3, 5, 10) 

(Blue colored ones are now in smaller groups.)



34

Group Size Problem: Solution 

Proof by the accounting method and by contradiction 

• Assign $1 to each group, which is then equally divided among group members. 

• Check each student’s payment difference between 2022 and 2021.

• The total payment difference between 2022 and 2021 should be $1.



4.3 Optimal Caching



36

Optimal Offline Caching

Caching.
! Cache with capacity to store k items.
! Sequence of m item requests d1, d2, …, dm.
! Cache hit:  item already in cache when requested.
! Cache miss:  item not already in cache when requested:  must bring 

requested item into cache, and evict some existing item, if full.

Goal.  Eviction schedule that minimizes number of cache misses.

Ex:  k = 2, initial cache = ab,
requests:  a, b, c, b, c, a, a, b.

Optimal eviction schedule:  2 cache misses.

a b
a b
c b
c b
c b
a b

a
b
c
b
c
a

a ba
a bb

cacherequests

red = cache miss



37

Optimal Offline Caching:  Farthest-In-Future

Farthest-in-future.  Evict item in the cache that is not requested until 
farthest in the future.

Theorem.  [Bellady, 1960s] FF is optimal eviction schedule.
Pf.  Algorithm and theorem are intuitive

Proof is subtle: exchange argument by swapping decisions

a b

g a b c e d a b b a c d e a f a d e f g h ... 

current cache: c d e f

future queries:

cache miss eject this one



38

Reduced Eviction Schedules

Def.  A reduced schedule is a schedule that only inserts an item into 
the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one 
with no more cache misses.

a x

an unreduced schedule

c
a d c
a d b
a c b
a x b
a c b
a b c
a b c

a
c
d
a
b
c
a
a

a b

a reduced schedule

c
a b c
a d c
a d c
a d b
a c b
a c b
a c b

a
c
d
a
b
c
a
a

a b ca a b ca



39

Reduced Eviction Schedules

Claim.  Given any unreduced schedule S, can transform it into a reduced 
schedule S' with no more cache misses.
Pf.  (by induction on number of unreduced items)
! Suppose S brings d into the cache at time t, without a request.
! Let c be the item S evicts when it brings d into the cache.
! Case 1:  d evicted at time t', before next request for d.
! Case 2:  d requested at time t' before d is evicted.  ▪

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d  evicted at time t',
before next request

e

doesn't enter cache at requested 
time

Case 1 Case 2



40

Farthest-In-Future:  Analysis

Theorem.  FF is optimal eviction algorithm.
Pf.  (by induction on number or requests j)

Let S be reduced schedule that satisfies invariant through j requests. 
We produce S' that satisfies invariant after j+1 requests.
! Consider (j+1)st request d = dj+1.
! Since S and SFF have agreed up until now, they have the same cache 

contents before request j+1.
! Case 1:  (d is already in the cache).  S' = S satisfies invariant.
! Case 2: (d is not in the cache and S and SFF evict the same element).

S' = S satisfies invariant.

Invariant:  There exists an optimal reduced schedule S that makes 
the same eviction schedule as SFF through the first j+1 requests.



41

j 

Farthest-In-Future:  Analysis

Pf.  (continued)
! Case 3:  (d is not in the cache; SFF evicts e; S evicts f ¹ e).

– begin construction of S' from S by evicting e instead of f

– now S' agrees with SFF on first j+1 requests; we show that having 
element f in cache is no worse than having element e

same f same fee

S S'

j same d same fde

S S'
j+1



42

Farthest-In-Future:  Analysis

Let j' be the first time after j+1 that S and S' take a different action, 
and let g be item requested at time j'.

! Case 3a:  g = e.  Can't happen with Farthest-In-Future since there 
must be a request for f before e.

! Case 3b:  g = f.  Element f can't be in cache of S, so let e' be the 
element that S evicts.

– if e' = e, S' accesses f from cache; now S and S' have same cache
– if e' ¹ e, S' evicts e' and brings e into the cache; now S and S' 

have the same cache

same e same f

S S'

j'

Note:  S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFF through step j+1

must involve e or f (or both)



43

Farthest-In-Future:  Analysis

Let j' be the first time after j+1 that S and S' take a different action, 
and let g be item requested at time j'.

! Case 3c:  g ¹ e, f.  S must evict e.
Make S' evict f; now S and S' have the same cache.  ▪

same g same g

S S'

j'

otherwise S' would take the same action

same e same f

S S'

j'

must involve e or f (or both)



44

Caching Perspective

Online vs. offline algorithms.
! Offline:  full sequence of requests is known a priori.
! Online (reality):  requests are not known in advance.
! Caching is among most fundamental online problems in CS.

LIFO.  Evict page brought in most recently.
LRU.  Evict page whose most recent access was earliest.

Theorem.  FF is optimal offline eviction algorithm.
! Provides basis for understanding and analyzing online algorithms.
! LRU is k-competitive, with a better version through random caching
! LIFO is arbitrarily bad.

(Competitive analysis for online algorithms, compared to optimal     
offline algorithms.)

FF with direction of time reversed!



4.4  Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house



46

Shortest Path Problem

Shortest path network.
! Directed graph G = (V, E).
! Source s, destination t.
! Length !e = length of edge e.

Shortest path problem:  find shortest directed path from s to t.

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 50.

cost of path = sum of edge costs in path

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6



47

Dijkstra's Algorithm

Dijkstra's algorithm.
! Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u.
! Initialize S = { s }, d(s) = 0.
! Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = p(v).

,)(min)(
:),( eSuvue

udv !+=
Î=

p

s

v

u
d(u)

S

!e

shortest path to some u in explored 
part, followed by a single edge (u, v)



48

Dijkstra's Algorithm

Dijkstra's algorithm.
! Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u.
! Initialize S = { s }, d(s) = 0.
! Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = p(v).

,)(min)(
:),( eSuvue

udv !+=
Î=

p

s

v

u
d(u)

shortest path to some u in explored 
part, followed by a single edge (u, v)

S

!e



49

Dijkstra's Algorithm:  Proof of Correctness

Invariant.  For each node u Î S, d(u) is the length of the shortest s-u path.
Pf.  (by induction on |S|)
Base case: |S| = 1 is trivial.
Inductive hypothesis: Assume true for |S| = k  ³ 1.
! Let v be next node added to S, and let u-v be the chosen edge.
! The shortest s-u path plus (u, v) is an s-v path of length p(v).
! Consider any s-v path P. We'll see that it's no shorter than p(v).
! Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.
! P is already too long as soon as it leaves S.

! (P) ³ ! (P') + ! (x,y) ³ d(x) + ! (x, y) ³ p(y)  ³ p(v)

nonnegative
weights

inductive
hypothesis

defn of p(y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'



50

Dijkstra's Algorithm:  Implementation

For each unexplored node, explicitly maintain 

! Next node to explore = node with minimum p(v).
! When exploring v, for each incident edge e = (v, w), update

Efficient implementation.  Maintain a priority queue of unexplored 
nodes, prioritized by p(v).

†  Individual ops are amortized bounds

PQ Operation

Insert
ExtractMin
ChangeKey

Binary heap

log n
log n
log n

Fib heap †

1
log n

1

Array

n
n
1

IsEmpty 1 11

Priority Queue

Total m log n m + n log nn2

Dijkstra

n
n
m
n

d-way Heap

d log d n
d log d n
log d n

1
m log m/n n

!!  

 

p (v) = min
e = (u,v) : uÎ S

d (u) + " e  .

!!

 

p (w) = min { p (w),  p (v)+ " e }.



Is Data Structure Important in Algorithm Design?

Yes and No

No:  for many problems.

Yes, for some problems for a better solution and implementation

1. Maze problem
2. Top-k selection (e.g., k is Θ (log n))
3. Info. gathering in a distributed system with an unknown topology

What are the suitable data structures for the problems above?

51



52

Shortest Path Problem: More Discussion

Bellman-Ford algorithm
• Iterative algorithm that converges to the shortest distance for 

each node.  Works with negative edges as well.

Dijkstra’s algorithm for improvement
• Start from both ends (source and destination). 
• Execute both runs alternatively. 
• Stop when a common exploded node is found.

Practicality
• Dijkstra vs. Bellman-Ford  (Internet OSPF vs. Internet ISIS)

Similar algorithm (that gradually  “grows” a set from the source)
.  Prim’s solution for minimum spanning tree (MST).
.  General framework: 

Group nodes: black (explored), gray (neighbors of black), and white. 
Grows the black set until the white set is empty.



Practical Application: Coin Changing



54

Coin Changing

Goal.  Given currency denominations: 1, 5, 10, 25, 100, devise a method 
to pay amount to customer using fewest number of coins.

Ex:  34¢.

Cashier's algorithm.  At each iteration, add coin of the largest value 
that does not take us past the amount to be paid.

Ex:  $2.89.



55

Coin Changing:  Greedy Algorithm

Cashier's algorithm.  At each iteration, add coin of the largest value 
that does not take us past the amount to be paid.

Q.  Is cashier's algorithm optimal?

Sort coins denominations by value: c1 < c2 < … < cn.

S ¬ f
while (x ¹ 0) {

let k be largest integer such that ck £ x
if (k = 0)

return "no solution found"
x ¬ x - ck
S ¬ S È {k}

}
return S

coins selected 



56

Coin-Changing:  Analysis of Greedy Algorithm

Theorem.  Greed is optimal for U.S. coinage:  1, 5, 10, 25, 100.
Pf. (by induction on x)
! Consider optimal way to change ck £ x < ck+1 :  greedy takes coin k.
! We claim that any optimal solution must also take coin k.

– if not, it needs enough coins of type c1, …, ck-1 to add up to x
– table below indicates no optimal solution can do this (ck ).

! Problem reduces to coin-changing x - ck cents, which, by induction, is 
optimally solved by greedy algorithm.  

1

ck

10

25

100

P £ 4

All optimal solutions
must satisfy

N + D £ 2

Q £ 3

5 N £ 1

no limit

k

1

3

4

5

2

-

Max value of coins
1, 2, …, k-1 in any OPT

4 + 5 = 9

20 + 4 = 24

4

75 + 24 = 99



57

Coin-Changing:  Analysis of Greedy Algorithm

Observation.  Greedy algorithm is sub-optimal for US postal 
denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample.  140¢.
! Greedy:  100, 34, 1, 1, 1, 1, 1, 1.
! Optimal:  70, 70.



58

Design Coin Denominations for Minimum Coin-Changing

Observation on changes  1: 1 (P), 2: 1+1, 3: 1+1+1, 4: 1+1+1+1, 5: 1 (N)
6: 1 (N)+1, 7: 1 (N) +1+1, 8: 1 (N)+1+1+1, 9: 1 (N)+1+1+1+1

A total of 25 coins is used for changes from 1 to 9, assuming each is equal. 

Is the US system the best to cover from 1 to 9 for minimum changes?

• What is the best denominations using two coins to cover from 1 to 9?
• What is the best denominations using three coins to cover from 1 to 9?

Re-exam the whole US currency system (its denominations).

• Current system: 0.01, 0.05, 0.1, 0.25, 0.5, 1, 10, 20, 100
• It has flaws and why. How did it happen (?) (hint: use your imagination) 
• Modular design: consistent changing rules for 0.1, 1, 10, and 100.



Some reflections

Greedy algorithm

• There is a local decision rule that one can use to construct optimal 
solutions.

• Usually, it follows a sequence, e.g., interval schedule and Dijkstra’s 
shortest path.

Local algorithm

.   Local decision with no sequential propagation.

.   Social network connectivity (Wu and Li, 1999):

A person can withdraw from a connected social network if 
all his/her friends are  pair-wise (directed) connected 
without causing network disconnection.

59



60

Edsger W. Dijkstra

The question of whether computers can think is like the 
question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple 
on the surface of our culture.  In their capacity as 
intellectual challenge, they are without precedent in the 
cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, 
therefore, be regarded as a criminal offence. 

APL is a mistake, carried through to perfection. It is the 
language of the future for the programming techniques 
of the past:  it creates a new generation of coding bums.


