Chapter 3
Graphs

F \ Algunh Jesi

JON KLEINBERG - EVA TARDOS

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. 6 = (V, E)
« V = nodes.
. E = edges between pairs of nodes.
« Captures pairwise relationship between objects.
. Graph size parameters: n= |V|, m = |E|.

3] &
‘ V={1,2,3,45,6,7.8}
a'e E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6 }
GG O

m=11
(&)

Some Graph Applications

World Wide Web

Web graph.
- Node: web page.
. Edge: hyperlink from one page to another.

cnn.com

netscape.com <« hovelkeom—— cnnsi.com

timewarner.com —

hbo.com «———

sorpranos.com —

9-11 Terrorist Network

u
Abu Zubeida
|
Jean-Marc Grandwisir -
Nizar Trabelsi

[
Abu Walid

Social network graph. K sar

= Node: people. S s L e

. Edge: relationship il . ol
between two people.

|
Mohamed Bensakhria Tarek Maaroufi

L -
Zacarias Moussaoui David Courtaillier

| N
Lased Ben Heni Imad Eddin Barakat Yarkas

»
Seifallah ben Hassine B Fhaht AA #11 - Crash Sy "
M Flight AA #77 - Crashed into Pentagon
a W Flight UA #93 - Crashed in Pennsylvania
Essid Sami Ben Khemais # Flight UA #175 - Crashed into WTC South
W Other Associates of Hijackers

=)
Mohammed Belfas
Copynght © 2001, Vakas Krets

L
Fahid al Shakri

o
Abdelghani Mzoudi .

|} n u
Madjid Sahoune Agus Budiman Mounir El Motassadeq

=
Ahmed Khalil Ibrahim Samir Al-Ani

-
Samir Kishk [n =
Mustafa Ahmed al-Hisawi Zakariya Essabar Mamduh Mahmud Salim
- =
Mohzmed Atta " Mamoun Darkazanli
] Said Bahaji
Fayez Ahmed -
Y Ziad Jarrah
i i =
AV AlShehr) Marwan Al-Shehhi
o
Waleed Alshehri
3] L} a
Abdul Aziz Al-Omari* Lotfi Raissi Bandar Alhaz mi
. » » u
™ Satam Sugami Ahmed Al Haznawi " 7
Mohand Alshehrit Hani Hanjour Rayed Mohammed Abdullah
|]
- Salem Alhazmi*
Ahmed Alghamdi u
ne angm = Faisal Al Salmi
= - Majed Moged
= Nabil al- Marabh Hamza Alghamdi-_ g
Raed Hijazi Nawaf Alhaz mi
- -
Saeed Alghamdi* Khalid Al-Mihdhar
| |
Ahmed Alnami

g
B Osama Awadallah
= Abdussattar Shaikh
Mohamed Abdi

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

Food web graph.
» Node = species.
. Edge = from prey to predator.

R ole y gertese
fox ‘ _. s
blue-gill fish

northemn copperbelly

water snake #

Sy —
T

shrew
spotted salamander

LoRibbt'

£
el
PRI

leopard frog

algae (magnified)

cattails

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Ay, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n?.
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ®(n?) time.

G e 12345678
1101100000

‘ 2110111000
a a 3]1100101 1
' 4101011000
‘ 5101110100
° 9 @ 6/00001000
710 010000 1

° 8100100010

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

. Two representations of each edge.
« Space proportional to m + n.

degree = number of neighbors of u

/
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ®(m + n) time.

(1) (D) 1

A 4 A4 A\ 4 A4
w (6] N w w
®
(&)}
®
~
[)

(2)—(2)
0‘!)

wwmmﬂ.—-._nm

o N o0 O b w0N

= Other data structures
- Stack (open only at the front, LIFO)
- Queue (open at both front and rear)

- Heap (special type of tree with the max heap at the root)

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
V1, V2, ..., Vk-1, Vk With the property that each consecutive pair v;, vi.1 is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. Anundirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.

10

Cycles

Def. A cycle is a path vy, va, ..., Vi1, Vk in which vy = vy, k> 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

1

Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

» G is connected.

« G does not contain a cycle.

« G has n-1 edges.

12

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

° e a @ e e child of v

a tree the same tree, rooted at 1

13

3.2 Graph Traversal

Connectivity

s-1 connectivity problem. Given two node s and t, is there a path
between s and 1?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and 1?

Applications. i 2
e‘

. Friendster. (2)
« Maze traversal. o‘! o)
- Kevin Bacon number (of an actor).
- originally from Paul Erdés number (o)
- Six degrees of separation: SixDegrees.org
. Fewest number of hops in a communication network.

15

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

/ /
. s L — L — .o Lo
BFS algorithm. . ‘ :

= Lo= {) }

- Ly = all neighbors of Lo.

« L2 = all nodes that do not belong to Lo or L;, and that have an edge
to a node in L.

« Li.1 = all nodes that do not belong to an earlier layer, and that have
an edge to a node in L;.

-
—_—

Theorem. For each i, L; consists of all nodes at distance exactly i
from s. There is a path from s to t iff t appears in some layer.

16

Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

17

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

« Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u, v)
- total time processing edges is X ,.ydeg(u) = 2m =

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

18

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containingnode 1={1,2,3,4,5,6,7,8}.

19

Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R
Add v to R

Endwhile .
it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

. BFS = explore in order of distance from s.
. DFS =explore in a different way.

20

3.4 Testing Bipartiteness

Bipartite Graphs

Def. Anundirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.

. Stable marriage: men = red, women = blue.
« Scheduling: machines = red, jobs = blue.

a bipartite graph

22

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
- Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)
« Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

a bipartite graph 6 another drawing of G

23

An Obstruction to Bipartiteness

Lemma. If agraph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)

24

Bipartite Graphs

Lemma. Let G be a connected graph, and let Lo, ..., Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

~ O @, O
Ll L2 L3 L1 L2 L3
Case (i) Case (i)

25

Bipartite Graphs

Lemma. Let G be a connected graph, and let Lo, ..., Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
« Suppose no edge joins two nodes in adjacent layers.
« By previous lemma, this implies all edges join nodes on same level.
« Bipartition: red = nodes on odd levels, blue = nodes on even levels.

L1 L2 L3

Case (i)

26

Bipartite Graphs

Lemma. Let G be a connected graph, and let Lo, ..., Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
- Suppose (x,y) is an edge with x, y in same level L;.
« Let z=lca(x, y) = lowest common ancestor.
« Let L; be level containing z.
. Consider cycle that takes edge from x toy,
then path from y to z, then path from z to x.

« Iftslengthis 1 + (j-i) + (j-i), whichis odd.
e

(x,y) path from path from
y to z Z to x

27

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

«— b5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)

28

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. G = (V, E)
. Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
. Directedness of graph is crucial.
« Modern web search engines exploit hyperlink structure to rank web
pages by importance.

30

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

31

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.

Pf. < Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path. =

Ny

ok if paths overlap

32

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.

Strong Connectivity: Algorithm

Pick any node s.

Run BFS from s in 6. reverse orientation of every edge in 6

Run BFS from s in G"ev./

Return true iff all nodes reached in both BFS executions.
Correctness follows immediately from previous lemma. =«

N\ N\

strongly connected not strongly connected

33

3.6 DAGs and Topological Ordering

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.
Ex. Precedence constraints: edge (v, v;) means v; must precede v;.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as vy, v, ..., v, So that for every edge (v;, v;) we have i < j.

a DAG a topological ordering

35

Precedence Constraints

Precedence constraints. Edge (v;, v;) means task v; must occur before v;.

Applications.
. Course prerequisite graph: course v; must be taken before v;.
. Compilation: module v; must be compiled before v;. Pipeline of
computing jobs: output of job v; needed to determine input of job v;.

36

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order vy, ..., v, and that G also has a
directed cycle C. Let's see what happens.

Let vi be the lowest-indexed node in C, and let v; be the node just
before v;; thus (v, vi) is an edge.

By our choice of i, we have i < j.

On the other hand, since (vj, v;) is an edge and vy, ..., v, is a
topological order, we must have j < i, a contradiction. =

the directed cycle C

@OM ¢ %DO@

the supposed topological order: v, .

37

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

38

Directed Acyclic Graphs

Lemma. If GisaDAG, then G has a node with no incoming edges.

Pf. (by contradiction)

Suppose that G is a DAG and every node has at least one incoming
edge. Let's see what happens.

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between
successive visits tow. Cisacycle. =

39

Directed Acyclic Graphs

Lemma. If GisaDAG, then G has a topological ordering.

Pf. (by induction on n) D>

Base case: trueif n=1.

Given DAG on n > 1 nodes, find a node v with no incoming edges.

G - {v}isaDAG, since deleting v cannot create cycles.

By inductive hypothesis, G - { v } has a topological ordering.

Place v first in topological ordering; then append nodes of G - { v }
in topological order. This is valid since v has ho incoming edges.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G -

Recursively compute a topological ordering of G—{v} 0
and append this order after v CDi:*

DAG

40

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

« Maintain the following information:
- count [w] = remaining number of incoming edges
- S = set of remaining nodes with no incoming edges

. Initialization: O(m + n) via single scan through graph.

. Update: to delete v
- remove v from S
- decrement count [w] for all edges from v to w, and add w to S if ¢

count [w] hits O

- this is O(1) per edge =«

41

