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3.1 Basic Definitions and Applications




Undirected Graphs

Undirected graph. 6 = (V, E)
« V = nodes.
. E = edges between pairs of nodes.
« Captures pairwise relationship between objects.
. Graph size parameters: n= |V|, m = |E|.
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Some Graph Applications




World Wide Web

Web graph.
- Node: web page.
. Edge: hyperlink from one page to another.
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9-11 Terrorist Network
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Ecological Food Web

Food web graph.
» Node = species.
. Edge = from prey to predator.
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Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Ay, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n?.
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ®(n?) time.
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Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

. Two representations of each edge.
« Space proportional to m + n.

degree = number of neighbors of u

/
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ®(m + n) time.
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= Other data structures
- Stack (open only at the front, LIFO)
- Queue (open at both front and rear)

- Heap (special type of tree with the max heap at the root)



Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
V1, V2, ..., Vk-1, Vk With the property that each consecutive pair v;, vi.1 is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. Anundirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.
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Cycles

Def. A cycle is a path vy, va, ..., Vi1, Vk in which vy = vy, k> 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1
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Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

» G is connected.

« G does not contain a cycle.

« G has n-1 edges.
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Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

° e a @ e e child of v

a tree the same tree, rooted at 1
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3.2 Graph Traversal




Connectivity

s-1 connectivity problem. Given two node s and t, is there a path
between s and 1?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and 1?

Applications. i 2
e‘

. Friendster. (2)
« Maze traversal. o‘! o)
- Kevin Bacon number (of an actor).
- originally from Paul Erdés number (o)
- Six degrees of separation: SixDegrees.org
. Fewest number of hops in a communication network.
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Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

/ /
. s L — L — .o Lo
BFS algorithm. . ‘ :

= Lo= { ) }

- Ly = all neighbors of Lo.

« L2 = all nodes that do not belong to Lo or L;, and that have an edge
to a node in L.

« Li.1 = all nodes that do not belong to an earlier layer, and that have
an edge to a node in L;.

-
—_—

Theorem. For each i, L; consists of all nodes at distance exactly i
from s. There is a path from s to t iff t appears in some layer.
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Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.
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Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

« Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u, v)
- total time processing edges is X ,.ydeg(u) = 2m =

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)
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Connected Component

Connected component. Find all nodes reachable from s.

Connected component containingnode 1={1,2,3,4,5,6,7,8}.
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Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R
Add v to R

Endwhile .
it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

. BFS = explore in order of distance from s.
. DFS =explore in a different way.
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3.4 Testing Bipartiteness




Bipartite Graphs

Def. Anundirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.

. Stable marriage: men = red, women = blue.
« Scheduling: machines = red, jobs = blue.

a bipartite graph

22



Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
- Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)
« Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

a bipartite graph 6 another drawing of G
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An Obstruction to Bipartiteness

Lemma. If agraph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)
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Bipartite Graphs

Lemma. Let G be a connected graph, and let Lo, ..., Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

~ O @, O
Ll L2 L3 L1 L2 L3
Case (i) Case (i)
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Bipartite Graphs

Lemma. Let G be a connected graph, and let Lo, ..., Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
« Suppose no edge joins two nodes in adjacent layers.
« By previous lemma, this implies all edges join nodes on same level.
« Bipartition: red = nodes on odd levels, blue = nodes on even levels.

L1 L2 L3

Case (i)
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Bipartite Graphs

Lemma. Let G be a connected graph, and let Lo, ..., Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
- Suppose (x,y) is an edge with x, y in same level L;.
« Let z=lca(x, y) = lowest common ancestor.
« Let L; be level containing z.
. Consider cycle that takes edge from x toy,
then path from y to z, then path from z to x.

« Iftslengthis 1 + (j-i) + (j-i), whichis odd.
e

(x,y) path from path from
y to z Z to x

27



Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

«— b5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)
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3.5 Connectivity in Directed Graphs




Directed Graphs

Directed graph. G = (V, E)
. Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
. Directedness of graph is crucial.
« Modern web search engines exploit hyperlink structure to rank web
pages by importance.
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Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.
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Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.

Pf. < Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path. =

Ny

ok if paths overlap
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Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.

Strong Connectivity: Algorithm

Pick any node s.

Run BFS from s in 6. reverse orientation of every edge in 6

Run BFS from s in G"ev./

Return true iff all nodes reached in both BFS executions.
Correctness follows immediately from previous lemma. =«

N\ N\

strongly connected not strongly connected
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3.6 DAGs and Topological Ordering




Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.
Ex. Precedence constraints: edge (v, v;) means v; must precede v;.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as vy, v, ..., v, So that for every edge (v;, v;) we have i < j.

a DAG a topological ordering
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Precedence Constraints

Precedence constraints. Edge (v;, v;) means task v; must occur before v;.

Applications.
. Course prerequisite graph: course v; must be taken before v;.
. Compilation: module v; must be compiled before v;. Pipeline of
computing jobs: output of job v; needed to determine input of job v;.
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Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order vy, ..., v, and that G also has a
directed cycle C. Let's see what happens.

Let vi be the lowest-indexed node in C, and let v; be the node just
before v;; thus (v, vi) is an edge.

By our choice of i, we have i < j.

On the other hand, since (vj, v;) is an edge and vy, ..., v, is a
topological order, we must have j < i, a contradiction. =

the directed cycle C

@OM ¢ %DO@

the supposed topological order: v, .
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Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
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Directed Acyclic Graphs

Lemma. If GisaDAG, then G has a node with no incoming edges.

Pf. (by contradiction)

Suppose that G is a DAG and every node has at least one incoming
edge. Let's see what happens.

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between
successive visits tow. Cisacycle. =
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Directed Acyclic Graphs

Lemma. If GisaDAG, then G has a topological ordering.

Pf. (by induction on n) D>

Base case: trueif n=1.

Given DAG on n > 1 nodes, find a node v with no incoming edges.

G - {v}isaDAG, since deleting v cannot create cycles.

By inductive hypothesis, G - { v } has a topological ordering.

Place v first in topological ordering; then append nodes of G - { v }
in topological order. This is valid since v has ho incoming edges.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G -

Recursively compute a topological ordering of G—{v} 0
and append this order after v CDi:*

DAG
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Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

« Maintain the following information:
- count [w] = remaining number of incoming edges
- S = set of remaining nodes with no incoming edges

. Initialization: O(m + n) via single scan through graph.

. Update: to delete v
- remove v from S
- decrement count [w] for all edges from v to w, and add w to S if ¢

count [w] hits O

- this is O(1) per edge =«
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