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Power of Video

• Deliver much more information

• Various applications
▫ E.g. Video calling and video conference



Threats of DeepFakes

• Videos are usually assumed to be true

• High-quality fake facial videos using deep learning (even in real 
time)

Face2Face: Real-time Face Capture and 
Reenactment of RGB Videos (CVPR 2016 Oral)



Fake Facial Video Detection

• Many fake facial video detection systems have been proposed 
based on deep learning

Real or Fake



Fake Facial Video Detection

• However, they fail to answer two questions

▫ Generality: Can their detection systems be generally used to detect all 
types of fake facial videos?

▫ Cost: Is there any low-cost detection scheme?

Real or Fake



System Overview

• Utilizing the face reflected light

▫ The screen light can be reflected by the face

▫ The reflected light can be captured by the webcam

▫ The normal user can change the luminance of the screen light by 
changing the area of light metering 



System Overview

• Goal: detect the liveness of the face in the video by measuring the 
correlation between luminance signals of the screen light and face-
reflected light



Luminance Extraction

• Extract relative luminance information of the screen light

▫ Compress each frame of the screen into a single pixel

▫ Use the luminance value of the compressed pixel to represent the 
overall luminance of the transmitted video

▫ The luminance of a pixel is defined as



Luminance Extraction

• Not all facial parts can be used to measure luminance changes.

• We find that the lower part of the nasal bridge has the most stable 
images and hard to be occluded in most cases



Preprocessing

• Raw luminance signal contains noise

▫ Object movement in the scene

▫ Inaccurate face localization can lead to 
jittering in the interested area,



Feature extraction

• Luminance change behavior

▫ For any significant luminance change in one signal, we can always find 
a matched luminance change in another one.

▫ We define two behavior similarity metrics 𝑧1 and 𝑧2

Num. of luminance 
changes in the screen light

Num. of matched 
luminance changes



Feature extraction

• Luminance change trend

▫ Evaluate the correlation of their trends 

▫ Reduce the impact of network delay

 Average time difference between each pair of matched luminance change

▫ Each signal is cut into two segments with equal length

▫ Measure correlation using Pearson correlation coefficient for each pair 
of segments

 Use the smaller one of them as the third feature

▫ Use the maximum dynamic time warping (DTW) distance (expressed 
with z4) between each pair of segments as the fourth feature



Fake Facial Video Detection

• Detection for a single video clip

▫ Build with good classification performance using only the data of a 
limited number of legitimate users.

▫ Local outlier factor (LOF) model



Evaluation

• Testbed

▫ Screen: Dell 27-inch LED monitor with 85% brightness

▫ Webcam: The front camera of Google Nexus 6 smartphone

▫ Fake facial video: ICface

 Generating the most visually convincing results of any open-source methods

▫ 10 volunteers (four females and six males)

▫ Each facial video is 15 seconds in length

▫ Data processing: desktop computer with Intel(R) i7-8700 @ 3.2 GHz 
CPU and 32 GB of RAM



Overall Performance

• An average true acceptance rate of 92.5% when the classifier is 
trained using own data.

• Achieve an average true acceptance rate of 92.8% with other’s 
training data

• Reject attackers with average accuracy of 94.4%.



Impact of Decision Threshold

• When the decision threshold is between 2.8 and 3, our system can 
provide an equal error rate of about 5.5%.



Impact of Screen Size

• Screen size has a significant impact on the performance



Conclusion

• We show that the face reflected light can be leveraged to detect 
fake facial video with low cost and high generality.

• Our system only requires a limited number of training instances 
from the legitimate user and does not need to collect data from 
attackers.

• We develop a prototype and conduct comprehensive evaluations. 
Experimental results show that our system can provide an average 
true acceptance rate of at least 92.5% for legitimate users and 
reject face reenactment attackers with mean accuracy of at least 
94.4% for each detection
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