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Abstract—Considering the heterogeneous subscriptions of the
subscribers in the content-based publish/subscribe (pub/sub)
system, the subscription aggregation technique is used to optimize
the system performance, e.g., reducing the routing table, simplify-
ing the matching procedure. However, introducing this technique
also has disadvantages. If some subscribers leave the network, the
brokers which aggregate subscriptions should re-configure the
subscription aggregation strategy with its descendants. During
this period false-positive publications, which are no longer
needed by subscribers, are still propagated into the network.
Therefore, it becomes paramount to examine the issue of how
to conserve network resources through subscription aggregation,
while simultaneously minimizing the false positive publication
propagation. In this paper, we first prove the above problem is
NP-hard. Then, we provide the dynamic programming approach
when the re-configuration delay can be regarded as constant
time. In the general case, we propose a greedy algorithm,
and the corresponding performance bound is analyzed. Finally,
we propose an overlay construction scheme to further fit the
subscription aggregation. Extensive experimental results show
that proposed algorithms achieve a good performance.

Index Terms—publish/subscribe (pub/sub) system, subscription
aggregation, content dissemination.

I. INTRODUCTION

The publish/subscribe (pub/sub) is an important content
dissemination paradigm for building large-scale distributed ap-
plications, such as news distribution, service discovery, stock
exchange, electronic auctions, network monitoring, environ-
mental monitoring and others. The large-scale pub/sub systems
are increasingly common in industry, economic and our daily
life. For example, Google’s Google Cloud Pub/Sub systems
[1], Microsoft’s Biztalk server [2] and Yahoo’s Message
Broker [3]; Retailers such as WalMart and Target exchange
supply chain information using the Global Data Synchroniza-
tion Network (GDSN) pub/sub network [4]; the exponential
growth of social networks, such as Twitter, Rich Site Summary
(RSS) feeds, and music subscriptions, such as Spotify [5],
further demonstrate the need for increasing the scalability
expectations of these systems by using pub/sub systems.

To save the system resource of the content-based pub/sub
system [6, 7], i.e., reducing the bandwidth consumption, rout-
ing tables, and accelerating the routing decisions, this paper
considers the subscription aggregation technique. The sub-
scription aggregation technique exploits the similarity among
subscriptions and takes advantage of the property that a
router need not index a specific subscription when there is a
more general subscription [8]. That is, considering a content-
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Fig. 1. The illustration of the subscription aggregation problem, where the
range in the bracket is the subscription range of each subscriber.

based router with a general subscription S and a set of more
specific subscriptions, {S1, S2, · · · , Sk

}, and S ◆ [k

i=1Si

,
the subscription aggregation will only forward S instead of
forwarding the {S1, S2, · · · , Sk

}.
However, the subscription aggregation technique has its

costs in a dynamic network, which is the situation in reality.
When the subscription, S

i

, is removed at runtime, it becomes
necessary to replace S with the more precise, but also more
numerous, covered subscriptions. {S1, S2, · · · , Sk

}. During
the re-configuration, false-positive publications, i.e., no sub-
scribers subscribe to them any more, are still propagated, and
waste the network resource. This is the cost of the subscription
aggregation. It is easy to see the huge cost when one considers
the millions of data generated in the Twitter, RSS feeds.

An illustration of the network model is shown in Fig. 1.
There exist three subscribers, s1, s2, s3, and one publisher.
Each subscriber has a subscription range, which is denoted
by a pair of numbers within the bracket. The subscriptions
can be aggregated to save the network resource. In Fig. 1,
the subscriptions [1, 4] and [2, 5] are aggregated at broker
b2, so that broker b2 will further forward [1, 5] rather than
{[1, 4], [2, 5]}. We might not aggregate [1, 4] and [5, 9] at
broker b1. The reason is that though it can save the network
resource, once a subscriber leaves, the possible false-positive
publications might be large.

The objective of this paper is to reduce the network resource
consumption by using the subscription aggregation technique,
meanwhile the false-positive publications can be minimized.
Specifically, there are two problems: (1) Given the subscription
propagation tree, the overlay structure, what is the optimal



strategy, so that we can minimize the false-positive publica-
tions, while still saving a predetermined amount of system
resources? (2) Given the network topology, how to select a
good overlay structure so that we can minimize the false-
positive publications, while the system resource consumption
can be saved into a pre-determined amount.

The question of how to trade-off the benefit and cost of
the subscription aggregation technique is non-trivial. In this
paper, we prove the proposed two problems are NP-hard.
Then, we start with the situation, where the re-configuration
delay can be regarded as constant time. In this case, we solve
the problem by using the dynamic programming approach.
After that, we release the assumption of the constant re-
configuration delay and propose a greedy algorithm. The
corresponding performance bound is analyzed. Finally, we
propose an overlay construction scheme to further reduce the
false-positive publication propagation.

The contributions of this paper are threefold:
• We consider the subscription aggregation to reduce the

network resource in the pub/sub system, as well as the
corresponding cost.

• We propose a dynamic programming approach, when the
subscription re-configuration takes constant time. Then,
we release this assumption and propose a greedy al-
gorithm, which satisfies the sub-modularity. The corre-
sponding performance bound is further analyzed.

• We propose an overlay construction scheme which con-
siders both the subscription range and the cost during the
subscription aggregation.

The remainder of the paper is organized as follows. The related
works are in Section II. The network model and problem
formulation are introduced in Section III. Then, when the re-
configuration can be regarded as constant time, an approach is
provided in Sections IV. A greedy approach in a more general
case is presented in Section V. The evaluation and results are
shown in Section VI. We conclude the paper in Section VII.
A proof is provided in the Appendix.

II. RELATED WORKS

There are a number of works on the pub/sub system design
[8–10]. Some examples are Gryphon [6], Cobra [7]. In the
following, we will briefly summarize the techniques and
challenges in the content-based pub/sub systems.

Subscription optimization: Aggregating subscriptions in a
content-based network has been implemented in many pub-
lish/subscribe systems [11]. The most simple technique is
the covering optimization. The covering relationship between
filters can be depicted as: A filter F covers a filter G denoted
by F ◆ G, Then, we can remove the filter G to remove redun-
dant subscriptions from the network, maintain compact routing
tables and reduce network traffic. The merging optimization
goes a little bit further. Formally, a filter F is a merger of
set of filters F1, · · · , Fn

, if F ◆ [n

i=1Fi

. The publication
set of the merger can be exactly equal to the union of the
publication sets of the original filters or a little bit larger.
Merging subscriptions can reduce the number of subscriptions,
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Fig. 2. An example of the subscription re-configuration, where broker b2
receives the subscription release message. Then it requests its descendants to
re-send subscriptions. In this period, the false-positive publications generate.

but may allow publications to be forwarded that do not match
any of the original subscriptions. In order to apply merging
technique, it must be possible to efficiently compute mergers
and if imperfect merging is performed, the number of the
unwanted publications must be small.

Subscription releasing: In the PADRES system [12], two
variants of the covering optimization are implemented. The
first one is called active covering. With active covering, when
a subscription S

0 arrives at a broker after a subscription S

that covers S

0, the broker does not forward S. Moreover, if
S

0 arrives before S, S is forwarded, and also brokers that
see both S

0 and S delete S

0 from their routing tables. This
helps to ensure more compact routing tables, but requires
more processing and network traffic to clean up unnecessary
S

0 routing state. Under lazy covering on the other hand, in
the case where S

0 arrives before S, S is simply forwarded
and none of the S

0 routing state is cleaned up. This is a
cheaper operation but results in larger routing tables over time.
Topology overlay network: Previous research in the area of
Application Layer Multicast (ALM) [13] has shown that the
knowledge of the underlying (router-level) network topology
is beneficial to achieve low data dissemination delay and
high bandwidth data dissemination [14]. In [15], the authors
exploited the knowledge of event traffic, user subscriptions
and topology of the underlying physical network to perform
efficient routing in a publish/subscribe system. In [16], the
authors further considered the rich content formats in video
dissemination, except the basic task, the overlay should be
able to minimize the computation in format transformation.

In this paper, we propose to use the merging technique to
reduce the system resource. The disadvantage of the merging
technique during the subscription releasing is also considered.
Additionally, the overlay construction is addressed.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the content-based pub/sub
system model. Then, we gradually quantify the benefit and
the cost of using the subscription aggregation technique. After
that, we formulate the problem in this paper.
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Fig. 3. An example to explain the trade-off of the subscription aggregation, where the numbers in the bracket is the subscription range of each subscriber,
(a) saves 2 bandwidth units, (b) saves 2 bandwidth units and (c) saves 1 bandwidth unit. However, once s1 leaves the network, the cost of (a) is 3. The cost
of (b) is 1, and there is not cost for (c).

A. Network Model

In the content-based pub/sub system, there are three types of
nodes: publishers, brokers, and subscribers. A core-network,
built by the brokers connects the subscribers and publishers.
This broker-core structure is widely used in the Internet-based
pub/sub system [17], such as Twitter and Facebook. Note
that the subscribers might be publishers, and the publishers
can be subscribers for different publications. Each subscriber
will send its subscription to the publisher, thus a subscription
propagation tree is built. As for the subscription aggregation, if
two subscriptions via the same broker are sent to the publisher,
the broker can do subscription aggregation (� = 1) or not
(� = 0). The publication will follow the reverse order of the
subscription tree to the corresponding subscribers.

B. Benefit and Cost of the Subscription Aggregation

The different subscribers’ subscriptions can be aggregated
by exploiting the similarity among subscriptions. It takes
advantage of the property that a router need not index a
specific subscription when there is a more general one [8].
Therefore, the subscription aggregation technique can lead
to fewer subscriptions, and thus smaller routing tables. For
example, for a router with a general subscription S and
a set of more specific subscriptions, {S1, S2, · · · , Sk

}, and
S ◆ [k

i=1Si

. The subscription aggregation will only forward
S, instead of forwarding the {S1, S2, · · · , Sk

}. To quantify the
system resource saving, G

i

, we assume it is proportional to
the number of bandwidth saving. In the above example, the
bandwidth is reduced to 1

k

of the original consumption.
The subscription re-configuration, caused by the dynamic

network topology in reality [8], is described as follows: once a
subscriber leaves the network, it sends the release-subscription
message to the corresponding broker, where the subscriptions
are aggregated. After the release-subscription message arrives
at the broker, the broker will ask its descendants to re-send
their subscriptions. An illustration is shown in Fig. 2. In Fig.
2, when broker b2 receives the subscription-releasing message,
it requests all its descendants to re-send their subscriptions,
which are the red arrows in Fig. 2. Before the broker b2

receives all the response(s), where are the blue arrows in
Fig. 2, the false-positive publications, i.e., the publications
without subscription will be propagated. The amount of the

false-positive publications are related to the false-positive
range and the re-configuration delay. We regard the amount
of false-positive publications as the cost for the subscription
aggregation technique.

The false-positive publication amount caused by the sub-
scription aggregation can be estimated by the probability ap-
proach. It is reasonable to assume that at most one subscriber
leaves the network in a period. Then, the key observation
is that if a subscription range is only subscribed by one
subscriber, called unique subscription, once it leaves the
network, there will be false-positive publications during the re-
configuration. As the result, the unique subscription range size
has an impact on the false-positive publication. Besides, the
re-configuration delay is the other factor which influences the
false-positive publication amount. Let us denote the increasing
of the unique subscription range and the re-configuration delay
by adding aggregation �

ij

as �u

ij

and r

ij

, respectively. The
publication generating rate, which represents the rate that a
publisher generates the publications in the unit subscription
range is denoted as g. The subscriber leaving rate, which
represents the rate that a subscriber leaves the network is
denoted l. Therefore, the false-positive publications caused
by the subscription aggregation, C

ij

, can be estimated as
a function with �u

ij

and r

ij

. If we assume the uniform
publication generating rate for all the subscription range, then
l and g are the constant value.

C

ij

= f(�u

ij

, r

ij

) = gl · (�u

ij

⇥ r

ij

)

To minimize the C

ij

, we need to jointly minimize the �u

ij

and r

ij

, the subscription similarity and re-configuration delay.
We leave the heterogeneous publication generating rate in
different subscription range as our future work.

Fig. 3 is a detailed example to explain the benefit and
cost of the subscription aggregation. If no subscription ag-
gregation is applied, each subscription consumes a certain
number of bandwidth, which is equal to number of hops
from the subscriber to the publisher. Once two subscriptions
are aggregated at some broker, the bandwidth consumption
is reduced to a half in the following route to the publisher.
Fig. 3 provides three subscription aggregation strategies. In
Fig. 3(a), the subscriptions 1 and 2 are aggregated at broker
b1, it saves 2 bandwidth units. It is because that 1 bandwidth



unit between b1 and b2, and 1 bandwidth unit between b2

and p1 are saved. However, once s1 leaves the network, the
publications in subscription range [1, 4] (the size is 3) become
into the false-positive publications. In this example, we assume
the link delay between two connected brokers is 1 unit. Broker
b1 can re-configure its descendants’ subscriptions in one hop,
the total cost is 3⇥1 units. For the strategy b, if we aggregate
subscriptions S1, S2 and S3 at broker b2 as shown in Fig. 3(b),
we can also save 2 bandwidth units (reducing 3 subscriptions
to 1). In this case the publications in the subscription range
[1, 2] become false-positive publications, when s1 leaves the
network. The broker b2 needs to reconfigure the subscription
with its two children b1 and s3 within one-hop. So, the cost
is 1⇥ 1 in this situation. As for the strategy c, shown in Fig.
3(c), where the subscription aggregation of S2 and S3 are
aggregated at broker b2, the leaving of s1 does not cause the
false-positive publication of the network.

C. Cost Minimization Problem
To save a target amount of network resources, while the

amount of false-positive publications is minimized at the same
time, is a vital issue in the practical system. Therefore, we
focus on the following cost minimization problem:

min
X

i2X

C

ij

⇥ �

ij

s.t.
X

i2X

G

ij

⇥ �

ij

� ✓

�

ij

2 {0, 1}

where ✓ is the pre-defined target gain that we would like to
achieve through subscription aggregation technique. In reality,
the size of ✓ reflects the stress for reducing system resource.
That is, a larger ✓ means that we would like to reduce more
system resources, at the cost of generating some false-positive
publications, and vice visa.

Theorem 1. The proposed cost minimization problem in this
paper is NP-hard.

Proof. The proposed problem can be reduced into the 0-1
integer programming problem [18] under the situation that the
users’ subscriptions are independent with each other. In this
case, the C

ij

and G

ij

become constant value, since they are
not related to the other aggregation. The C vector and G vector
can be regarded as the vector in the object function and in the
inequality constraint. In this case, the object function and the
inequality constraints become linear function. Additionally, we
have a set of 0-1 aggregation selection. Its formulation is the
same as the 0-1 integer programming’s formulation. Therefore,
the proposed cost minimization problem is NP-hard.

IV. CONSTANT RE-CONFIGURATION DELAY

In this section, we first solve the proposed problem in the
special case, where we consider the re-configuration delay
in different aggregation strategies to be a constant value.
In this case, the proposed problem is simplified, since the
false-positive publications are only decided by the unique

subscription range size. However, in this case, the simplified
problem is still a NP-hard problem. The only difference is that
all the elements in vector G are the same.

1) Dynamic Programming: If the subscription range are all
integral numbers, we can get the optimal solution by using
the dynamic programming approach. Otherwise, we discretize
the subscription, then the solution of dynamic programming
is bounded by the discretization degree [19]. The following
is the description of this approach. We sort the subscriptions
from the minimum to maximum, and aggregate subscriptions
based on this order, then, the original problem can be divided
into several sub-problems. That is, if we order the subscribers
based on their subscription range from 1 to n, where n is
the number of the subscribers. The optimal solution from the
first i subscribers is within the optimal solution for the first
j subscribers plus the aggregation result of the subscription
from j + 1 to i.

Let us denote the system resource saving and the corre-
sponding false-positive publications by aggregating from the
ordered subscribers i with k aggregations as C[i, k].

C[i, k] =

(
0 (i = 1)

min

0ji

{C[j, k � 1� j + i] +Aggregate[j + 1, i]} (i > 1)

(1)
where Aggregate[j + 1, i] represents to aggregate from S

j+1

to S

i

. An observation in this case is that if two subscriptions
are aggregated, the subscriptions within the union of these two
subscriptions should also be aggregated. The reason is that by
aggregating the range within these two subscriptions, there
are no extra false-positive publications. However, the network
resource is further reduced by the subscription aggregation.
Based on this observation, we can further reduce the calcula-
tion complexity in the procedure.

Then, the problem is transferred into the following problem:

min C[n,m]

s.t. ↵m � ✓,

where ↵ is a benefit parameter. In this algorithm, once we find
that the current communication saving reaches the target, we
will stop there.

V. UNIFORM RE-CONFIGURATION DELAY

In this section, we discuss the uniform re-configuration
delay for different aggregation strategies. That is, the re-
configuration delay is proportional to the hop distances.
Though two subscribers have similar subscription ranges, if
they are far away from each other, aggregating these two
subscribers might cause a huge cost for re-configuration. In
this case, we have to balance the subscription similarity and
distance of two subscribers.

In this scenario, since the difference re-configuration delay
for different subscription aggregation, we cannot use the dy-
namic programming approach anymore. It is because the new
subscription aggregation, will change the current aggregation
benefit and cost. The optimal solution in a sub-tree might not
be the optimal strategy for the whole tree. For example, in Fig.



Algorithm 1 DPA Algorithm

Input: The subscription tree for each publisher, the sub-
scription range of each subscriber {S1, S2, · · · , Sn

}, the
threshold ✓.

Output: The subscription aggregation result, X .
1: Sort all the subscription ranges from min to max.
2: while A subscription range is covered by more than two

subscribers do
3: Aggregate the two subscribers whose similarity is the

highest.
4: Give each remaining subscriber an index from 1 to n,

where n is the number of remaining subscribers.
5: for i = 0 to n do
6: C[0, i] = 0 and G[0, i] = 0;
7: for i = 0 to n do
8: min0ji

{C[j, k � 1� j + i] +Aggregate[j + 1, i]}
9: Change the corresponding �

i

10: if G[1, j] � ✓ then
11: break;
12: return X

3, from the viewpoint of the broker b1, the unique subscription
range [1, 3]. However, from the viewpoint of the broker b2, the
unique subscription range is [1, 2].

To solve the problem in the general case, we can still sort all
the subscriptions of the subscribers from the minimum to the
maximum, and apply the dynamic programming approach as
in Section IV, without considering the re-configuration delay.
This algorithm is called the subscription-range-only algorithm.

Theorem 2. The subscription-range-only algorithm achieves
h approximation ratio, where h is the ratio of the largest delay
and the smallest delay from the subscriber to the publisher.

Proof. The idea is that we might regard that all the subscribers
are connected to the same broker. Then, if we move the
subscribers back to their real positions, the cost increasing
amount can be bounded. First, if we consider that all cost
is the minimum cost, we can use the dynamic programming
approach to aggregate subscription. The solution must be a
lower bound of the optimal solution. Then, we move the
subscribers to their corresponding positions. However, the
real cost can increase at most h times for each subscription
aggregation, where h is the ratio of the largest and the smallest
subscriber to the publisher path delay.

The above theorem shows that this algorithm works well
when the network is small. The advantage is that it considers
the subscription ranges of all the nodes in the network globally.

Theorem 3. The cost of subscription aggregation in the
proposed problem is sub-modular.

Proof. Assume that we have already decided to do the fol-
lowing aggregation in sequence: �1,�2, · · ·�k

, and X =
{�1,�2, · · ·�k

}. �

k+1, �

k+2 are two feasible subscription
aggregations. If the subscription range of the (k+1)th aggre-

Algorithm 2 MEFA Algorithm

Input: The subscription tree for each publisher, the sub-
scription range of each subscriber {S1, S2, · · · , Sn

}, the
threshold ✓.

Output: The subscription aggregation result.
1: X = �

2: while
P

G < ✓ do
3: if 9� such that G

i

> 0 then
4: Select the �

i

with maximum G

i

/C

i

.
5: �

i

= 1
6: return X

gation might have an overlap with the (k + 2)th subscription
aggregation, this overlap will reduce the aggregation cost
bought by the (k + 2)th subscription aggregation

�
�

k+2C(X) � �
�

k+2C(X [ {�
k+1}) (2)

where the �
�

C(X) is the additional cost by adding one more
aggregation, �, based on the current aggregations, X . Based
on the above in-equation, the cost is sub-modular.

Based on the observation that the cost is sub-modular, we
propose a greedy algorithm, the-most-efficient-first algorithm
(MEFA). In this algorithm, while we have not reached the
pre-determined network resource saving target, we sort all
the remaining aggregation combinations by the ratio of the
benefit and the corresponding cost. Then, we pick the two
subscriptions which are the most efficient to be aggregated.

Theorem 4. The MEFA algorithm achieves 1+⇢ln✓ approxi-
mation ratio, where ⇢ is the curvature of the submodular cost.

The proof of the Theorem 4 is in the Appendix.

VI. OVERLAY CONSTRUCTION

In this section, we propose an overlay construction approach
to fit the subscription aggregation technique. The reason is
that the subscriber’s subscription similarity is not considered
in existing approaches.

In previous work [8], the subscription propagation tree con-
struction procedure is as follows: the publisher first advertises
a description of the data they are about to send, and this
advertisement message is flooded across the network. Each
node chooses the sender of the first arrived advertisement
message as its parent node. Therefore, a shortest path tree
rooted at the publisher is generated. Next, subscribers issue
a subscription defining their interests, and this subscription
is routed hop-by-hop along the reverse path of matching
advertisement trees towards publishers. Finally, publications
from publishers are disseminated hop-by-hop following the
reverse paths of matching subscriptions until they are delivered
to interested subscribers. After a certain period of time, the
publisher receives all the subscriptions, and a subscription
propagation tree, the overlay structure, is built.
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Fig. 4. An example to explain the trade-off of different overlays. Fig. 4(a), represents the physical lay in the pub/sub system. In overlay 1 all three subscribers
are connected to the publisher through the shortest path. However, in overlay 2, the delay for subscriber 2 increases, at the benefit of reducing the unique
range size under broker b1.

An example is shown in the Fig. 4. There exist two different
overlay structures for the subscribers s1, s2, and s3. For
overlay 1, it is the shortest path tree from the publisher to
these three subscribers. However, in this case, for broker b1,
it can only consider the subscription range of subscribers s1

and s2 to do the aggregation decision. In this example, the
unique subscription range size for subscribers s1 and s2 is
5. However, for subscriber s3, it has two options. One is to
connect with broker b2, which costs less delay. Another option
is to connect with the inter-mediate broker, b1, which cost
more delay. However, in this case, for the broker b1 to do
aggregation decision, the unique range size reduces to 2 units
as shown in Fig. 4(c). There is a delay-cost trade-off.

In this paper, we propose a greedy overlay construction
method. The key idea of the overlay construction is to make
the subscribers with similar subscription ranges under the same
broker. Therefore, this overlay construction approach jointly
considers the subscriptions of subscribers and the delay, it
should fit the subscription aggregation technique better.

This algorithm has two stages: 1) we build the shortest-path
tree as the subscription propagation tree for each publisher
and its subscribers. This stage is aimed to minimize the
publications propagation delay. After the first stage, each
subscriber chooses a broker, called the subscriber-end-broker
(SEB), to connect into the network. 2) In the second stage,
each subscriber searches the brokers within a certain delay.
If the subscriber is assigned to a broker, and this new broker
can reduce the unique subscription range size by �m. Here,
we propose a metric, �m

�d

, which means if a re-assignment can
reduce the unique subscription range size �m, but increase
�d more delay, we will re-assign the subscriber to the new
broker. We keep doing this procedure until we cannot find
an aggregation which satisfies �m

�d

> �. The parameter �

represents the importance of the unique subscription range
over the re-configuration delay. Clearly, if the re-configuration
delay is large, we might not re-shape the overlay after step 1.
So, the � should be assigned to a large value. On the other
hand, we might need to assign the � to a relatively small value.

VII. EXPERIMENTS

In this section, we compare several algorithms mentioned
in this paper by extensive trace-driven experiments. We first

Algorithm 3 Overlay Construction Algorithm

Input: The network topology of the subscription tree for
each publisher, the subscription range of each subscriber
{S1, S2, · · · , Sn

}, the threshold �.
Output: The overlay construction result.

1: The publisher floods the advertisement to all the network.
2: Once a subscriber receives the advertisement, it chooses

the sender as its SEB.
3: while 9 �m

�d

> � do
4: Select the modification with maximum �m

�d

.
5: Change its SEB to the new broker.
6: return The modified overlay structure.

introduce the experimental settings and their parameters. Then,
we will discuss the performance evaluation results.

A. Trace Introduction
1) Synthetic trace: The network topology that we refer the

topology in [8]. In their experiments, the network consists
of 49 brokers, the 5 brokers are denoted as core brokers.
Publishers connect to one of the core-broker, and subscribers
are randomly distributed among the remaining edge brokers.
This might represent a messaging platform for the business
workflows in a large enterprise with multiple departments and
partners. The components in each workflow would subscribe
to triggers of interest, and these workflows are invoked by
publications from external clients. In the uniform distribution,
the subscriber has the similar probability to be interested in
every piece of the subscription range. However, in the expo-
nential distribution, the majority of subscribers are interested
in a special piece of the subscription range. Based on this basic
topology, in our experiments, we also change the depth of the
tree and change the average number of children in the broker.

2) Real trace: Here, we use the topology from the Face-
book trace which is from Stanford Large Network Dataset
Collection [20]. The social networking pub/sub workload is
used from a trace from the Facebook [21]. In this trace, the
number of brokers is 120. In the experiment, we randomly
pick a small network with 120 broker nodes from [20]. Among
the nodes connected to these 120 brokers, one node will be
randomly selected as the publisher, and the remaining nodes
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Fig. 5. Performance comparison in the uniform subscription distribution.
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Fig. 6. Performance comparison in the exponential subscription distribution.

are selected as the subscribers. In [21], each publication has
an ID. We select the top 10 publications for each subscriber.
Then, the publication from the smallest ID to the largest ID
are considered as the subscription range of a subscriber.

B. Experiment Setting

In the synthetic trace, we apply the similar topology as
in the [8]. Furthermore, in our experiments, we change the
depth of the tree (2 to 4) and the average degree of the
brokers (2 to 4). For the subscribers’ subscription range, we
randomly generate the uniform and exponential distribution
for the subscribers. The subscribers’ subscription range are
extracted from the Facebook dataset. In the experiments, a
subscriber only has one subscription range. The publisher
randomly generate publications which has a certain value in
the subscription range every second. Every subscriber has
equal probability to leave the network. The amount of cost
is the amount of the false positive publication.

C. Algorithm Comparison

The algorithm comparison is mainly in two parts. In the
first part, we compare the different algorithms’ performance
regarding the amount of false positive publications (amount of
the cost). (1) All aggregation (AA) algorithm, which means
the brokers will decide to aggregate all the subscription or
not, based on their similarity. This algorithm is proposed

in the [8]. (2) Similarity-pair (SPA) aggregation algorithm,
which means that the subscriptions are aggregated based on
the subscribers’ subscription similarity. (3) Dynamic program-
ming based aggregation (DPA) algorithm, which means that
subscribers calculate the best subscription strategy without
considering the distance. (4) The-most-efficient-first (MEFA)
aggregation algorithm, which is the greedy algorithm that we
proposed in this paper. The second part of the performance
comparison is mainly focused on the overlay construction
method. (1) The overlay construction algorithm, which only
considers the shortest path from the publisher to the subscriber,
the subscription range similarity of different subscribers is
not considered called SO algorithm. (2) The proposed overlay
construction algorithm, which jointly considers the distance to
the publisher and the subscription ranges among several near
by subscribers called SA algorithm.

D. Experiment Results

In the experiment, we mainly consider the performance
of different algorithms under the three different settings: (1)
the comparison for different average subscription size. 2) the
comparison for different cost, and (3) the comparison for
different average number of subscribers under a broker.
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Fig. 7. Performance comparison in Facebook dataset

E. The Performance Results

1) The uniform subscription distribution: Fig. 5 shows the
performance results. The MEFA algorithm achieves the best
performance, followed by the DPA algorithm, SPA algorithm,
and the AA algorithm in three different settings. In Fig. 5(a),
along with the increasing of average subscription size, the
performance of the proposed four algorithms becomes even
more similar. The reason is that, since the subscription range
are uniformly distributed, the cost for each aggregation is
nearly the same, all the algorithms will keep aggregating. In
Fig. 5(b), along with the increase of depth, the performance
between these four algorithms increase. in Fig 5(c), we get the
similar result.

2) The exponential subscription distribution: Fig. 6 shows
the performance results of the exponential subscription distri-
bution. In Fig. 6(a), the MEFA algorithm achieves the best
performance, followed by the DPA algorithm, SPA algorithm,
and the AA algorithm in three different settings. However, the
performance difference between these four algorithm is signif-
icant. The performance of the DPA and MEFA algorithms are
much better than the remaining two algorithms. The reason
might be that in exponential subscription distribution, many
subscribers will subscribe some similar subscriptions. If we
only consider the similarity of the subscribers, it might lead
to a huge cost, since two similar subscribers’ distance in the
network might be huge. Fig. 6(b), along with the increase
of the depth, the performance difference between these four
algorithms increase. It is the similar when we increase the
average number of the broker, as shown in Fig 6(c).

3) The Facebook trace result: The experimental results are
shown in Fig. 7. In Fig. 7(a), the performance of the MEFA
and DPA algorithms are much better than the remaining two
algorithms. Compared to the AA algorithm, the cost saving
is up to 50% . In Fig. 7(b), along with the increasing of
the depth of the tree, the advantage of the MEFA and DPA
algorithms increases. When the depth of tree becomes 5, the
performance saving of the MEFA and DPA can save 50%
more than AA algorithm. Compared to the SPA algorithm,
the MEFA and DPA algorithms still save more than 30%. The
results demonstrate the necessity of jointly considering the
unique subscription range and the re-configuration delay.

4) The overlay construction result: The MEFA and DPA
algorithms are applied into the overlays which are constructed

by two overlay construction algorithms. The results are shown
in Fig. 8. Fig. 8(a) shows that when the subscribers’ sub-
scriptions’ difference is large, the proposed SA algorithm can
reduce about 20% about the cost. Figs. 8(b) and 8(c) also
show that when the depth of tree is large or the average degree
of broker is small, a good overlay structure can improve the
performance of subscription aggregation.

VIII. CONCLUSION

In this paper, we focus on the subscription aggregation
technique in the content-based pub/sub system to optimize
the system performance. The advantage and disadvantage of
the subscription aggregation is jointly considered. We first
prove that the above problem is NP-hard. Then, we provide
a dynamic programming approach when the re-configuration
delay can be regarded as a constant time. In a general case,
there exists a trade-off between the subscription similarity and
the re-configuration delay. We propose a greedy algorithm
with sub-modularity property. The theory proof shows that
the greedy algorithm has the 1 + ⇢ln✓ approximation ratio.
Finally, we propose an overlay construction scheme to further
fit the subscription aggregation.
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APPENDIX

A. Proof of Theorem 4

Let �1,�2, · · · ,�k

be the sequence of subscription aggrega-
tions selected by the proposed greedy algorithm, and X be the
elements selected in the optimal solution. Define the curvature
of the sub-modular cost C to be ⇢ = min

P
�2X

C(�)

C(X) . Note
that if C is linear, then ⇢ = 1.

Set X0 = �, and X

i

= {�
j

: 1  j  i} for each 1  i  k.
Denote µ0 = C

i

�
x

i

G(X
i�1)

for each 1  i  k. The parameter
µ

i

is related to the effective factor of x

i

for each 1  i  k.
We claim that µ0  µ1  · · ·  µ

k

.
This is because that

µ
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=
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i

)
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i
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i+1G(X
i

)
= µ

i+1

(3)
where the first inequality follows from the greedy rule and
the second inequality follows from the sub-modularity of f .

Define X is the optimal solution. Then,
P

e2X

C(e) = ⇢ ·opt.
Set X0 = � and X

i

= {�
j

: 1  j  i} for each 1  i  k.
For each 0  i  k, let l

i

= ✓ � G(X
i

) be the remaining
target at the end of the iteration i.

l

i�1 � l

i

C(�
i

)
=

�
�

i

G(X
i�1)

C(�
i

)

� max

e2X

�
e

G(X
i�1)

C(e)
�

P
e2X

�
e

G(X
i�1)P

e2S

C(e)

� G(X)�G(X
i�1)P

e2X

C(e)
=

✓ �G(X
i�1)

⇢ · opt =
l

i�1

⇢ · opt

(4)

Thus, the other inequality C(�
i

)  l

i�1 � l

i

follows from
the assumption that �

�

i

G(X
i�1)/C(x

i

) > 1, based on the
reality.

Since l0 > l1 > · · · > l

k

= 0. Using the inequalities
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)  ⇢ · opt
l

i�1
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i�1 � l
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) (5)

For 1  i  t+ 1, we have
maxX
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� opt
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t
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(6)

Using the inequalities C(�
i

)  l

i�1 � l
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for t+ 1  k, we
have
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By sum the Eqs. 6 and 7, we can get the following result.
kX
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C(�
i

)  (1 + ⇢ln

✓

opt

)opt  (1 + ⇢ln✓)opt. (8)
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