
Optimal Fault-Secure Scheduling
JIE WU, EDUARDO B. FERNANDEZ AND DONGLAI DAI

Department of Computer Science and Engineering, Florida Atlantic University,
Boca Raton, FL 33431, USA

Email: jie@cse.fau.edu

We consider here two basic fault-secure scheduling problems for multiprocessor systems. First,
given the number of processors in the system and a set of computational tasks of unit length
expressed as a complete binary tree, a scheduling algorithm is proposed such that the total execution
time is a minimum and no undetected single error result will be delivered. Second, given a deadline
and a computation tree, another algorithm is given which generates a fault-secure scheduling using
a minimum number of processors. We show that two previous approaches are special cases of
these algorithms. We also discuss the way to modify our scheduling to ensure a given fault latency
requirement. Finally, extensions that cover multiple errors, non-unit length tasks and computation

graphs of arbitrary binary trees are discussed.

Received September 17, 1996; revised June 2, 1998

1. INTRODUCTION

The notion that parallel and distributed computer systems
[1] could function as powerful general purpose computing
facilities has existed for quite some time. One of the
reasons for this is that they permit shorter execution times
of applications compared to uniprocessor systems with the
same technology. It is clear that they will be the key
technique for the next generation of computer systems
for high-performance applications [2]. Computer systems
consisting of thousands of processors are not a theoretical
topic anymore; however, for years, software has been
the main obstacle blocking applications for taking full
advantage of such systems. Decomposing, either by the
application software designer or by system software, a
large task into many small concurrently executable segments
(or subtasks) and assigning these segments to different
processors to optimize either time or number of processors
is a major challenge.

A large amount of research on scheduling for multi-
processor systems has been conducted [3, 4, 5, 6, 7, 8,
9, 10]. In a multiprocessor system, when the number of
processors increases, the probability of faulty processors
also increases [11]. There is a need to apply appropriate
fault-tolerance techniques to improve the system reliability
[12] and dependability [13]. This paper is concerned with
fault-secure scheduling based on fault-secure computation
[14, 15]. In a fault-secure computation, the output of
a system is guaranteed to be either correct or tagged as
incorrect. We assume here that fault-secure computation is
obtained by the use of duplication and comparison. A fault-
secure schedule has the capability of detecting errors but not
of correcting them; fault-tolerant scheduling [16] has also
the capability of correcting the detected errors. However,
fault-tolerant scheduling uses more sophisticated and more
costly techniques such as triple modular redundancy (TMR)
[17] and roll-forward recovery [18, 19].

The concept of fault security was first introduced in logic
circuit design [20]. Banerjee and Abraham [14] applied
this idea to scheduling. In their approach, each node in
the computation graph (which corresponds to a task) is
duplicated and their results are compared. The type of
fault controlled is restricted to a single hardware fault.
Since many time slots of processors are idle as a result
of a conventional scheduling, they suggested the use of
these idle time slots for duplicates. Comparison of the
results of the duplicates achieves the fault-secure property
without affecting significantly the completion time of the
computation graph.

More recently, Guet al. [15] further developed the idea
of Banerjee and Abraham by introducing the concept of
k-fault-secure scheduling. In such a schedule, for every fault
pattern of size at mostk, the output of a system is guaranteed
to be either correct or tagged as incorrect. They considered
schemes for some special types of computation trees and
they showed that some well known parallel computation
paradigms have binary trees as computation task graphs.
They reduced the number of processors used in the fault-
secure schedules of [14] by a factor of two or four without
significantly delaying the total execution time.

However, in both [14] and [15], fault-secure scheduling
algorithms produce schedules under the assumption that the
number of processors is unlimited, i.e. as many processors as
needed are available. This assumption is not valid for many
parallel systems, either because there is a limited number of
processors or because several computation trees need to be
accommodated.

In this paper, we study the following two fault-
secure scheduling problems, where the computation graph
under consideration is a complete binary tree with unit
length tasks, unit length comparators and with negligible
interprocessor communication times.

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



208 J. WU et al.

1. Given the number of processors in the system, the
tasks are scheduled such that the total execution time
is minimized and the resultant schedule is fault-secure.
For convenience, this number is restricted to 2h , where
h is a positive integer.

2. Given a deadline (not smaller than the lower bound for
conventional non-fault-tolerant scheduling), tasks are
scheduled on a minimum number of processors such
that they can still complete within the given time limit
and the resultant schedule is fault-secure.

We first find bounds for the above two optimization
problems and then determine the fault-secure schedules
that achieve these bounds. Given a number of processors
m = 2h and a computation tree with depthp, when a
particular constraint onp andh is satisfied, our fault-secure
scheduling algorithm processes the computation tree taking
the same minimum time as a non-fault-tolerant schedule
(except one additional time unit for testing), i.e. this result
matches the best result that a conventional scheduling could
obtain. When this constraint onp and h does not hold,
our fault-secure scheduling algorithm generates no idle slots
and the result is the best a fault-secure scheduling could
obtain. Similar results are also derived on the minimum
number of processors required to perform a fault-secure
schedule under a given time limit. We also show that the
scheduling algorithms in [14] and [15] are special cases of
our algorithms. Another salient feature of our approach
is that there is no special requirement for the comparators,
which are assigned to regular processors.

We assume that an output of a computation graph is
delayed until it is checked to be correct. In our case, there
is one output which is the root node of the application tree.
However, in some applications such as real-time systems, an
output has to be generated within a specific time frame; that
is, the comparison should be done before a given deadline.
A similar issue is fault latency, which is measured by the
time between the occurrence of faults and the detection of
these faults. In this paper, we provide general guidelines to
modify the proposed scheme to satisfy a given fault latency
requirement. Extensions are also discussed to cover multiple
errors, non-unit tasks and computation graphs of arbitrary
binary trees.

Some other approaches have been proposed in recent
years [16, 21, 22, 23, 24], which use fault-tolerant
techniques such as recovery blocks and backup processors.
These attempt to protect against software faults or have
different objectives from ours. Task duplication or
replication has also been used in scheduling for purposes
other than fault tolerance: in [7, 25, 26] to reduce the effect
of interprocessor communication times; in [27] to consider
the effect of the variability of task execution times.

Section 2 discusses background and introduces some
notation. Section 3 considers fault-secure scheduling for
a system with a fixed number of processors. Section 4
describes fault-secure scheduling under time constraints.
Section 5 evaluates the proposed scheduling algorithms and
compares our approach to [14] and [15]. Section 6 discusses

FIGURE 1. Example of parallel merge sorting.

extensions of the proposed approach to cover multiple faults,
non-unit task lengths and computational graphs that are
arbitrary binary trees. A general guideline for modifying the
proposed scheme to meet a given fault latency requirement is
also given in that section. Section 7 presents conclusions and
some ideas for future work, especially the use of trade-offs
in scheduling length, number of processors used and number
of faults in the system.

2. BASIC FAULT-SECURE SCHEDULES

Following [14, 15], we assume a multiprocessor system
consisting of a set of processors. An error propagates
from one processor to another only through regular
communication channels. We also assume that all the
processors have identical computing power and that a
processor can perform any operation of a computation,
namely, a subtask or a test, within a unit of time. Similar
to [14] and [15] we concentrate in this paper on complete
binary trees with unit task nodes. In Section 6, we will
discuss how to relax this restriction.

A computation graphG is a directed acyclic graph (DAG)
in which a nodeN corresponds to a process or task and a
directed edge(Ni , N j ) connects two nodesNi and N j . If
there is a directed path (sequence of adjacent arcs) fromNi

to N j , we say that there is a precedence constraint between
Ni andN j . Figure 1 shows an example of a parallel version
of merge sorting expressed as a tree structure. Each node
in the tree corresponds to a task of a unit-time duration.
Each task receives two sorted lists from lower-level tasks
and produces a merged sorted list.

A schedule is typically represented using a Gantt chart,
which is a two-dimensional array, with one row for each
processor and one column for each time slot. Given a
computation treeG and a multiprocessor system, a schedule
σ maps nodes inG to entries of processor execution time,
where anentry is a crosspoint of a column and a row of a
Gantt chart; that is, each time slot hasm entries wherem is
the number of processors. More specifically,σ(N) = (P, i),
whereN represents a node inG, P is a processor andi is a
unit-time slot in the execution of tasks byP.

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



OPTIMAL FAULT-SECURE SCHEDULING 209

PROPERTY. Let G(p) be a computation tree with depth
p; the minimum total execution time of a schedule forG(p)

is p.

We assume that processor faults manifest themselves as
errors that occur in one or more time slots and they can
be either permanent or transient. A fault-free processor
P always produces the correct output if all the inputs for
an operation onP are correct; it may or may not produce
erroneous output if some input is erroneous.

DEFINITION . A fault-secure schedule either produces
correct outputs or tags these outputs as incorrect.

A fault-secure system never delivers an erroneous output,
although it might misjudge a correct output to be an
erroneous one. Ak-fault-secure systemis a system which
has the fault-secure property for anyk faults in the system
within a specified time period. In this paper, we concentrate
on 1-fault-secure schedules, but the general case ofk-fault-
secure schedules is briefly discussed in Section 6.

Our approach to achieve the fault-secure property is to
duplicate the execution of a task and then to compare their
results. Our scheduling algorithm does this by duplicating
each node and by carrying out binary equality tests on two
versions. Fault detection occurs when some test reports ‘not
equal’. If any test reports a ‘not equal’ we discard this output
and the system is still safe. It has been shown [15] that
to ensure 1-fault-security at least two-version computation
is necessary. However, depending on how versions are
arranged, a comparator that compares two versions of a
node may or may not be necessary. Therefore, the key
issue here is how to arrange tests and duplicates. Let us
start with the test arrangement. Clearly two versions of
a node should be assigned to two different processors to
ensure a fault-secure computation. Suppose we want to test
node N and its duplicateN ′; we need to decide where to
locate the comparator: it could be located at one of the two
processors or at a third processor. When the comparator is
located at a third processor, the 1-fault-secure property is
straightforward. In Figure 2a, if one of the two processors
(P1 or P2) on which two versions are assigned is faulty, it
affects the outcome of one version; the comparator (t) on
P3, a healthy processor, will catch the error. IfP3 is faulty
then the comparator could generate any decision (pass or
fail), but because both versions on the healthy processors
produce correct results, the final outcome is still safe. If a
comparator is located in one of the two processors on which
two versions are assigned then 1-fault-security cannot be
assured. Suppose the processor on which the comparator
is assigned fails and the comparator passes the test, then the
version on this faulty processor would be considered correct.
To avoid this situation, two versions of the comparator (t
andt ′ in Figure 2b) should be used and assigned to different
processors. To choose between Figures 2a or 2b one should
note that the configuration in Figure 2a saves one test;
however, the test has to be run on a third processor.

Next we examine the possibility of reducing the total
number of comparators used. Suppose thatN1 is the parent

node ofN2 in the computation tree, then a direct test of the
two versions ofN2 can be avoided using the configuration
shown in Figure 3a. However, the output of each of theN2s
can be used as input for only one version ofN1. When a
direct test is used forN2, as shown in Figure 3b, the output
from one version ofN2, sayN2, can be used as the input to
both versions ofN1. In this case, there is more freedom to
assign the other versionN ′

2 to a time slot, even afterN2, N1
andt . As we will see later, such freedom might be vital to
ensure a minimum execution time. AlthoughN2 could be
faulty and contaminate both versions ofN1, its failure will
eventually be caught by a comparator. In general, in order to
reduce fault latency in the latter case,N ′

2 should be assigned
as early as possible without increasing the total execution
time (this issue will be discussed in detail in Section 6).
Therefore, the key in a fault-secure schedule is the selection
of different configurations of the type shown in Figures 2
and 3.

Extending the idea used in Figure 2 by replacing each
node by a subtree or a complete computation tree, we can
derive the following scheme which uses only one or two
comparators for the entire computation tree: replace nodes
N and N ′ in Figure 2a by two versions of a complete
computation treeG and each processor (except the third
processorP3) by a set of processors. We then derive two
fault-secure schedules (one uses one comparator with one
additional processor and the other uses two comparators but
no additional processors) that use a minimum number of
time slots and minimum possible time, i.e. the depth of the
tree plus one. This idea results in our basic fault-secure
schedule (BFSS) as will be discussed later.

We first define the concept of level of the nodes in the
computation tree. Basically, the root node ofG(p) is
assigned a levelp (p will be the maximum level and all the
other levels are smaller) and any node that isi distance away
from the root is assigned a levelp − i . The node set in
G can be partitioned intop subsets:L1, L2, . . . , L p (called
L-precedence partitions). Each node is denoted asNij where
i is the level at which this node is located andj is the label
assigned within leveli . Figure 4 shows theL-precedence
partitions for the example of Figure 1. In Figure 4, each
node is represented byNij wherei is the level of this node
and j is the label within the level (counting from the left to
right).

PROPOSITION. When h ≥ p, the minimum total
execution time of a fault-secure schedule forG(p) is p + 1.

We start with a basic fault-secure scheduling method that
achieves the bound shown in Theorem 1 without constraints
on the number of processors used. A similar scheme was
presented in [14] and [15]. However, it was not presented
in an algorithmic format. In the next section we extend this
simple scheduling by adding constraints on either time or on
the number of processors we are allowed to use.

In the basic fault-secure schedule (BFSS), the node set
of G(p) is partitioned into a set of precedence partitions
{L1, L2, . . . , L p}. The processor set is partitioned into two
sets,Pup and Pdown, of equal size. The nodes inG(p) are

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



210 J. WU et al.

FIGURE 2. The assignment of the comparator (a) to a third processor and (b) to one of two processors used.

FIGURE 3. Two possible fault-secure configurations ofN2 andN1.

assigned level by level to entries of each time slot ofPup in
the Gantt chart; that is, nodes in leveli are assigned to time
slot i (we assume time slots start from 1). The duplicated
node set is also assigned in the same way intoPdown. When
two comparators are used to check two versions of the root
node, these two tests can be assigned to any two processors
in Pup or Pdown at time slotp + 1 (the last time slot). When
one comparator is used, the test has to be assigned to a
processor not inPup or Pdown. Clearly, the minimum number
of processors used is|Pup|+ |Pdown| = 2∗max{|Li |}, where
1 ≤ i ≤ p, and two comparators are used. One additional
processor is required when one comparator is used. In
summary, the algorithm can be expressed as:

ALGORITHM Basic Fault SecureSchedule (BFSS)
(1) partition the node set ofG(p) into {L1, L2, . . . , L p};
(2) divide the processor set into two equal-sized

partitions,Pup andPdown;
(3) assign nodes inLi to entries of sloti of processors in

Pup;

(4) assign duplicates of nodes inLi to entries of sloti of
processors inPdown;

(5) caseone comparator→
assign the comparator to a processor not inPup
or Pdown at time slotp + 1
two comparators→
assign two comparators to any two processors in
Pup or Pdown at time slotp + 1

end case

In the computation tree shown in Figure 4,
max{L1, L2, L3, L4} = 4. Figure 5 shows a schedule
produced by the BFSS algorithm for the graph of Figure 4
wherePup = {P1, P2, P3, P4} andPdown = {P5, P6, P7, P8}
and two comparators are used. Each number in the first line
corresponds to time sloti . If N j andN ′

j are two versions of
the same node, we uset (N j , N ′

j ) to represent the equality
test on N j . If the test itself has two versions, we use
t (N j , N ′

j ) and t ′(N j , N ′
j ) to represent them.N∗

k (N∗
i , N∗

j )

represents the fact that the computation ofN∗
k requires

inputs fromN∗
i andN∗

j .

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



OPTIMAL FAULT-SECURE SCHEDULING 211

FIGURE 4. Example ofL-precedence partitions.

FIGURE 5. Fault-secure scheduling for the computation graph of Figure 1 by the basic fault-secure schedule.

3. FAULT-SECURE SCHEDULING WITH A FIXED
NUMBER OF PROCESSORS

We now study bounds on time for a fault-secure schedule
when the number of processors is fixed. We assume that the
number of processorsm is always a power of 2, saym = 2h ,
whereh is a positive integer. Whenh > p, there are enough
processors to carry out the basic fault-secure scheduling and
the processing time is bounded byp + 1. Whenh ≤ p,
there are not enough processors to execute according to the
BFSS algorithm and we need to develop other fault-secure
scheduling algorithms. Since at least two processors are
needed to perform a fault-secure computation,h is always
greater than zero.

For a non-fault-secure scheduling of an arbitrary compu-
tation treeG, Hu [28] found the following lower bound.

LEMMA 1. [28]Givenm processors, the minimum timeT
required to process a treeG(p) of unit tasks is bounded as

follows.
Let

q = max
1≤x≤p

{
1

m

x∑
j=1

|L j | − x

}
(1)

then

T ≥ p + dqe. (2)

LEMMA 2. Given m = 2h processors and a complete
binary treeG(p) with h ≤ p, thenT ≥ 2p−h + h − 1.

Proof. For the complete tree the sequence in (1) becomes:
whenx = 1,

2p−1 1

2h
− 1 = 2p−h−1 − 1,

whenx = 2,

[2p−1 + 2p−2]
1

2h
− 2 = (2p−h−1 − 1) + (2p−h−2 − 1),

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



212 J. WU et al.

. . . ,

whenx = p − h,

[2p−1 + 2p−2 + . . . + 2h+1 + 2h]
1

2h
− (p − h)

= (2p−h−1 − 1) + (2p−h−2 − 1) + . . . + (21 − 1)

+ (20 − 1),

whenx = p − h + 1,

[2p−1 + 2p−2 + . . . + 2h+1 + 2h + 2h−1]
1

2h
− (p − h + 1)

= (2p−h−1 − 1) + (2p−h−2 − 1) + . . . + (21 − 1)

+ (20 − 1) + (2−1 − 1),

. . . ,

whenx = p,

[2p−1 + 2p−2 + . . . + 2h+1 + 2h + 2h−1 + . . . + 20]
1

2h
− p

= (2p−h−1 − 1) + (2p−h−2 − 1) + . . . + (21 − 1)

+ (20 − 1) + (2−1 − 1) + . . . + (2−h − 1).

Sinceh ≤ p, the maximum item of the above sequence is at
x = p − h.

From (1), we have

q = [2p−1 + 2p−2 + . . . + 2h+1 + 2h ]
1

2h
− (p − h)

= 2p−h−1 ∗ 2 − 1

2 − 1
− (p − h) = 2p−h − p + h − 1.

From (2), we have

T ≥ p + dqe = 2p−h + h − 1. �

THEOREM 1. Givenm = 2h processors and a complete
binary treeG(p) with h ≤ p, the minimum timeT required
for fault-secure scheduling is larger than or equal to2p−h +
h.

Theorem 1 is directly derived from Lemma 2 by adding
one to the bound in Lemma 2, i.e. an extra time slot is
required in fault-secure schedules for the final test. Note
that Hu’s bound is for non-fault-secure schedules; that
is, schedules where tasks are not duplicated. Therefore,
if a fault-secure schedule matches this bound (with one
more step), this schedule is optimal. The following
theorem reveals another bound based on an ideal fault-secure
scheduling that does not create any idle entries in a Gantt
chart.

THEOREM 2. Givenm = 2h processors and a complete
binary treeG(p), let T be the total execution time of a fault-
secure schedule. Ifh ≤ p, then

T ≥
{

2p−h+1 h = 1
2p−h+1 + 1 h 6= 1.

(3)

Proof. Since the number of nodes inG(p) is 2p − 1, the
total load (computation cost) for a fault-secure two-version
computation is 2p+1 − 2. If we ignore the precedence
constraints inG(p), the number of time slots required for
the computations is⌈

2p+1 − 2

2h

⌉
= d2p−h+1 − 2−(h−1)e

=
{

2p−h+1 − 1 h = 1
2p−h+1 h 6= 1.

This will obviously serve as a lower bound on this part of the
execution time. We need another time slot for the final test,
that is

T ≥
{

2p−h+1 h = 1
2p−h+1 + 1 h 6= 1.

�

Combining the results from Theorems 1 and 2, we have
the following bounds on time for a fault-secure computation.

THEOREM 3. Givenm = 2h processors and a complete
binary computation treeG(p), the minimum timeT required
to process a fault-secure computation ofG on m processors
is bounded as follows:

T =




p + 1 h ≥ p
2p−h + h 1 < h < p ∧ h + log(h − 1) ≥ p
2p−h+1 + 1 1 < h < p ∧ h + log(h − 1) < p
2p 1 = h < p.

(4)

Proof. Whenh > p, from Theorem 1 we have thatT =
p + 1. Whenh = p, results from Theorems 1, 2, and
3 can be used; we haveT = max{p + 1, p + 1, 2 + 1
(when p 6= 1) or 1 + 1 (when p = 1)} = p + 1.
Therefore, whenh ≥ p, T = p + 1. Whenh < p and
h = 1, we haveT = max{2p−1 + 1, 2p} = 2p based on
Theorems 2 and 3. When 1< h < p, again results from
both Theorems 2 and 3 can be used. In this case, the higher
bound out of the two is selected. We first determine the point
where Theorems 2 and 3 generate the same bound. Suppose
2p−h + h − 1 = 2p−h+1 + 1, thenh + log(h − 1) = p. It
is easy to see that whenh + log(h − 1) > p the bound from
Theorem 2 is higher than the bound from Theorem 3 and the
opposite situation is true whenh + log(h − 1) < p. �

Based on Theorem 3, we have the following important
observation. Assume that the bounds in Theorem 3 are
achievable, then whenh + log(h − 1) ≥ p (which includes
the first two bounds in Theorem 3) the corresponding fault-
secure schedule processes the computation as fast as any
non-fault-secure schedule where nodes in the computation
are not duplicated. Whenh+log(h−1) < p (which includes
the last two bounds in Theorem 3) the corresponding fault-
secure schedule does not generate idle entries (except entries
in the last time slot used for comparison).

Our next goal is to find fault-secure schedules that meet
the bounds of Theorem 4 (if such schedules exist). When

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



OPTIMAL FAULT-SECURE SCHEDULING 213

FIGURE 6. Partition ofG p into GT andG L j .

FIGURE 7. Fault-secure scheduling whenp > h.

h ≥ p the basic fault-secure scheduling algorithm can be
directly applied. When 1= h < p, i.e. there are two
processors, we define a total order (or topological sorting
order) of the computation tree based on the precedence
order. Nodes inG are assigned to one processor based
on this total order and duplicates are assigned to the other
processor. Since there are 2p − 1 nodes inG, 2p time slots
are needed (which include the slot used for comparison).
Obviously, there are no idle entries in the resultant Gantt
chart.

When 1 < h < p, there are not enough processors
available to execute the simple fault-secure scheduling.
Assume a complete binary treeGT of depthh is a subtree of
the given computation treeG that shares the same root node
with G (see Figure 6). Leti = p − h, i.e. i is the number of
levels inG below the subtreeGT . Nodes in the loweri levels
consist ofm = 2h independent complete binary treesGL j

of depthi . The basic scheduling strategy is as follows. Each
GL j , 1 ≤ j ≤ m, is first assigned tom distinct processors.
In this case, the first 2p−h − 1 time slots are used to process
one version of all theGL j (see Figure 7). Then the simple
fault-secure schedule is used to assign two versions ofGT

using additionalh+1 time slots. The idle entries (the shaded

areas in Figure 7) generated in the scheduling ofGT , are
used to assign the duplicates and tests of nodes inGL j .

Depending on the values ofp andh, the idle entries may
not be enough for the duplicates and the tests of nodes in
GL j . Therefore, additional time slots might be needed.
Let us first determine the point where there are just enough
idle entries. We can achieve this objective in three steps.
First, count the number of idle slots in the fault-secure
schedule of theGT part which may possibly be used in fault-
secure computation for the nodes inGL j . Second, count
the number of duplicates inGL j and tests ofGL j . Third,
arrange these computations and tests in the idle entries.

As the first step, we count the number of idle entries in
the fault-secure schedule ofGT . The total number of entries
in the schedule for theGT part ism(h + 1) = 2h(h + 1).
2(2h − 1) − 2 entries are used to include the two versions
of GT and two entries for the two tests, and hence the total
number of idle time slots in the schedule ofGT is

2h(h + 1) − 2(2h − 1) − 2 = 2h(h − 1). (5)

As the second step, we count the number of entries
required for the duplicates and tests ofGL j , to provide the
fault-secure property for the wholeG(p).

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



214 J. WU et al.

Since the output of one version ofGL j is used as the input
to both versions ofGT , at least one test is required for each
subtreeGL j . That is, 2h entries are needed for the tests
and obviously 2h(2i − 1) entries are used for the duplicates.
Then, the total number of entries required for the duplicates
and tests ofGL j is

2h + 2h(2i − 1) = 2h+i . (6)

Equating expression (6) to (5), we get 2h+i = 2h(h − 1),
theni = log(h − 1).

Wheni ≤ log(h − 1), no additional entries are used and
the total time is

(2i − 1) + h + 1 = 2i + h = 2p−h + h

which achieves the bound (wheni ≤ log(h − 1)) of
Theorem 4. Wheni > log(h−1), the additional time needed
can be calculated as follows:

2h+i − 2h(h − 1)

2h
= 2i − h + 1.

By adding the time used as shown in Figure 7 to the
additional time calculated above, we have

(2i + h) + (2i − h + 1) = 2i2 + 1 = 2p−h+1 + 1

which achieves the bound (wheni ≥ log(h − 1)) of
Theorem 4.

Notice that the above derivation gives us only a necessary
condition since we have not considered the precedence
constraints of the computationGL j . The sufficiency
condition is obvious. We assign duplicates level by level
starting from nodes in level one and tests are assigned last
after all the nodes in the corresponding subtree have been
assigned. The idle entries to which duplicated tasks and tests
are assigned are also arranged level by level starting from
level 2i + 1 (see Figure 7). The only constraint that needs
to be followed is that the two versions of each node and
the test for these two versions should be assigned to three
different processors. The enforcement of this constraint is
straightforward and we leave it for the reader to complete the
assignment. In summary, the general fault-secure scheduling
algorithm can be expressed as:

ALGORITHM GeneralFault SecureSchedule (GFSS)
case
p ≤ h →

begin
use algorithm BasicFault SecureSchedule (BFSS)
end

1 = h < p → /* there are two processors */
begin
(1) define a total order of the computation tree based

on the precedences;
(2) assign nodes inG(p) (2p − 1 in all) to a processor

based on the total order;
(3) assign duplicated nodes inG(p) to another processor

based on the total order;

(4) assign comparators to two processors at time slot 2p;
end

1 < h < p →
begin
(1) define a complete binary treeGT of depthh as a

subtree ofG(p) j that shares the same root node
with G(p);

(2) define complete binary treesGL j , 1 ≤ j ≤ 2h , as
subtrees ofG(p) with their root nodes being nodes
at the(h + 1)th level;

(3) assign nodes inGL j to the first 2p−h − 1 time slots
of distinct processors;

(4) assign two versions ofGT using BFSS starting from
slots 2p−h ;

(5) if p − h > log(h − 1) then
2p−h − h + 1 additional slots are required assign
the second version ofGL j to the idle entries
generated in the scheduling ofGT subject to:
(i) the duplicated version meets the precedence

constraints;
(ii) the comparator is assigned after the assignment

of the two versions to be compared;
(iii) two versions of each node and their comparator

are assigned to three different processors
end

end case

Figure 8 shows an assignment of a four-level complete
binary tree tom = 2h = 8 processors. Sincei = log(h − 1)

in this case, wherei = 1 and h = 3, no idle entry is
generated. Clearly, this fault-secure schedule matches the
bound for non-fault-tolerant schedules. Figure 9 shows
another fault-secure schedule that corresponds to the case
of i = p − h ≥ log(h − 1), wherei = 3 andh = 3. Again,
no idle entry is generated.

Based on the GFSS algorithm, we can easily show that
given a number of processorsm = 2h , whereh is a positive
integer, for any complete binary computation treeG(p),
there exists a fault-secure schedule that meets the bounds
defined by Theorem 3.

4. FAULT-SECURE SCHEDULING UNDER
DEADLINES

There are cases where we are allowed to exceed the
minimum time p + 1. We now consider how to determine
the minimum number of processorsG(p) in a fault-secure
computation under a given deadlinep + 1 + c, wherec is a
non-negative integer.

We generated in the last section a general fault-secure
scheduling algorithm that produces fault-secure schedules
with minimum total execution times for a given number of
processorsm (m = 2h). Now the problem becomes: given a
G(p), select a schedule that produces a fault-secure schedule
of time T ≤ p + 1 + c and uses a minimum number of
processors.

First let us consider the delays, compared to the minimum

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



OPTIMAL FAULT-SECURE SCHEDULING 215

FIGURE 8. An example of fault-secure scheduling.

execution timep + 1, in the optimal results obtained in the
last section,

• the delay isD1 = 0 whenh ≥ p;
• the delay isD2 = h + 2p−h − (p + 1) when(1 < h <

p) ∧ (h + log(h − 1) ≥ p);
• the delay isD3 = 2p−h+1 + 1 − (p + 1) when(1 <

h < p) ∧ (h + log(h − 1) ≤ p);
• the delay isD4 = 2p − (p + 1) = 2p − p − 1 when

1 = h < p.

We intend to determinem = 2h , whereh is a minimum
positive integer such thatDi , i ≤ r ≤ 4, is less than or equal
to a givenc. More precisely,

• let H1 be the minimumh in a basic fault-secure
schedule that satisfies

0 ≤ c ∧ p ≤ q;
• let H2 be the minimumh in a fault-secure solution that

satisfies

h+2p−h−(p+1) ≤ c∧1 < h < p∧p ≤ h+log(h−1);
• let H3 be the minimumh in a fault-secure solution that

satisfies

2p−h+1 + 1 − (p + 1) ≤ c ∧ 1 < h < p ∧ h

+ log(h − 1) < p;
• let H4 = 1 in a fault-secure solution that uses two

processors and satisfies

2p − p − 1 ≤ c.

Then the selection ofh is as follows,

h = min{H1, H2, H3, H4}.

Notice that whenc = 0, H1 will give us the solution
where h = p, and H2 will give us the solution where
h = p − 1. Taking the minimum,h = p − 1, i.e.m = 2p−1

is the minimum number of processors to execute the fault-
secure computation ofG(p) in p + 1 time slots. Forc > 0
the solution setH1 is empty. Whenc ≥ 2p − p − 1, H4 = 1
is selected.

A detailed treatment of fault-secure scheduling under
deadlines can be found in [29].

5. DISCUSSION AND COMPARISON

In the performance analysis of a parallel system the number
of processors used and the execution time are considered as
measures of quality. We define two criteria to measure the
schedules developed by the proposed algorithms.

DEFINITION . Given a computationG(p), the time
overhead ratioTo is

To = total time of fault secure schedules(TN F S)

total time of conventional schedules(TF S)
− 1. (7)

DEFINITION . Given a computation treeG(p), the
processor utilizationUP is

UP = number of non-idle entries in schedules(Eb)

number of total entries in schedules(Et )
. (8)

THEOREM 4. Given G(p), the time overhead ratio of
fault-secure schedules produced by the general fault-secure
algorithm (GFSS) is

To =




1/p h ≥ p
1/(2p−h + h − 1) 1 < h < p ∧ h

+ log(h − 1) ≥ p
1 + ((3 − 2h)/(2p−h 1 < h < p ∧ h

+ h − 1)) + log(h − 1) < p
1 1 = h < p.

(9)

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



216 J. WU et al.

FIGURE 9. An example of fault-secure scheduling.

Proof. Given a computation treeG(p), and m = 2h

processors inM, the total execution time of a conventional
(non-fault-secure) schedule is

TN F S =



p h ≥ p
2p−h + h − 1 1 < h < p
2p−1 1 = h < p.

Similarly, the total execution time of a fault-tolerant

schedule generated by the general fault-secure scheduling
algorithm (GFSS) is

TF S =




p + 1 h ≥ p
2p−h + h 1 < h < p ∧ h + log(h − 1) ≥ p
2p−h+1 + 1 1 < h < p ∧ h + log(h − 1) ≤ p
2p 1 = h < p.

The theorem follows directly from the definition ofT0. �

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



OPTIMAL FAULT-SECURE SCHEDULING 217

Based on Theorem 4, an insignificant amount of overhead
is generated in the first two cases, i.e. whenh ≥ p or
1 < h < p ∧ h + log(h − 1) ≥ p. See Figure 10.

THEOREM 5. GivenG(p), the processor utilization of a
fault-secure schedule produced by our general fault-secure
algorithm is

UP =




1/2h−p−1(p + 1) h > p
(2p−h+1 + 1)/(2p−h + h) 1 < h < p ∧ h

+ log(h − 1) ≥ p
1 1 < h < p ∧ h

+ log(h − 1) ≤ p
1 1 = h < p.

(10)

Proof. Given a computation treeG(p) and m = 2h

processors the total number of slots (Et ) in a fault-secure
schedule generated by algorithm GFSS is

Et = m ∗ T

=




2h(p + 1) h ≥ p
2h(2p−h + h) 1 < h < p ∧ h

+ log(h − 1) ≥ p
2h(2p−h+1 + 1) 1 < h < p ∧ h

+ log(h − 1) ≤ p
2p+1 1 = h < p.

Similarly, the total number of non-idle (or busy) entries in
a fault-secure schedule generated by algorithm GFSS is

Eb =



2p+1 h ≥ p
2p+1 + 2h 1 < h < p
2p+1 1 = h < p.

The theorem follows directly from the definition of
processor utilizationUp = Eb/Et (see Figure 11). �

It is easy to see that the fault-secure scheduling algorithms
in [14] and [15] are special cases of our algorithm when
h = p andh = p − 1.

6. EXTENSIONS

6.1. Fault latency

Fault latency is defined as the time between the occurrence
of a fault and the detection of this fault. In our discussion on
fault-secure scheduling, we do not consider the fault latency
issue, i.e. the duplicate and the comparator of a task can
be assigned to any time slot. However, many applications
require a bounded maximum fault latencyl, wherel is a
positive integer. The valuel is decided based on a real-
time deadline, the frequency of an output, or other similar
constraints. Again, our schedule should detect every fault
that manifests itself.

Given m = 2h processors, a complete binary treeG(p)

and a bounded maximum fault latencyl, we modify our
fault-secure schedule to ensure that the distance between a
task, its duplicate and the comparator is no more thanl.

Note that in order to ensure that the maximum fault latency
is bounded more tests are needed than in a fault-secure
schedule which does not consider fault latency. Depending
on the values ofl, m and p, additional time slots may or
may not be required. Following Theorem 4, we modify our
fault-secure scheduling based on four different cases.

• Case 1:p ≤ h
Whenl = 1, i.e. the fault latency is one unit, each task and
its duplicate should be assigned to the same time slot and
they should be checked at the next time slot. Ifp = h then
there are only 2p−1 empty entries at slot 2 while there are
2p tasks at slot 1. Therefore, one additional time slot needs
to be added between slots 1 and 2. In general, there are
2p−(i−1) tasks at sloti and 2p − 2p−i empty entries at slot
i + 1. Since 2p−(i−1) < 2p − 2p−i (for i > 1), there is
no need for additional time slots to test tasks in slots other
than slot 1. There are enough empty entries where tests can
be assigned. Ifp < h, then there are 2h−1 ≥ 2p empty
entries in slot 2, i.e. no additional time slot is needed. When
1 < l < p, comparisons are needed everyl time slots. An
efficient way is to check only those tasks scheduled at time
slot kl, k = 1, 2, . . . , bp/ lc. Clearly, there are more empty
entries at slotkl + 1 than the number of tasks at slotkl.
Hence, there is no need for additional time slots to schedule
additional tests in this case. Finally, whenp ≤ l nothing
needs to be changed, because the depth of the computation
tree is shorter than the given maximum fault latency.

• Case 2: 1= h < p
In this case only two processors are used and there are
no empty entries. Any additional tests require additional
time slots. Again, it suffices to check tasks at slotskl,
k = 1, 2, . . . , bp/ lc. This results in a total of additional
time slotsbp/ lc.

• Case 3: 1< h < p ∧ h + log(h − 1) ≥ p
This case is shown in Figure 7, where the number of idle
entries is more than or equal to the number of duplicates of
all the tasks fromGLi , where 1 ≤ i ≤ m and m = 2h

tests. Let us first calculate the maximum fault latency. We
consider two types of nodes: nodes fromGT and nodes from
GLi . The maximum fault latency among nodes fromGT is
h (see Figure 7) and among nodes fromGLi is 2p−h −1+ s,
wheres is the number of time slots that have idle entries used
to fill the 2h(2i −1) duplicates of nodes fromGLi and the 2h

tests. Based on Figure 7,s satisfies the following equation:

2h(2i − 1) + 2h = 2p

= (2h − 2h) + (2h − 2n−1)

+ (2h − 2n−2) + . . . + (2h − 2n−(s−1))

then
2p−h + 1 < s ≤ 2p−h + 2.

Therefore, the maximum fault latency among nodes from
GLi is 2p−h+1 + 1. Overall, the maximum fault latency is:

max{2p−h+1 + 1, h}.
Based on the value ofl, the given maximum fault latency,
we consider the following subcases:

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



218 J. WU et al.

FIGURE 10. Curves ofTo for some fixed values ofp.

1

0.8

0.6

0.4

0.2

0
20 4 8 12 16 20

p = 4
p = 6

p = 8
p = 10

p = 12

p = 2

h

U
P

6 10 14 18

FIGURE 11. Curves ofUP for some fixed values ofp.

– subcase 1:l ≥ max{2p−h+1 + 1, h}
In this case, nothing needs to be done.

– subcase 2: 2p−h+1 + 1 ≥ l < h
In this case, the given maximum fault latency is greater

than or equal to the maximum fault latency among nodes
from GLi but smaller than the maximum fault latency among
nodes fromGT . It is easy to see that there are enough idle
entries in the original fault secure schedule to accommodate
additional tests required for nodes inGT (again we only
need to conduct tests at everyl time slots), and the original
assignment remains unchanged.

– subcase 3:l < 2p−h+1 + 1

This corresponds to the case where the fault latency
among nodes inGLi is longer than the given maximum fault
latency. That is, the shaded area can no longer be used to
assign duplicates and tests ofGLi . Additional time slots
have to be inserted early in the schedule to ensure that the
original task, its duplicate and the tests are withinl distances.
The worst case happens when 2p−h − 1 additional time
slots are used for duplicates andb(2p−h − 1)/ lc additional
time slots are tests. For nodes fromGT , it suffices to add
additionalbh/ lc tests and there are enough idle entries to
accommodate them (again we only need to test nodes at

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



OPTIMAL FAULT-SECURE SCHEDULING 219

everyl slots); therefore, no additional time slots are required
for these nodes.

• Case 4: 1< h < p ∧ h + log(h − 1) ≥ p
This can be treated as similar to case 3, except that because
h + log(h − 1) ≥ p, the maximum fault latency is

max{2p−h+1 + 1, h} = 2p−h+1 + 1.

Subcase 2 of case 3 will never occur.

6.2. Non-unit length tasks and computation graphs of
arbitrary binary trees

So far we have only considered application graphs which are
complete binary trees (each node has zero or two children)
with unit length tasks. To relax this condition, we consider
cases for arbitrary binary trees (where each node has zero,
one or two children) with unit length tasks. Any arbitrary
binary tree with non-unit length tasks can be converted into
another arbitrary binary tree with unit length tasks. This can
be easily done by replacing each non-unit node of lengthl
with a sequence ofl unit nodes.

The concept of the level of nodes is also extended. Instead
of assigning each node a level, we assign a range of levels to
each node: [Lmin, Lmax], whereLmin is the distance between
this node and its farthest leaves andLmax is the depth of the
tree less the distance between the root and this node. A node
can be assigned to any level within the range [Lmin, Lmax].
Clearly, without the restriction on the number of processors
used, Theorem 1 still applies. That is, the minimum total
execution time of a fault-secure schedule forG(p) is still p,
wherep is the length of the longest path from the root to one
of the leaves. Because arbitrary binary trees are generally
‘thinner’ than the corresponding complete binary tree of the
same depth, we might use fewer processors to ensure a fault-
secure scheduling without increasing the execution time. To
generate a ‘thinnest’ schedule, we should assign nodes to
levels such that the maximum number of nodes in levels
is minimized; however, it is anN P-complete problem to
find the ‘thinnest’ schedule. More formally, each node is
assigned to a level within its range such that the following
expression is minimized:

max
1≤i≤p

{|Li |}.

Suppose the value obtained from the above expression isk,
which is smaller than 2p. Then we only need 2k processors
and to apply the basic fault-secure algorithm to ensure fault
security while its execution is bounded byp + 1. Due to the
irregularity of the structure of the arbitrary binary tree, there
is no systematic way of scheduling to ensure optimality,
rather we provide here only the general guideline.

In the example of Figure 4, both nodesN22 and N24 can
be assigned toL2 or L3. The thinnest schedule occurs only
when these nodes are assigned toL2 (see Figure 4b). Note
that one potential problem with this approach occurs when it
is impossible to logically split a task into many subtasks.

6.3. Multiple errors

Throughout the paper, we use the 1-fault-secure condition,
based on the assumption that multiple faults rarely occur
in a parallel/distributed system within a (relatively short)
time period. If the time period is sufficiently short, multiple
faults are reduced to simultaneous faults (faults that occur
at the same time) only. The validity of the 1-fault-secure
condition depends very much on how well we can control
the length of the period. More specifically, fault latency,
which is measured by the time between the occurrence of
a fault and the detection of this fault, should be reduced. We
assume that once a fault is detected, the faulty processor will
be soon detected and replaced so that a fault in one period
will not be propagated to the next period to cause multiple
faults.

If all the above approaches fail, we have to consider fault-
secure schedules that can cover multiple faults at the expense
of using additional processors and time slots. In general, to
ensurek-fault security at least(k+1)-version computation is
required. Under the assumption that each processor that tests
versions can fail, we need at leastk tests. To show the fault
security of a schedule, we need to prove one of the following
two conditions.

• At least one test generates a correct decision: pass when
all the versions are correct or fail when at least one
version is incorrect.

• All the versions are correct when all tests generate
incorrect decisions.

Based on the above two conditions, we have the following
way to produce a generalk-fault-secure schedule. Whenk
tests are used, they are assigned tok different processors and
they do not share processors with any of thek + 1 versions
to be tested. Therefore, a total of 2k +1 processors is used in
this case. Whenk +1 tests are used, they can share thek +1
processors with thek + 1 versions. In this case, onlyk + 1
processors are used. Notice that whenk > 1, the test used
is a majority voting and now the output comes directly from
the voted result. Since majority voting also masks faults, the
system obtained not only assuresk-fault security but also
achieves fault tolerance.

We study the case whenk = 2 to illustrate our extended
fault-secure scheduling. Let us assume the three versions are
labeledN1, N2 andN3 and tests are labeledt1, t2 andt3 (if
they are required). We start with the schedule of tests. Based
on the above discussion, tests could either be assigned to a
fourth and a fifth processor (two tests are required as shown
in Figure 12a) or share processors with three versions (three
tests are required as shown in Figure 12b). We first show that
the two configurations in Figure 12 are both 2-fault secure
and then we show that the number of tests used in both cases
is minimum.

In Figure 12a, if one of the two processors (P4 and P5)
on which the two tests are assigned is healthy, any faults
from the three versions (N1 on P1, N2 on P2 and N3 on
P3) will be caught or masked by the correct test; otherwise,
both processors (P4 and P5) are faulty and both tests could

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



220 J. WU et al.

FIGURE 12. The assignment of tests (a) to a fourth and a fifth processor and (b) to processors used.

generate any decision (pass or fail). Because all three
versions (on the healthy processors) produce correct results,
the final outcome is still safe. Assume now that we only
have one test which is assigned to a fourth processorP4,
and thatP4 and one of the processors on which one of the
three versions is assigned, sayP1, are faulty. Since the faulty
test could generate a pass decision, the outcome is not safe
when versionN1 is incorrect. Therefore, at least two tests
are required in this configuration.

In Figure 12b where the three tests and the versions
share three processors, at least one test always generates a
correct decision: pass when all three versions are correct
or fail when at least one version is incorrect. Because the
system terminates execution whenever a test generates a fail
decision, this configuration is safe. Assume we only have
two tests and they share the same processors with the three
versions. Without loss of generality, assume thatt1 and N1
share processorP1, t2 and N2 share processorP2 and N3
is assigned toN3. Suppose that bothP1 and P2 are faulty;
botht1 andt2 could generate pass decisions whileN1 andN2
could be incorrect. Therefore, at least three tests are required
in this configuration.

Once the basic configurations are identified, we can
schedule the given computation graph based on the approach
proposed in the previous sections. The details are beyond the
scope of this paper.

Whenk increases, the number of tests and versions also
increases, which makes our approach too costly for largek.
We can use one of the three following approaches to alleviate
this problem.

• Decreasek by shortening the period
Here we assume that there are at mostk faults in the system
within a specified time period. That is, this period is the
maximum length of time used to complete all the versions
of a task and their corresponding tests. If we can assign all
the versions of a task together with their tests within a short
period of time, we decrease the value ofk.

• Weaken the fault model
In our model we use a relatively strong fault model by

assuming that a fault could only be either permanent or
transient. By weakening the fault model, we can reduce
the number of versions or tests required. For example, by
assuming that all faults are independent (or equivalently, that
there are no correlated faults), two versions and one correct
comparator are enough to ensurek-fault security for anyk.

• Combine with other approaches
Algorithm-based fault tolerance (ABFT), [30] and [31],
encodes data at the system level in the form of some error-
correcting or detecting code. Most errors can be detected in
this scheme and in general, computations are not duplicated.
To ensure absolute fault security, we can combine our
approach with ABFT. ABFT reduces the value ofk while
our fault-secure scheduling ensures absolute fault security.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have analyzed two basic problems of fault-
secure scheduling for multiprocessor systems. Given a set of
computational tasks of unit length expressed as a complete
binary tree, first the tasks are scheduled such that the total
execution time is a minimum and no undetected single-
error result will be delivered. Second, given a deadline,
an algorithm is developed which generates a fault-secure
schedule using a minimum number of processors. These
algorithms include those in [14] and [15] as special cases.

In [32], two types of errors were considered. In the first
type (called contaminating errors), the use of an erroneous
operand in a given operation necessarily causes the result
of the operation to be incorrect. In the second type (called
redeemable errors), the use of an erroneous operand need not
cause the result of an operation to be erroneous. One could
extend the proposed schemes using those fault types.

Another possible direction is to apply other fault-tolerant
mechanisms to ensure fault-secure computations and to
increase system availability. The current approach does
not provide reconfiguration capabilities, i.e. the system
stops whenever a failure is detected. In the roll-forward
recovery approach, [18] and [19], a failure is detected

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



OPTIMAL FAULT-SECURE SCHEDULING 221

by a comparison mismatch that triggers a validation step.
However, the processors continue execution and a spare
(third processor) is used to determine which of the divergent
processors is correct. In this way, the availability of the
system is improved.

A more interesting study would be an investigation of
trade-offs in schedule length, number of processors and
number of faults in the system. To tolerate more faults
(within a given period), we can partition the period into
many small periods so that each period, with a high
probability, contains at most one fault. Based on the
proposed algorithms, the fault latency is upper bounded
by the depth of the given tree. One approach is to
partition the given tree into many small trees, where each
of them meets the given constraint on its depth (i.e. fault
latency). The cost of this approach is that the overall
schedule length may increase when we put together all
these trees as one schedule. To investigate different trade-
offs, we should probably start with some sample examples
in existing computer aided scheduling packages, such as
CASCH [33] and PYRROS [34]. Once some useful insights
are obtained, we may verify them through simulation (rather
than mathematical analysis since close form solutions are
unlikely).

ACKNOWLEDGEMENTS

We are grateful to the anonymous referees for their helpful
comments and suggestions which improved the quality of
this paper.

REFERENCES

[1] Lipovski, G. J. and Malek, M. (1987)Parallel Computing:
Theory and Comparisons, Wiley, New York.

[2] Siegel, H. J.et al. (1992) Report of the purdue workshop
on grand challenges in computer architecture for the support
of high performance computing.J. Parallel Distrib. Comput.,
13, 199–211.

[3] Bokhari, S. H. (1981) On the mapping problem.IEEE Trans.
Comput., 30, 207–214.

[4] Chaudhary, V. and Aggarwal, J. K. (1993) A generalized
scheme for mapping parallel algorithms.IEEE Trans. Parallel
Distrib. Syst., 4, 328–346.

[5] Chu, W. W., Holloway, L. J., Lan, M. T. and Efe, K. (1980)
Task allocation in distributed data processing.Computer, 13,
57–69.

[6] Fernandez, E. B. and Bussell, B. (1973) Bounds on the
number of processors and time for multiprocessor optimal
schedules.IEEE Trans. Comput., 22, 745–751.

[7] Kruatrachue, B. and Lewis, T. (1988) Grain size determina-
tion for parallel processing.IEEE Software, 5, 23–31.

[8] Lo, V. M. (1988) Heuristic algorithms for task assignment in
distributed systems.IEEE Trans. Comput., 37, 1384–1397.

[9] Gonzalez, Jr, M. J. (1977) Deterministic processor schedul-
ing. ACM Computing Surveys, 9, 173–204.

[10] Ramamoorthy, C. V., Chandy, K. M. and Gonzalez, M. J.
(1972) Optimal scheduling strategies in a multiprocessor
system.IEEE Trans. Comput., 21, 137–146.

[11] Kuhl, J. G. and Reddy, S. M. (1986) Fault-tolerance consid-
erations in large, multiple-processor systems.Computer, 19,
56–67.

[12] Geist, R. and Trivedi, K. (1990) Reliability estimation of
fault-tolerant systems: tools and techniques.Computer, 23,
52–61.

[13] Laprie, J. C. (1989) Dependability: a unifying concept
for reliable computing and fault tolerance. In Anderson, T.
(eds)Dependability of Resilient Computers, pp. 1–28. BSP
Professional Books, London.

[14] Banerjee, P. and Abraham, J. A. (1984) Fault-secure
algorithms for multiple processor systems.Proc. 11th Int.
Symp. on Computer Architecture, Ann Arbor, MI, June,
pp. 279–287. ACM Press, New York.

[15] Gu, D., Rosenkrantz, D. J. and Ravi, S. S. (1991)
Construction and analysis of fault-secure multiprocessor
schedules.Proc. 20th Int. Symp. on Fault Tolerant Computing
Systems, pp. 120–127.

[16] Wu, J. (1991) A fault-tolerant task scheduling method for
parallel processing systems.Int. J. Mini and Microcomputers,
13, 135–138.

[17] Siewiorek, D. P. and Swarz, R. S. (1992)Reliable Computer
Systems – Design and Evaluation(2nd edn), Digital Press,
Burlington, MA.

[18] Long, J., Fuchs, W. K. and Abraham, J. A. (1992) Forward
recovery using checkpointing in parallel systems.Proc. 1992
Int. Conf. Parallel Processing, Vol. 1, pp. 272–275. CRC
Press, Boca Raton, FL.

[19] Pradhan, D. K. and Vaidya, N. H. (1992) Roll-forward
checkpointing scheme: concurrent retry with nondedicated
spares.Proc. IEEE Workshop on Fault-Tolerant Parallel and
Distributed Systems,pp. 166–174. IEEE Computer Society
Press, Los Alamitos, CA.

[20] Johnson, B. W. (1989)Design and Analysis of Fault-Tolerant
Digital Systems, Addison-Wesley, Reading, MA.

[21] Fabre, J. C., Deswarte, Y., Laprie, J. C. and Powell, D. (1988)
Saturation: reduced idleness for improved fault-tolerance.
Proc. 18th Int. Symp. on Fault-Tolerant Computing, pp. 200–
205. IEEE.

[22] Krishna, C. M. and Shin, K. G. (1986) On scheduling tasks
with a quick recovery from failure.IEEE Trans. Comput., 35,
448–455.

[23] Liestman, A. L. and Campbell, R. H. (1986) A fault-tolerant
scheduling problem.IEEE Trans. Software Eng., 12, 1089–
1095.

[24] Srinivasan, A. and Shoja, G. C. (1991) A fault-tolerant
scheduler for distributed real-time systems.Proc. IEEE
Pacific Rim Conf. on Communications, Computers and Signal
Processing, pp. 219–222. IEEE Computer Society Press, Los
Alamitos, CA.

[25] Ahmad, I. and Kowk, Y.-K. (1994) A new approach to
scheduling parallel programs using task duplication.Proc.
1994 Int. Conf. on Parallel Processing, Vol. II, pp. 47–51.
CRC Press, Boca Raton, FL.

[26] Darbha, S. and Agrawal, D. P. (1994) A task duplication
based optimal scheduling algorithm for variable execution
time tasks.Proc. 1994 Int. Conf. on Parallel Processing,
Vol. II, pp. 52–56. CRC Press, Boca Raton, FL.

[27] Luque, E., Ripoll, A., Margalef, T. and Hernandez, P.
(1993) Static scheduling of parallel program graphs including
loops.Proc. 26th Ann. Hawaii Int. Conf. on System Sciences,

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998



222 J. WU et al.

pp. 526–534. IEEE Computer Society Press, Los Alamitos,
CA.

[28] Hu, T. C. (1961) Parallel sequencing and assembly line
problems.Operat. Res., 9, 841–848.

[29] Dai, D., Wu, J. and Fernandez, E. B. (1992)Optimal
Fault–Secure Scheduling Algorithms for Multiprocessor
Systems. Technical Report, TR-CSE-92-17, Florida Atlantic
University.

[30] Huang, K. H. and Abraham, J. A. (1984) Algorithm-based
fault tolerance for matrix operations.IEEE Trans. Comput.,
C-33, 518–528.

[31] Vinnakota, B. and Jha, N. K. (1993) Diagnosability and
diagnosis of algorithm-based fault-tolerant systems.IEEE
Trans. Comput., C-42, 925–937.

[32] Gu, D., Rosenkrantz, D. J. and Ravi, S. S. (1992)
Fault/error models and their impact on reliable multiprocessor
schedules.Proc. IEEE Workshop on Fault-Tolerant Parallel
and Distributed Systems, pp. 176–184. IEEE Computer
Society Press, Los Alamitos, CA.

[33] Ahmad, I., Kwok, Y.-K., Wu, M.-Y. and Shu, W. (1997)
Automatic parallelization and scheduling of programs on
multiprocessors using CASCH.Proc. 1997 Int. Conf. on
Parallel Processing, pp. 288–291. IEEE Computer Society
Press, Los Alamitos, CA.

[34] Yang, T. and Gerasoulis, A. (1992) PYRROS: static task
scheduling and code generation for message-passing multi-
processors.Proc. 6th ACM Int. Conf. on Supercomputing,
1992. IEEE Computer Society Press, Los Alamitos, CA.

THE COMPUTER JOURNAL, Vol. 41, No. 4, 1998


