Optimal Fault-Secure Scheduling

JEE WU, EDUARDO B. FERNANDEZ AND DONGLAI DAI

Department of Computer Science and Engineering, Florida Atlantic University,
Boca Raton, FL 33431, USA

Email: jie@cse.fau.edu

We consider here two basic fault-secure scheduling problems for multiprocessor systems. First,
given the number of processors in the system and a set of computational tasks of unit length
expressed as a complete binary tree, a scheduling algorithm is proposed such that the total execution
time is a minimum and no undetected single error result will be delivered. Second, given a deadline
and a computation tree, another algorithm is given which generates a fault-secure scheduling using
a minimum number of processors. We show that two previous approaches are special cases of
these algorithms. We also discuss the way to modify our scheduling to ensure a given fault latency
requirement. Finally, extensions that cover multiple errors, non-unit length tasks and computation
graphs of arbitrary binary trees are discussed.

Received September 17, 1996; revised June 2, 1998

1. INTRODUCTION The concept of fault security was first introduced in logic
The notion that parallel and distributed computer systems Circuit design [20]. Banerjee and Abraham [14] applied
[1] could function as powerful general purpose computing this idea to scheduling. In their approach, each node in
facilities has existed for quite some time. One of the the computation graph (which corresponds to a task) is
reasons for this is that they permit shorter execution times duplicated and their results are compared. The type of
of applications compared to uniprocessor systems with thefault controlled is restricted to a single hardware fault.
same technology. It is clear that they will be the key Since many time slots of processors are idle as a result
technique for the next generation of computer systems©f @ conventional scheduling, they suggested the use of
for high-performance applications [2]. Computer systems these idle time slots for duplicates. Comparison of the
consisting of thousands of processors are not a theoreticafesults of the duplicates achieves the fault-secure property
topic anymore; however, for years, software has been without affecting significantly the completion time of the
the main obstacle blocking applications for taking full COmputation graph.

advantage of such systems. Decomposing, either by the pore recently, Guet al. [15] further developed the idea
application software designer or by system software, a of Banerjee and Abraham by introducing the concept of
large task into many small concurrently executable segments_fault-secure schedulingn such a schedule, for every fault
(or subtasks) and assigning these segments to differenipattern of size at mog, the output of a system is guaranteed
processors to optimize either time or number of processorstg e either correct or tagged as incorrect. They considered
is a major challenge. schemes for some special types of computation trees and
A large amount of research on scheduling for multi- they showed that some well known parallel computation
processor systems has been conducted [3, 4, 5, 6, 7, 8paradigms have binary trees as computation task graphs.
9, 10]. In a multiprocessor system, when the number of They reduced the number of processors used in the fault-
processors increases, the probability of faulty processorssecure schedules of [14] by a factor of two or four without
?ls? infreases [11h]- _There is a need go apply applf_og_rli_atesignificantly delaying the total execution time.
ault-tolerance techniques to improve the system reliability _ .
[12] and dependability [13]. This paper is concerned with Hoyvever, in both [14] and [15], fault-secure sc_hedulmg
fault-secure scheduling based on fault-secure computationalgorlthITlS produce sc_hedu!e; undgrthe assumption that the
[14, 15]. In a fault-secure computation, the output of number of processors is unlimited, i.e. as many processors as
a system is guaranteed to be either correct or tagged a eeded are avallab_le. This assumpuon. is ngt yahd for many
parallel systems, either because there is a limited number of

incorrect. We assume here that fault-secure computation is ;
obtained by the use of duplication and comparison. A fault- processors or because several computation trees need to be
taccommodated.

secure schedule has the capability of detecting errors but no
of correcting them; fault-tolerant scheduling [16] has also In this paper, we study the following two fault-
the capability of correcting the detected errors. However, secure scheduling problems, where the computation graph
fault-tolerant scheduling uses more sophisticated and moreunder consideration is a complete binary tree with unit
costly techniques such as triple modular redundancy (TMR) length tasks, unit length comparators and with negligible
[17] and roll-forward recovery [18, 19]. interprocessor communication times.

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

208 J. WU et al.

1. Given the number of processors in the system, the (1,2,3,5,7,9)
tasks are scheduled such that the total execution time
is minimized and the resultant schedule is fault-secure.
For convenience, this number is restricted fo@here
h is a positive integer.

2. Given a deadline (not smaller than the lower bound for
conventional non-fault-tolerant scheduling), tasks are
scheduled on a minimum number of processors such
that they can still complete within the given time limit (2,5) (3) (1,9) (1)
and the resultant schedule is fault-secure.

(2,3,5) (1,7,9)

We first find bounds for the above two optimization
problems and then determine the fault-secure schedules
that achieve these bounds. Given a number of processors)) (1)
m = 2" and a computation tree with depih, when a
particular constraint op andh is satisfied, our fault-secure
scheduling algorithm processes the computation tree taking
the same minimum time as a non-fault-tolerant schedule
(except one additional time unit for testing), i.e. this result
matches the best result that a conventional scheduling coul
obtain. When this constraint op and h does not hold,
our fault-secure scheduling algorithm generates no idle slots
and the result is the best a fault-secure scheduling could
obtain. Similar results are also derived on the minimum
number of processors required to perform a fault-secure
schedule under a given time limit. We also show that the
scheduling algorithms in [14] and [15] are special cases of
our algorithms. Another salient feature of our approach
is that there is no special requirement for the comparators,Following [14, 15], we assume a multiprocessor system
which are assigned to regular processors. consisting of a set of processors. An error propagates
We assume that an output of a computation graph is from one processor to another only through regular
delayed until it is checked to be correct. In our case, there communication channels. We also assume that all the
is one output which is the root node of the application tree. processors have identical computing power and that a
However, in some applications such as real-time systems, arnprocessor can perform any operation of a computation,
output has to be generated within a specific time frame; that namely, a subtask or a test, within a unit of time. Similar
is, the comparison should be done before a given deadlineto [14] and [15] we concentrate in this paper on complete
A similar issue is fault latency, which is measured by the binary trees with unit task nodes. In Section 6, we will
time between the occurrence of faults and the detection of discuss how to relax this restriction.
these faults. In this paper, we provide general guidelinesto A computation grapl® is a directed acyclic graph (DAG)
modify the proposed scheme to satisfy a given fault latency in which a nodeN corresponds to a process or task and a
requirement. Extensions are also discussed to cover multipledirected edg&N;, Nj) connects two nodebl; and N;j. If
errors, non-unit tasks and computation graphs of arbitrary there is a directed path (sequence of adjacent arcs) om
binary trees. to Nj, we say that there is a precedence constraint between
Some other approaches have been proposed in recenl; andN;j. Figure 1 shows an example of a parallel version
years [16, 21, 22, 23, 24], which use fault-tolerant of merge sorting expressed as a tree structure. Each node
techniques such as recovery blocks and backup processorsn the tree corresponds to a task of a unit-time duration.
These attempt to protect against software faults or haveEach task receives two sorted lists from lower-level tasks
different objectives from ours. Task duplication or and produces a merged sorted list.
replication has also been used in scheduling for purposes A schedule is typically represented using a Gantt chart,
other than fault tolerance: in [7, 25, 26] to reduce the effect which is a two-dimensional array, with one row for each
of interprocessor communication times; in [27] to consider processor and one column for each time slot. Given a
the effect of the variability of task execution times. computation tre€ and a multiprocessor system, a schedule
Section 2 discusses background and introduces somer maps nodes it to entries of processor execution time,
notation. Section 3 considers fault-secure scheduling for where anentryis a crosspoint of a column and a row of a
a system with a fixed number of processors. Section 4 Gantt chart; that is, each time slot hasentries wheren is
describes fault-secure scheduling under time constraints.the number of processors. More specificallyN) = (P, i),
Section 5 evaluates the proposed scheduling algorithms andvhereN represents a node 1@, P is a processor andis a
compares our approach to [14] and [15]. Section 6 discussesunit-time slot in the execution of tasks 1B

(9)

FIGURE 1. Example of parallel merge sorting.

extensions of the proposed approach to cover multiple faults,
dnon—unit task lengths and computational graphs that are
arbitrary binary trees. A general guideline for modifying the

proposed scheme to meet a given fault latency requirement is
also givenin that section. Section 7 presents conclusions and
some ideas for future work, especially the use of trade-offs
in scheduling length, number of processors used and number
of faults in the system.

2. BASIC FAULT-SECURE SCHEDULES

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

OPTIMAL FAULT-SECURE SCHEDULING 209

PROPERTY. Let G(p) be a computation tree with depth node ofN; in the computation tree, then a direct test of the
p; the minimum total execution time of a schedule &(p) two versions ofN; can be avoided using the configuration
is p. shown in Figure 3a. However, the output of each oflihe

can be used as input for only one versiondf. When a

We assume that processor faults manifest themselves aglirect test is used foN,, as shown in Figure 3b, the output
errors that occur in one or more time slots and they can from one version oN,, sayN,, can be used as the input to
be either permanent or transient. A fault-free processor both versions oN;. In this case, there is more freedom to
P always produces the correct output if all the inputs for assign the other versioN, to a time slot, even afte,, N1
an operation orP are correct; it may or may not produce andt. As we will see later, such freedom might be vital to
erroneous output if some input is erroneous. ensure a minimum execution time. Althoudl could be
faulty and contaminate both versions Nf{, its failure will
eventually be caught by a comparator. In general, in order to
reduce fault latency in the latter ca$é, should be assigned

A fault-secure system never delivers an erroneous output,as early as possible without increasing the total execution
although it might misjudge a correct output to be an time (this issue will be discussed in detail in Section 6).
erroneous one. A-fault-secure systens a system which Therefore, the key in a fault-secure schedule is the selection
has the fault-secure property for akyaults in the system of different configurations of the type shown in Figures 2
within a specified time period. In this paper, we concentrate and 3.
on 1-fault-secure schedules, but the general cagefanilt- Extending the idea used in Figure 2 by replacing each
secure schedules is briefly discussed in Section 6. node by a subtree or a complete computation tree, we can

Our approach to achieve the fault-secure property is to derive the following scheme which uses only one or two
duplicate the execution of a task and then to compare theircomparators for the entire computation tree: replace nodes
results. Our scheduling algorithm does this by duplicating N and N’ in Figure 2a by two versions of a complete
each node and by carrying out binary equality tests on two computation treeG and each processor (except the third
versions. Fault detection occurs when some test reports ‘notprocessorPs) by a set of processors. We then derive two
equal'. If any test reports a ‘not equal’ we discard this output fault-secure schedules (one uses one comparator with one
and the system is still safe. It has been shown [15] that additional processor and the other uses two comparators but
to ensure 1-fault-security at least two-version computation no additional processors) that use a minimum number of
is necessary. However, depending on how versions aretime slots and minimum possible time, i.e. the depth of the
arranged, a comparator that compares two versions of atree plus one. This idea results in our basic fault-secure
node may or may not be necessary. Therefore, the keyschedule (BFSS) as will be discussed later.
issue here is how to arrange tests and duplicates. Let us We first define the concept of level of the nodes in the
start with the test arrangement. Clearly two versions of computation tree. Basically, the root node Gf p) is
a node should be assigned to two different processors toassigned a levgb (p will be the maximum level and all the
ensure a fault-secure computation. Suppose we want to tesbther levels are smaller) and any node thatdstance away
node N and its duplicateN’; we need to decide where to from the root is assigned a levgl — i. The node set in
locate the comparator: it could be located at one of the two G can be partitioned int@ subsetsij, Lo, ..., L, (called
processors or at a third processor. When the comparator isL-precedence partitions). Each node is denoted awhere
located at a third processor, the 1-fault-secure property isi is the level at which this node is located apd the label
straightforward. In Figure 2a, if one of the two processors assigned within level. Figure 4 shows thé&-precedence
(P or P2) on which two versions are assigned is faulty, it partitions for the example of Figure 1. In Figure 4, each
affects the outcome of one version; the comparatpo(node is represented hyij wherei is the level of this node
P3, a healthy processor, will catch the error.R§ is faulty andj is the label within the level (counting from the left to
then the comparator could generate any decision (pass oright).
fail), but because both versions on the healthy processors
produce correct results, the final outcome is still safe. If a
comparator is located in one of the two processors on which
two versions are assigned then 1-fault-security cannot be We start with a basic fault-secure scheduling method that
assured. Suppose the processor on which the comparatoachieves the bound shown in Theorem 1 without constraints
is assigned fails and the comparator passes the test, then then the number of processors used. A similar scheme was
version on this faulty processor would be considered correct. presented in [14] and [15]. However, it was not presented
To avoid this situation, two versions of the comparator (in an algorithmic format. In the next section we extend this
andt’ in Figure 2b) should be used and assigned to different simple scheduling by adding constraints on either time or on
processors. To choose between Figures 2a or 2b one shoulthe number of processors we are allowed to use.
note that the configuration in Figure 2a saves one test; In the basic fault-secure schedule (BFSS), the node set
however, the test has to be run on a third processor. of G(p) is partitioned into a set of precedence partitions

Next we examine the possibility of reducing the total {Lji, Lo, ..., Lp}. The processor set is partitioned into two
number of comparators used. Suppose tats the parent sets, Pyp and Pgown, Of equal size. The nodes @(p) are

DEFINITION. A fault-secure schedule either produces
correct outputs or tags these outputs as incorrect.

ProPOSITION. When h > p, the minimum total
execution time of a fault-secure schedule®ap) is p + 1.

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

210 J. WU et al.

Ps P2 P P P;

| |
E v

(a) (b)
FIGURE 2. The assignment of the comparator (a) to a third processor and (b) to one of two processors used.
t t

< <>

O

O N’ . AN

N 2 O ’
(a) (b)

FIGURE 3. Two possible fault-secure configurationsidf andN.

assigned level by level to entries of each time sloPgf in (4) assign duplicates of nodeslin to entries of slot of
the Gantt chart; that is, nodes in levedre assigned to time processors iPgown;

sloti (we assume time slots start from 1). The duplicated (5) caseone comparator>

node set is also assigned in the same way Ratan. When assign the comparator to a processor ndijg

two comparators are used to check two versions of the root
node, these two tests can be assigned to any two processors
in Pyp or Pgown at time slotp 4 1 (the last time slot). When

one comparator is used, the test has to be assigned to a
processor not ifPyp or Pyown. Clearly, the minimum number

of processors used [®yp| 4 | Pdownl = 2+ max{|L;|}, where

1 <i < p, and two comparators are used. One additional
processor is required when one comparator is used. In
summary, the algorithm can be expressed as:

In

or Pgown at time slotp + 1

two comparators>

assign two comparators to any two processors in
Pup Or Pgown at time slotp + 1

end case

the computation tree shown in Figure 4,
maxXLi, Lo, L3, L4} = 4. Figure 5 shows a schedule
produced by the BFSS algorithm for the graph of Figure 4

and two comparators are used. Each number in the first line

ALGORITHM Basic FaultSecureSchedule (BFSS)

(1) partition the node set @ (p) into {L1, Lo,..., Lp};

(2) divide the processor set into two equal-sized
partitions,Pyp and Pgown;

(3) assign nodes ih; to entries of slot of processors in

corresponds to time slot If Nj andN; are two versions of
the same node, we uséN;, NJf) to represent the equality
test on Nj. |If the test itself has two versions, we use
t(Nj, NJf) andt’(Nj, NJf) to represent themN; (N, NJ-*)
represents the fact that the computation Nf requires

Pup; inputs fromN* andN;".

THE COMPUTERJOURNAL, Vol. 41,

No.4, 1998

OPTIMAL FAULT-SECURE SCHEDULING 211

Na L= {Nu}
Na1 ~N
* Ls= {N31,N32}
N21 N22 N2a Na2s
O O L2= {Nn,Nzg, Nas, Nu}
Li= {Nu, N1z, Nis, N14}
Nu N12 Nis N 14

(a) (b)

FIGURE 4. Example ofL-precedence patrtitions.

1 2 3 4 5

Pi || Ni1 | Na1i(Ni1, Ni2) | Nay(Nay, Nag)

Py || Ni2 Naa N3z(Nas, Nag)
Ps || N13 | Naa(Niz, Nia) Na1(N31, Nag)
Py || N Nog t(Na, Ngy)

Ps || Nyp | Nag(Nip, Nyg) | Nay(Noy, Nao)

Ps || Nyy Nag N33(N3g, Npy)
Pr il Nig | Nyg(Nyg, Nyy) N4y (N3y, Ngy)
Ps || Ny Ny, t'(Ngy, Na)

FIGURE 5. Fault-secure scheduling for the computation graph of Figure 1 by the basic fault-secure schedule.

3. FAULT-SECURE SCHEDULING WITH A FIXED follows.

NUMBER OF PROCESSORS Let

X

We now study bounds on time for a fault-secure schedule g = max {% Yo ILjl- X} (1)
when the number of processors is fixed. We assume that the - j=1
number of processora is always a power of 2, say = 21, then
whereh is a positive integer. Whelm > p, there are enough
processors to carry out the basic fault-secure scheduling and T=zp+Iql.)

the processing time is bounded Ipy+ 1. Whenh < p, LEMMA 2.Givenm = 2" processors and a complete
there are nqt enough processors to execute according to th%inary treeG(p) withh < p, thenT > 2P~ 1 h — 1.
BFSS algorithm and we need to develop other fault-secure _
scheduling algorithms. Since at least two processors areProof. For the complete tree the sequence in (1) becomes:
needed to perform a fault-secure computations always whenx = 1,
greater than zero. 1
- - 2Pl _1=2PN"1_
For a non-fault-secure scheduling of an arbitrary compu- oh ’

tation treeG, Hu [28] found the following lower bound. whenx = 2,

LEMMA 1. [28]Givenm processors, the minimum tinfe . o1 h o
required to process a tre6(p) of unit tasks is bounded as ~ [2°7 + 2P]% —2=(2° -1+ 2P -1,

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

212 J. WU et al.

Proof. Since the number of nodes @&(p) is 2P — 1, the

whenx = p—h, total load (computation cost) for a fault-secure two-version
L computation is 2t1 — 2. If we ignore the precedence
[2p—1+ P2 4 ohtl 2h]_h —(p-h) constraints m_G(p)_, the number of time slots required for
2 the computations is
=@t o424+ 42 -0
0 2Pt —2 h+1 h—1
+@2° -1, — = [2P~h+1 _ o=(h=1;
whenx = p—h+1, 2P-h+l1_1 h=1
1 - { 2p—h+1 h 1.
[Pt 2P 24 M N (p—h) S _
2 This will obviously serve as a lower bound on this part of the
=@Myt + 2 - execution time. We need another time slot for the final test,
+2-D+ @t -0, thatis
2p-—h+1 h=1
e — I -

Combining the results from Theorems 1 and 2, we have

1
p—1 p-2 h+1 h h—1 07 —
[+27 0+ 42T+ 20+ 27+ 2]2h the following bounds on time for a fault-secure computation.

=@M o+ PP+ 4@ - THEOREM 3. Givenm = 2" processors and a complete
+ @ -D+@T-D+...+@"-1. binary computation tre&(p), the minimum tim& required
to process a fault-secure computation®bn m processors
Sinceh < p, the maximum item of the above sequence is at is bounded as follows:

X=p-—h.
From (1), we have p+1 h>p
T_ 2h4+h 1<h<pah+logh—1)>p
_ _ 1] 2°M141 1<h<pah+logh—1
qz[zp1+2F’2+...+2h+1+2h]%—(|0—h) 2P 1;:3 o=
2p-h-14,2_1 4
= (=P pin-1 @
Proof. Whenh > p, from Theorem 1 we have that =
From (2), we have p+ 1. Whenh = p, results from Theorems 1, 2, and
3 can be used; we havE = ma{p+ 1L, p+ 1,2+ 1
T>p+[q=2"P"+h-1. O (whenp # 1) orl1+ 1 (whenp = 1)} = p+ L

Therefore, wherh > p, T = p+ 1. Whenh < p and

THEOREM 1. Givenm = 2" processors and a complete h = 1, we haveT = max2P~* + 1,2P} = 2P based on

binary treeG(p) with h < p, the minimum timd@ required ~ Theorems 2 and 3. When & h < p, again results from
for fault-secure Schedu”ng is |arger than or equaab*h + both Theorems 2 and 3 can be used. In this case, the hlgher

h. bound out of the two is selected. We first determine the point
o)) where Theorems 2 and 3 generate the same bound. Suppose
Theorem 1 is directly derived from Lemma 2 by adding op-h 4y 3 _ 1 — 2p-h+1 1 1 thenh + logth — 1) = p. It
one to the bound in Lemma 2, i.e. an extra time slot is 5 gasy to see that whént-logth — 1) > p the bound from

required in fault-secure schedules for the final test. Note Theorem 2is higher than the bound from Theorem 3 and the
that Hu's bound is for non-fault-secure schedules; that opposite situation is true whéni- log(h — 1) < p. 0

is, schedules where tasks are not duplicated. Therefore, o

if a fault-secure schedule matches this bound (with one Based on Theorem 3, we have the following important
more step), this schedule is optimal. The following observation. Assume that the bounds in Theorem 3 are
theorem reveals another bound based on an ideal fault-secur@chievable, then whem+ logth — 1) > p (which includes

scheduling that does not create any idle entries in a Ganttthe first two bounds in Theorem 3) the corresponding fault-
chart. secure schedule processes the computation as fast as any

_ h non-fault-secure schedule where nodes in the computation
THEOREM2. Givenm = 2" processors and a complete 5ya not duplicated. Whem+log(h—1) < p (which includes
binary treeG(p), let T be the total execution time of afault- he |ast two bounds in Theorem 3) the corresponding fault-

secure schedule. if < p, then secure schedule does not generate idle entries (except entries
op—hit1 he1 in the last time sk_Jt use_d for comparison).
T> { p—ht1 - (3) Our next goal is to find fault-secure schedules that meet
2 +1 h#l the bounds of Theorem 4 (if such schedules exist). When

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

OPTIMAL FAULT-SECURE SCHEDULING

213

T
L

Gt

G Lm

A

FIGURE 6. Partition ofGp into Gt andGy ;.

Gu Gt . t

Gre / %

%%
Gr Yo

Gt , /

GL, ///

e———— 2 1= 2P" > h <1 5]

FIGURE 7. Fault-secure scheduling when> h.

h > p the basic fault-secure scheduling algorithm can be
directly applied. When 1= h < p, i.e. there are two
processors, we define a total order (or topological sorting

areas in Figure 7) generated in the schedulingef, are
used to assign the duplicates and tests of nod€s in
Depending on the values @gfandh, the idle entries may

order) of the computation tree based on the precedencenot be enough for the duplicates and the tests of nodes in
order. Nodes inG are assigned to one processor based G ;. Therefore, additional time slots might be needed.
on this total order and duplicates are assigned to the otherLet us first determine the point where there are just enough
processor. Since there ar 2 1 nodes inG, 2P time slots idle entries. We can achieve this objective in three steps.
are needed (which include the slot used for comparison). First, count the number of idle slots in the fault-secure

Obviously, there are no idle entries in the resultant Gantt
chart.

When 1 < h < p, there are not enough processors
available to execute the simple fault-secure scheduling.
Assume a complete binary tr&zr of depthh is a subtree of
the given computation tre® that shares the same root node
with G (see Figure 6). Lat= p — h, i.e.i is the number of
levels inG below the subtre&t. Nodes in the loweirlevels
consist ofm = 2" independent complete binary tre€s ;
of depthi. The basic scheduling strategy is as follows. Each
GL;,1 < j < m, s first assigned ten distinct processors.

In this case, the first2™" — 1 time slots are used to process
one version of all th& ; (see Figure 7). Then the simple
fault-secure schedule is used to assign two versiornatof

using additionah+1 time slots. The idle entries (the shaded

schedule of th&t part which may possibly be used in fault-
secure computation for the nodes@ ;. Second, count
the number of duplicates i ; and tests ofG;. Third,
arrange these computations and tests in the idle entries.

As the first step, we count the number of idle entries in
the fault-secure schedule @fr. The total number of entries
in the schedule for th&t partism(h + 1) = 2"(h + 1).
2(2" — 1) — 2 entries are used to include the two versions
of Gt and two entries for the two tests, and hence the total
number of idle time slots in the schedule®f is

"h+1)—-22"-1—2=2"(h—-1). (5)

As the second step, we count the number of entries
required for the duplicates and tests@f ;, to provide the
fault-secure property for the whot&(p).

THE COMPUTER JOURNAL,

\Vol. 41, No.4, 1998

214

J. WU et al.

Since the output of one versionGf ; is used as the input
to both versions o657, at least one test is required for each
subtreeGy;. That is, 3 entries are needed for the tests
and obviously 2(2' — 1) entries are used for the duplicates.
Then, the total number of entries required for the duplicates
and tests of5 | is

2y 2@ — 1) =2, (6)

Equating expression (6) to (5), we gét2 = 2"(h — 1),
theni = log(h — 1).

Wheni < log(h — 1), no additional entries are used and
the total time is

@ -1 +h+1=2"+h=2P"1n

which achieves the bound (when < log(h — 1)) of
Theorem 4. When > log(h—1), the additional time needed
can be calculated as follows:

2h+i _ 2h (h—1)
T

By adding the time used as shown in Figure 7 to the
additional time calculated above, we have

2 —h+1.

@ +h+@ —h+1)=22+1=2°M141

which achieves the bound (when >
Theorem 4.

logth — 1)) of

(4) assign comparators to two processors at time $lpt 2

end

l<h<p-—

begin

(1) define a complete binary tréer of depthh as a
subtree ofG(p); that shares the same root node
with G(p);

(2) define complete binary tre€s |, 1 < j < 2" as
subtrees of5(p) with their root nodes being nodes
at the(h + 1)th level;

(3) assign nodes iG ; to the first #-h _ 1 time slots
of distinct processors;

(4) assign two versions @t using BFSS starting from
slots 2-";

(5)if p—h > log(h — 1) then
2P~ _ h 4 1 additional slots are required assign
the second version @Lj to the idle entries
generated in the scheduling Gfr subject to:

() the duplicated version meets the precedence
constraints;

(i) the comparator is assigned after the assignment
of the two versions to be compared;

(ii) two versions of each node and their comparator
are assigned to three different processors

end

end case

Notice that the above derivation gives us only a necessary Figure 8 shows an assignment of a four-level complete
condition since we have not considered the precedencebinary tree tan = 2" = 8 processors. Sinde= log(h — 1)

constraints of the computatiorG;. The sufficiency
condition is obvious. We assign duplicates level by level

starting from nodes in level one and tests are assigned lasbound for non-fault-tolerant schedules.

in this case, wheré = 1 andh = 3, no idle entry is
generated. Clearly, this fault-secure schedule matches the
Figure 9 shows

after all the nodes in the corresponding subtree have beeranother fault-secure schedule that corresponds to the case
assigned. The idle entries to which duplicated tasks and testofi = p —h > log(h — 1), wherei = 3 andh = 3. Again,
are assigned are also arranged level by level starting fromno idle entry is generated.

level 2 + 1 (see Figure 7). The only constraint that needs
to be followed is that the two versions of each node and

Based on the GFSS algorithm, we can easily show that
given a number of processars= 2", whereh is a positive

the test for these two versions should be assigned to threeinteger, for any complete binary computation trég¢p),

different processors. The enforcement of this constraint is
straightforward and we leave it for the reader to complete the

there exists a fault-secure schedule that meets the bounds
defined by Theorem 3.

assignment. In summary, the general fault-secure scheduling

algorithm can be expressed as:

ALGORITHM GeneralFault SecureSchedule (GFSS)
case
p<h-—
begin
use algorithm Basi¢-ault SecureSchedule (BFSS)
end
l=h<p-—
begin
(1) define a total order of the computation tree based
on the precedences;
(2) assign nodes iG(p) (2° — 1 in all) to a processor
based on the total order;
(3) assign duplicated nodes @\ p) to another processor
based on the total order;

[* there are two processors */

4. FAULT-SECURE SCHEDULING UNDER
DEADLINES

There are cases where we are allowed to exceed the
minimum timep + 1. We now consider how to determine
the minimum number of processo®& p) in a fault-secure
computation under a given deadlipet- 1 + ¢, wherec is a
non-negative integer.

We generated in the last section a general fault-secure
scheduling algorithm that produces fault-secure schedules
with minimum total execution times for a given number of
processorsn (m = 2). Now the problem becomes: given a
G(p), select a schedule that produces a fault-secure schedule
of time T < p+ 1+ c and uses a minimum number of
processors.

First let us consider the delays, compared to the minimum

THE COMPUTER JOURNAL,

\Vol. 41, No.4, 1998

OPTIMAL FAULT-SECURE SCHEDULING 215
1 2 3 4 5
Py || N1u1 | N21(N1g, Ni2) | Nai(Nai, Na2) Nig t(Nis, Nig)
Py || Nig | Naa(Ni3, N1a) | Naz2(Naz, Naa) Ny t(Ns, N1g)
P3 || N3 | N2a(Nis, Nis) Ny, Na1(N31, Nag) | t(Nyg, Nyy)
Py || Nia | N2g(Ni7,Nig) Ny t(N1z,Niz) | t(Nay, Ngy)
Ps || Nis | Nyy(Ni1, Niz) | Nay(Nog, Nao) Ny t(N12, Ni)
Ps || Nis | Nya(Nis, N1a) | Nay(Nag, Nag) Ny #(N1a, Niy)
Pr || Niz | Nag(Nis, Nis) Ny Ny (N3, Nag) | H(Nis, Nys)
Pg || Nis | Nyy(N17, Nig) Ny t(Ni3, Ny3) | ¢ (Na, Nyy)

FIGURE 8. An example of fault-secure scheduling.

execution timep + 1, in the optimal results obtained in the
last section,

the delay isD; = 0 whenh > p;

the delay isDy = h+2P~" — (p+ 1) when(1 < h <
p) A (h+logth — 1) > p);

the delay isD3 = 2P~"1 4+ 1 — (p+ 1) when(1 <
h < p) A (h+logth —1) < p);

the delay isDg = 2P — (p+1) = 2P — p— 1 when
l1=h<np.

We intend to determinen = 2", whereh is a minimum

positive integer such th@;,i <r < 4, isless than or equal
to a givenc. More precisely,

let H1 be the minimumh in a basic fault-secure
schedule that satisfies

O<caAp=q;

let H, be the minimunh in a fault-secure solution that
satisfies

h+2P"—(p+1) < cAl < h < pap < h+logh—1);

let H3 be the minimunh in a fault-secure solution that
satisfies

2Pl 1 (p+1)<cal<h<pah
+logth—-1) < p;

let H4 = 1 in a fault-secure solution that uses two
processors and satisfies

Notice that whenc = 0, Hj will give us the solution
whereh = p, and Hz will give us the solution where
h = p — 1. Taking the minimumh = p—1,i.e.m = 2P 1
is the minimum number of processors to execute the fault-
secure computation dd(p) in p + 1 time slots. Foc > 0
the solution seH; is empty. Whert > 2P — p—1,Hs =1
is selected.

A detailed treatment of fault-secure scheduling under
deadlines can be found in [29].

5. DISCUSSION AND COMPARISON

In the performance analysis of a parallel system the number
of processors used and the execution time are considered as
measures of quality. We define two criteria to measure the
schedules developed by the proposed algorithms.

DEFINITION. Given a computationG(p), the time

overhead ratioly is

. total time of fault secure schedul€Bygs)
" total time of conventional schedul€E: <)

1. (7)

(0]

DEFINITION. Given a computation treeG(p), the

processor utilizatiotJp is

Us — number of non-idle entries in schedulds,) (®)
P = T humber of total entries in schedul@s;)

THEOREM4. Given G(p), the time overhead ratio of
fault-secure schedules produced by the general fault-secure
algorithm (GFSS) is

1/p h>p
M _p_1<c /2P "+h-1 1<h<pah
Ty= . tlogh-1)=p)
Then the selection df is as follows, 1+(B-2n)/@2P" 1<h<pah
+h-1) +logh—1) < p
h = min{H1, Ho, Hs, Ha}. 1 l1=h<p.
THE COMPUTERJOURNAL, Vol.41, No.4, 1998

216 J. W etal
1 2 3 4 5 6 7
Poll Nup | Mz | Mig | Nia | Naa(Nyp, Nypo) N3,2(N1,3, N1,4) N3,1(N2,1, N2 2)
Py || Mis | Mig | Ni7z | Nig | Naa(Nis,Nig) N3 a(N1,7,N18) N3,2(N3,3, N2 a)
Pyl Nio | Niwo | Niar | Nuga [Nes(Nio,Nito) | Nes(Niin, Nijnz) | Naa(Nas, Nae)
Py || Nias | Nia | Nigs | Nige | Noz(Niia, Nijg) | N2g(Nis, Nijte) | N3 a(Naz, Nag)
Ps [Niav | Nits | Nijgo | Nizo | Nao(Niar, Nijgg) | N2jo(Niae, Nij20) | Nas(Nae, N2 o)
Ps || Nigi | N2z | Nias | Ni2a | N2ai(Nior, Nijaz) | N22(Ni23, Nij2a) | Nae(N211, Noj2)
Pr || Nios | Nigs | Niar | Nias | N2a3(Nios, N1jas) | Noj1a(Ni27, Ni2s) | Naz(Ng 13, N214)
Pg it Ni2o | Nigo | Niai | Niaz | Najis(Ny20, N1j3o) | No,i6(N1,31, N1,32) | Nas(N21s, Nojie)
8 9 10 11 12 13
Py || Nat(Ns1,Nag) | Nsi(Nag,Nag) [Nige | Nigo | N Ny 3
Py || Na2(N3g,N3a) | Nso(Nag,Naa) | Nyy | Nyg | Npg Nig
Py || Naa(Nas,Nag) | Nis(Noy Nao) | Nex | Nig | Nig Nyig
Py || Naa(N37,N3s) Nig Nigo | Niar | Niga | Nas(Nig, Nyso)
Ps || Nyy(N3i,Nag) | Ny i(NoiyNoo) | Nigg | Nisa | Mo Ny
Ps | Nos(N3s,N3a) | Nyo(NagiNaa) | Niar | Nijs | Nio N 20
Pr || Nya(Nas, Nas) Ny o Ngi | Nig | Nias Ny 24
Ps N;,4(N3,7yN3,8) N{,zs Ni,zs N{,27 N{,zs NZI,IS(N;,%?N{,ZG)
14 15 16 17
Py || Npis(Nios Niso) | Naie(Vi31, Nigo) | Nag(N1s: Nojse) | 8(Nas, Nag)
P, N;,I(N;,l’ Ni,z) N;,z(Nll,s» N1,4) N:;,1(N21,1: N;,z) t(N3g, N:;,s)
P N2',3(N{'5, N{,e) N;,4(N1’,7» N{,s) N:;'z(Né,a» N;,«;) t(Ns,1, N:;,1)
Py N;,s(Ni,u, N{,u) N:;,s(N;,s, N;,s) t(Na,7, N:;,'/) t{Ns,1, NGI,I)
Ps || Napo(Ny13,Nita) | Nog(Niis,Nise) | Naa(NazNag) | t(Nag, N32)
Ps N;,Q(N;.l'fv N]I.,18) N;,IO(Ni,lgv N1,20) N:;,s(N;,s)) N;,m) t(N3.4’ N:;,4)
Pr || Noyy(Ny a1, Ni2a) | Naa(Ny 25, Ny 2a) | Nao(Na 11, Mg 10) | H(N35, Nas)
Py || No1a(Ni27,Nios) | Naz(N3 s, Npvs) t(N33, N3 3) t (Ns1, Ng, 1)
FIGURE 9. An example of fault-secure scheduling.
Proof. Given a computation tre&(p), andm = 2N schedule generated by the general fault-secure scheduling

processors iM, the total execution time of a conventional

(non-fault-secure) schedule is

TNFs =

Similarly, the total execution time of a fault-tolerant

p

2Ph4th-1 1<h<p

2p-1 l=h<p.

h>p

Trs=

algorithm (GFSS) is

p+1
2P-h 4 h

2P

h>p
l<h<pah+logh-1)>p
2111 1<h<pAh+logh-1)<p
l1=h<p

The theorem follows directly from the definition @§.

THE COMPUTER JOURNAL,

Vol. 41,

No. 4,

1998

OPTIMAL FAULT-SECURE SCHEDULING 217

Based on Theorem 4, an insignificant amount of overhead Note that in order to ensure that the maximum fault latency
is generated in the first two cases, i.e. whern> p or is bounded more tests are needed than in a fault-secure
l<h<pah+logh—1) > p. See Figure 10. schedule which does not consider fault latency. Depending
on the values of, m and p, additional time slots may or
may not be required. Following Theorem 4, we modify our
fault-secure scheduling based on four different cases.

THEOREMbS. Given G(p), the processor utilization of a
fault-secure schedule produced by our general fault-secure

algorithm is
eCaselip<h
1/2M-PL(p+1) h>p Whenl = 1, i.e. the fault latency is one unit, each task and
(2PM141y/2PP+h) 1<h<pah its duplicate should be assigned to the same time slot and
Up— +logth—1)>p they should be checked at the next time slotp = h then
P71 1 l<h<pah there are only 2-1 empty entries at slot 2 while there are
+logh—-1)<p 2P tasks at slot 1. Therefore, one additional time slot needs
1 l=h<p. to be added between slots 1 and 2. In general, there are
(10) 2P~(=D tasks at slot and 2 — 2P~ empty entries at slot
i +1. Since 2-(-D ~ 2P _ 2P (fori > 1), there is
Proof. Given a computation tre&(p) andm = 2" no need for additional time slots to test tasks in slots other
processors the total number of slo&;) in a fault-secure than slot 1. There are enough empty entries where tests can
schedule generated by algorithm GFSS is be assigned. Ip < h, then there are™?! > 2P empty
entries in slot 2, i.e. no additional time slot is needed. When
Et=mxT 1 < | < p, comparisons are needed evemyme slots. An
2M(p+1) h>p efficient way is to check only those tasks scheduled at time
2h(2P—h 4 h) 1<h<pnah slot !(I, k=1,2,...,|p/l]. Clearly, there are more empty
+logh—1)>p entries at slokl + 1 than the n.u.mber .of tasks at skit
MNP+l 41 1) 1<h<pah Hen.c_e, there is no ne;ed for addiltlonal time slots to sphedule
+logh—1) <p additional tests in this case. Finally, wh@n< | nothing _
op+1 1=h<np. needs to be changed, because the depth of the computation

tree is shorter than the given maximum fault latency.
Similarly, the total number of non-idle (or busy) entriesin ¢ Case 2: =h < p

a fault-secure schedule generated by algorithm GFSSis |n this case only two processors are used and there are
no empty entries. Any additional tests require additional

1
ZEL . h>p time slots. Again, it suffices to check tasks at slkks
Epb=1 2 +1+2 l<h<p k =1,2,...,|p/l]. This results in a total of additional
2P 1=h<p time slots| p/1].
The theorem follows directly from the definiton of ®Case3:l<h<pah+logh-1)>p
processor utilizatiot), = Ep/E; (see Figure 11). O This case is shown in Figure 7, where the number of idle

. .) entries is more than or equal to the number of duplicates of
Itis easy to see that the fault-secure scheduling algorithmsy| the tasks fromG,., where 1< i < mandm = 2"

in [14] and [15] are special cases of our algorithm when tests. Let us first calculate the maximum fault latency. We

h=pandh=p-1. consider two types of nodes: nodes fr@n and nodes from
GL,. The maximum fault latency among nodes fr@& is
6. EXTENSIONS h (see Figure 7) and among nodes fr@p, is 2P~ —1+s,

wheres is the number of time slots that have idle entries used
to fill the 2"(2' — 1) duplicates of nodes froiG |, and the 2
Fault latency is defined as the time between the occurrenceests. Based on Figure § satisfies the following equation:

of a fault and the detection of this fault. In our discussion on M2 1) 42" = 2P

fault-secure scheduling, we do not consider the fault latency
issue, i.e. the duplicate and the comparator of a task can =@ - 2" @2

be a;signed to any timg slot. However, many app.Iications F @22 4 42— oD
require a bounded maximum fault latengywherel is a

positive integer. The valuk is decided based on a real- then

6.1. Fault latency

. . e —h —h

time deadline, the frequency of an output, or other similar 2PN +1<s<2P 42

constraints. Again, our schedule should detect every fault Therefore, the maximum fault latency among nodes from
that manifests itself. Gy, is 2P~"*1 1 1. Overall, the maximum fault latency is:

Givenm = 2" processors, a complete binary tr&
p i p y - ‘Ep) max{zp—h+l+ 1, h}
and a bounded maximum fault latencywe modify our
fault-secure schedule to ensure that the distance between 8ased on the value df the given maximum fault latency,
task, its duplicate and the comparator is no more than we consider the following subcases:

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

218 J. WU et al.

14—

1.0+ L

NN
TN

02 ANEAN =~

—_— e \o
L Ny A, P-4
L4 \;_—_.———' @
0 | I | I | I
0 2 4 6 8 10 12
h
FIGURE 10. Curves ofTp for some fixed values of.
17----.\.---
[]
0.8~
[]
L]
[]
0.6~ L
o
-]
[}
[]
04 [1Y
p=2 o=4 ® \
= []
\ p 6 p — 8 p 1 1Y
0.2~ o =
o, \ S p= 1&
\\ o N b
®. \ I~ \, '\' ®
0 | | I.\:\.\:\’:-%;‘;C\l%\. | | |
0 2 4 6 8 10 12 14 16 18 20
h
FIGURE 11. Curves ofUp for some fixed values op.
—subcase 1: > max2P~"*t1 4+ 1 h} —subcase 3: < 2P+l 41

In this case, nothing needs to be done. This corresponds to the case where the fault latency

among nodes i ; is longer than the given maximum fault

—subcase 2:2 M1 1 1>1 <h latency. That is, the shaded area can no longer be used to

In this case, the given maximum fault latency is greater assign duplicates and tests Gf;. Additional time slots
than or equal to the maximum fault latency among nodes have to be inserted early in the schedule to ensure that the
from G, but smaller than the maximum fault latency among original task, its duplicate and the tests are wittistances.
nodes fromGr. It is easy to see that there are enough idle The worst case happens wheR™2 — 1 additional time
entries in the original fault secure schedule to accommodateslots are used for duplicates an@P " — 1)/1 | additional
additional tests required for nodes @1 (again we only time slots are tests. For nodes frday, it suffices to add
need to conduct tests at evdrtime slots), and the original additional |h/I] tests and there are enough idle entries to
assignment remains unchanged. accommodate them (again we only need to test nodes at

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

OPTIMAL FAULT-SECURE SCHEDULING 219

everyl slots); therefore, no additional time slots are required 6.3. Multiple errors

for th n . -
or these nodes Throughout the paper, we use the 1-fault-secure condition,

eCased:l<h<pah+logh—-21)>p based on the assumption that multiple faults rarely occur
This can be treated as similar to case 3, except that becausé a parallel/distributed system within a (relatively short)
h 4+ logth — 1) > p, the maximum fault latency is time period. If the time period is sufficiently short, multiple
faults are reduced to simultaneous faults (faults that occur
max2P "1 41 hy=2P M1 1 at the same time) only. The validity of the 1-fault-secure
condition depends very much on how well we can control
Subcase 2 of case 3 will never occur. the length of the period. More specifically, fault latency,

which is measured by the time between the occurrence of
a fault and the detection of this fault, should be reduced. We
assume that once a fault is detected, the faulty processor will
be soon detected and replaced so that a fault in one period
So far we have only considered application graphs which arewill not be propagated to the next period to cause multiple
complete binary trees (each node has zero or two children)faults.
with unit length tasks. To relax this condition, we consider If all the above approaches fail, we have to consider fault-
cases for arbitrary binary trees (where each node has zerosecure schedules that can cover multiple faults at the expense
one or two children) with unit length tasks. Any arbitrary of using additional processors and time slots. In general, to
binary tree with non-unit length tasks can be converted into ensurek-fault security at leastkk+ 1)-version computation is
another arbitrary binary tree with unit length tasks. This can required. Under the assumption that each processor that tests
be easily done by replacing each non-unit node of lehgth versions can fail, we need at le&stests. To show the fault
with a sequence dfunit nodes. security of a schedule, we need to prove one of the following
The concept of the level of nodes is also extended. Insteadtwo conditions.

of assigning each node a level, we assign a range of levels to o
each node: L min, Lmax, whereLmin is the distance between ~ ® At least one test generates a correct decision: pass when

6.2. Non-unit length tasks and computation graphs of
arbitrary binary trees

this node and its farthest leaves dngax is the depth of the all the versions are correct or fail when at least one
tree less the distance between the root and this node. Anode ~ Versionis incorrect.
can be assigned to any level within the rantf, Lma- e All the versions are correct when all tests generate

Clearly, without the restriction on the number of processors incorrect decisions.

used, Theorem 1 still applies. That is, the minimum total
execution time of a fault-secure schedule®ymp) is still p,

wherep is the length of the longest path from the root to one
of the leaves. Because arbitrary binary trees are generall
‘thinner’ than the corresponding complete binary tree of the

same depth, we might use fewer processors to ensure afaultfhiS case. Whek+ 1 tests are used, they can sharekthiel

secure scheduling without increasing the execution time. To processors with thie + 1 versions. In this case, only+ 1

generate a ‘thinnest’ schedule, we should assign nodes toprocessors are used. Notice that wikes 1. the test used
levels such that the maximum number of nodes in levels i '

. oo o is a majority voting and now the output comes directly from
is minimized; however, it is afN P-complete problem to Jorty J P y

. . . the voted result. Since majority voting also masks faults, the
find the ‘thinnest’ schedule. More formally, each node is Jorry d

. o > system obtained not only assuredault security but also
assigned to a level within its range such that the following achieves fault tolerance

expression is minimized:

Based on the above two conditions, we have the following
way to produce a generkifault-secure schedule. Whén
tests are used, they are assignekidiferent processors and
ythey do not share processors with any of khe 1 versions
to be tested. Therefore, atotal &f-2 1 processorsis used in

We study the case whén= 2 to illustrate our extended
fault-secure scheduling. Let us assume the three versions are
12?,(3“ Lil}. labeledN1, N2 and N3 and tests are labeldg, t; andts (if
they are required). We start with the schedule of tests. Based
Suppose the value obtained from the above expression is on the above discussion, tests could either be assigned to a
which is smaller than 2 Then we only needRprocessors fourth and a fifth processor (two tests are required as shown
and to apply the basic fault-secure algorithm to ensure faultin Figure 12a) or share processors with three versions (three
security while its execution is bounded py- 1. Due to the tests are required as shown in Figure 12b). We first show that
irregularity of the structure of the arbitrary binary tree, there the two configurations in Figure 12 are both 2-fault secure
is no systematic way of scheduling to ensure optimality, and then we show that the number of tests used in both cases
rather we provide here only the general guideline. iS minimum.
In the example of Figure 4, both nodils; and N24 can In Figure 12a, if one of the two processof; (and Ps)
be assigned th, or L3. The thinnest schedule occurs only on which the two tests are assigned is healthy, any faults
when these nodes are assigned.to(see Figure 4b). Note from the three versionsN; on P;, N2 on P, and N3 on
that one potential problem with this approach occurs when it P3) will be caught or masked by the correct test; otherwise,
is impossible to logically split a task into many subtasks. both processorsR; and Ps) are faulty and both tests could

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

220 J. WU et al.

Ps P Py P; Py P P, Py

et

I | |
(a) (b)

FIGURE 12. The assignment of tests (a) to a fourth and a fifth processor and (b) to processors used.

generate any decision (pass or fail). Because all threeassuming that a fault could only be either permanent or
versions (on the healthy processors) produce correct resultsfransient. By weakening the fault model, we can reduce
the final outcome is still safe. Assume now that we only the number of versions or tests required. For example, by
have one test which is assigned to a fourth proce8gor assuming that all faults are independent (or equivalently, that
and thatP, and one of the processors on which one of the there are no correlated faults), two versions and one correct
three versions is assigned, 9y are faulty. Since the faulty = comparator are enough to ensuréault security for any.

test could generate a pass decision, the outcome is not safe

when versiorN; is incorrect. Therefore, at least two tests ® Combine with other approaches
are required in this configuration. Algorithm-based fault tolerance (ABFT), [30] and [31],

In Figure 12b where the three tests and the versions €ncodes data at the system level in the form of some error-
share three processors, at least one test always generatesS9Tecting or detecting code. Most errors can be detected in
correct decision: pass when all three versions are correctth’s Scheme and in general, computations are not duplicated.
or fail when at least one version is incorrect. Because the 10 ensure absolute fault security, we can combine our
system terminates execution whenever a test generates a faffPProach with ABFT. ABFT reduces the valueloivhile
decision, this configuration is safe. Assume we only have our fault-secure scheduling ensures absolute fault security.
two tests and they share the same processors with the three
versions. Without loss of generality, assume thaind N; 7. CONCLUSIONS AND FUTURE WORK

share processdPy, t and N2 share processdP, and N3))
is assigned tdN3. Suppose that botR; and P are faulty:; In this paper we have analyzed two basic problems of fault-

botht; andt, could generate pass decisions wiileandN secure scheduling for multiprocessor systems. Given a set of

could be incorrect. Therefore, at least three tests are requirecOmMputational tasks of unit length expressed as a complete

in this configuration. binary tree, first the tasks are scheduled such that the total
Once the basic configurations are identified, we can €X€cution time is a minimum and no undetected single-

schedule the given computation graph based on the approacf™r result will be delivered. Second, given a deadline,

proposed in the previous sections. The details are beyond thé*" &lgorithm is developed which generates a fault-secure
scope of this paper. schedule using a minimum number of processors. These

Whenk increases, the number of tests and versions also@/90rithms include those in [14] and [15] as special cases.

increases, which makes our approach too costly for large N [32], two types of errors were considered. In the first

We can use one of the three following approaches to alleviateYP€ (called contaminating errors), the use of an erroneous
this problem. operand in a given operation necessarily causes the result

of the operation to be incorrect. In the second type (called

redeemable errors), the use of an erroneous operand need not

cause the result of an operation to be erroneous. One could

extend the proposed schemes using those fault types.
Another possible direction is to apply other fault-tolerant

_ : : o mechanisms to ensure fault-secure computations and to

the versions of a task together with their tests within a short increase system availability. The current approach does

period of time, we decrease the valuekof not provide reconfiguration capabilities, i.e. the system

o Weaken the fault model stops whenever a failure is detected. In the roll-forward

In our model we use a relatively strong fault model by recovery approach, [18] and [19], a failure is detected

e Decreasé by shortening the period

Here we assume that there are at nkofstults in the system
within a specified time period. That is, this period is the
maximum length of time used to complete all the versions
of a task and their corresponding tests. If we can assign all

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

OPTIMAL FAULT-SECURE SCHEDULING 221

by a comparison mismatch that triggers a validation step. [11] Kuhl, J. G. and Reddy, S. M. (1986) Fault-tolerance consid-
However, the processors continue execution and a spare erations in large, multiple-processor systeemputer 19,
(third processor) is used to determine which of the divergent 56-67.
processors is correct. In this way, the availability of the [12] Geist, R. and Trivedi, K. (1990) Reliability estimation of
system is improved. fault-tolerant systems: tools and techniqgu€smputer 23,

A more interesting study would be an investigation of 52-61.
trade-offs in schedule length, number of processors and[13] Laprie, J. C. (1989) Dependability: a unifying concept
number of faults in the system. To tolerate more faults for reliable com_p_utlng and_ fault tolerance. In Anderson, T.
(within a given period), we can partition the period into gi?ég;gﬁgfiggg'g Ol_foF;s(S)IrI]Ient Computersp. 1-28. BSP
many small periods so that each period, with a high [14] Banerjce, P and’Abraha;n 3. A (1984) Fault-secure
probabili(;y, lcon_tt?]ins atth m(f)stltoln(i fault.. Basedbon ':jhed algoritjhm’s fo.r multiple proce’ssor. syétenfsnoc. 11th Int.
E;Ort)r?;e de?)t?loréf Thsé gi\?enautreea. engymlas :p?pf)riracl?uig ?o Symp. on Computer Architectyrédnn Arbor, MI, June,

. .) pp. 279-287. ACM Press, New York.

partition the given tree into many small trees, where each [15] Gu, D., Rosenkrantz, D. J. and Ravi, S. S. (1991)

of them meets the given constraint on its depth (i.e. fault Construction and analysis of fault-secure multiprocessor
latency). The cost of this approach is that the overall schedulesProc. 20th Int. Symp. on Fault Tolerant Computing
schedule length may increase when we put together all Systemspp. 120-127.

these trees as one schedule. To investigate different tradef16] wu, J. (1991) A fault-tolerant task scheduling method for
offs, we should probably start with some sample examples parallel processing systenist. J. Mini and Microcomputers

in existing computer aided scheduling packages, such as 13, 135-138.

CASCH [33] and PYRROS [34]. Once some useful insights [17] Siewiorek, D. P. and Swarz, R. S. (199R¢liable Computer

are obtained, we may verify them through simulation (rather Systems — Design and Evaluati¢®nd edn), Digital Press,
than mathematical analysis since close form solutions are Burlington, MA.
unlikely). [18] Long, J., Fuchs, W. K. and Abraham, J. A. (1992) Forward

recovery using checkpointing in parallel systeigc. 1992
Int. Conf. Parallel ProcessingVol. 1, pp. 272-275. CRC
Press, Boca Raton, FL.

We are grateful to the anonymous referees for their helpful [19] Pradhan, D. K. and Vaidya, N. H. (1992) Roll-forward

comments and suggestions which improved the quality of checkpointing scheme: concurrent retry with nondedicated
this paper sparesProc. IEEE Workshop on Fault-Tolerant Parallel and

Distributed System9p. 166—174. IEEE Computer Society
Press, Los Alamitos, CA.
REFERENCES [20] Johnson, B. W. (1989pesign and Analysis of Fault-Tolerant
[1] Lipovski, G. J. and Malek, M. (1987arallel Computing: 21 Eliltal ?yétegsAddlson;:/Vvisley, R\]eact::ilng,dMI;A. I D. (1988
Theory and Comparison§Viley, New York. [21] Fabre, T eswartg, - Laprie, : -and Powell, D. ()
21 Siegel H. Jet al (1992) R t of th d ksh Saturation: reduced idleness for improved fault-tolerance.
[2] Siegel, H. J.et al X) Report o 1€ purdue workshop Proc. 18th Int. Symp. on Fault-Tolerant Computipg. 200—
on grand challenges in computer architecture for the support 205. IEEE
of high performance computing. Parallel Distrib. Comput. - ' . .
13 199-211 [22] Krishna, C. M. and Shin, K. G. (1986) On scheduling tasks
' ' with a quick recovery from failurdEEE Trans. Comput35,
[3] Bokhari, S. H. (1981) On the mapping probleBEE Trans. 448—425 y Py
207-214. i
4 gﬁmzl:: 30, VO 4 A L3 K. (1993) A lized [23] Liestman, A. L. and Campbell, R. H. (1986) A fault-tolerant
[4] Chaudhary, V. and Aggarwal, J. 1. () A generalize scheduling problemlEEE Trans. Software Engl12, 1089—
scheme for mapping parallel algorithniSEE Trans. Parallel

o 1095.
Distrib. Syst, 4, 328-346. [24] Srinivasan, A. and Shoja, G. C. (1991) A fault-tolerant
[5] Chu, W. W., Holloway, L. J., Lan, M. T. and Efe, K. (1980)

LT . scheduler for distributed real-time systenidroc. |IEEE
Task allocation in distributed data processiGgmputer 13, Pacific Rim Conf. on Communications, Computers and Signal
57-69.

Processingpp. 219-222. IEEE Computer Society Press, Los
[6] Fernandez, E. B. and Bussell, B. (1973) Bounds on the Alamitos, CA.
number of processors and time for multiprocessor optimal [25] Ahmad, I. and Kowk, Y.-K. (1994) A new approach to
scheduleslEEE Trans. Comput22, 745-751. scheduling parallel programs using task duplicatiBroc.

ACKNOWLEDGEMENTS

[7] Kruatrachue, B. and Lewis, T. (1988) Grain size determina- 1994 Int. Conf. on Parallel Processingyol. Il, pp. 47-51.
tion for parallel processingEEE Software5, 23-31. CRC Press, Boca Raton, FL.

[8] Lo, V. M. (1988) Heuristic algorithms for task assignmentin [26] Darbha, S. and Agrawal, D. P. (1994) A task duplication
distributed systemsEEE Trans. Comput37, 1384-1397. based optimal scheduling algorithm for variable execution

[9] Gonzalez, Jr, M. J. (1977) Deterministic processor schedul- time tasks.Proc. 1994 Int. Conf. on Parallel Processing
ing. ACM Computing Survey$, 173-204. Vol. 11, pp. 52-56. CRC Press, Boca Raton, FL.

[10] Ramamoorthy, C. V., Chandy, K. M. and Gonzalez, M. J. [27] Luque, E., Ripoll, A., Margalef, T. and Hernandez, P.
(1972) Optimal scheduling strategies in a multiprocessor (1993) Static scheduling of parallel program graphs including
systemIEEE Trans. Comput21, 137-146. loops.Proc. 26th Ann. Hawaii Int. Conf. on System Sciences

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

222 J. WU et al.

pp. 526-534. IEEE Computer Society Press, Los Alamitos, [32] Gu, D., Rosenkrantz, D. J. and Ravi, S. S. (1992)

CA. Fault/error models and their impact on reliable multiprocessor
[28] Hu, T. C. (1961) Parallel sequencing and assembly line schedulesProc. IEEE Workshop on Fault-Tolerant Parallel

problemsOperat. Res.9, 841-848. and Distributed Systemspp. 176-184. IEEE Computer
[29] Dai, D., Wu, J. and Fernandez, E. B. (199@ptimal Society Press, Los Alamitos, CA.

Fault—Secure Scheduling Algorithms for Multiprocessor [33] Ahmad, I., Kwok, Y.-K., Wu, M.-Y. and Shu, W. (1997)

SystemsTechnical Report, TR-CSE-92-17, Florida Atlantic Automatic parallelization and scheduling of programs on

University. multiprocessors using CASCHProc. 1997 Int. Conf. on
[30] Huang, K. H. and Abraham, J. A. (1984) Algorithm-based Parallel Processing pp. 288-291. IEEE Computer Society

fault tolerance for matrix operationtEEE Trans. Comput. Press, Los Alamitos, CA.

C-33,518-528. [34] Yang, T. and Gerasoulis, A. (1992) PYRROS: static task
[31] Vinnakota, B. and Jha, N. K. (1993) Diagnosability and scheduling and code generation for message-passing_multi-

diagnosis of algorithm-based fault-tolerant systeif&EE processorsProc. 6th ACM Int. Conf. on Supercomputing,

Trans. Compuf.C-42, 925-937. 1992 |IEEE Computer Society Press, Los Alamitos, CA.

THE COMPUTERJOURNAL, Vol.41, No.4, 1998

