
A Hierarchical Naming System for Scalable
Content Distribution in Large Networks

Yaxiong Zhao†, Jie Wu‡, Cong Liu§, and Mingming Lu¶
†Amazon.com Inc., ‡Temple University, §Sun Yat-Sen Uuniversity, ¶Central South University

Emails: †zhaoyaxi@amazon.com, ‡jiewu@temple.edu, §gzcong@gmail.com, ¶mingminglu@csu.edu.cn

Abstract—The Internet has become a platform for delivering
and consuming content. Additionally, mobile devices consume
a significant chunk of content, which poses a unique challenge
for provisioning efficient content delivery and is not addressed
in contemporary infrastructures. In this paper, we present a
naming system that provides Internet-scale content distribution
service with a particular emphasis on content delivery across
mobile devices. The basis of the system is a highly flexible and
expressive content naming scheme. It is flexible in expressing
diverse application requirements. To achieve fast name resolution,
we design a two-level indexing network using Distributed Hash
Table (DHT). This architecture is open and scalable. It utilizes
a key-value storage system built on DHT. Our content delivery
protocol relies on content routers to balance the load of delivering
content and to throttle denial-of-service attacks. The feasibility
of the system is analyzed based on a realistic modeling of the
Internet. Simulation studies are performed to verify its usefulness
and performance.

Index Terms—Content distribution, naming system, content
routing, distributed system.

I. INTRODUCTION

The Internet connects billions of users across the planet.
However, the changes of customer requirements cripple many
of the fundamental designs of the Internet. Most importantly,
the Internet has evolved into a global content sharing platform,
which poses many requirements that are not addressed by the
original objectives of the Internet. Another important trend is
that people are increasingly using mobile devices to access
content on Internet. The prediction is that mobile content con-
sumption will become a significant part of the Internet content
sharing. In this paper, we use the term dynamic networks to
refer to such networks that involve mobile devices accessing
content through the Internet. Host and content mobility is a
norm in dynamic networks, but they are difficult to support in
the existing Internet architecture.

In this paper, we present the design and evaluation of a
scalable naming system for dynamic networks. The basis of
the system is a attribute-value-based content and host naming
scheme, which is highly flexible, expressive, and extensible. In
order to support host and content mobility, our system employs
dynamic binding between names and addresses. We design
an open architecture for distributing name resolution requests
among a large number of name servers (NS). Specifically,
the system organizes NSes into a P2P overlay network called
the name resolution network, which stores the names and
locations of the content. Every end host connects with a
name resolver (NR) and delegates all name resolution requests

to it. NRs are connected with name resolution networks.
We build the name resolution networks based on Chord-
based DHT networks [1]. Semantic-aware naming (SAN) is
employed to provide the upper-layer applications an easy-
to-use programming interface. Actual content delivery, after
content names are resolved, is done through Internet transport
layer services.

We conduct simulations using realistic network settings
extracted from real network topology data [2]. Simulation
results prove the applicability of the system and demonstrate
its performance. Our primary contributions in this paper are
as follows:

• A novel design of a naming system for content distribu-
tion in Internet-scale dynamic networks.

• A suite of protocols and algorithms that achieve fast and
scalable name resolution and content distribution.

• A feasibility analysis of the proposed system and exten-
sive simulation studies.

The rest of this paper is organized as follows: Section II
presents our naming scheme. Section III discusses our name
resolution algorithms. Section IV elaborates on the transport
protocol for content delivery. Section V analyzes the feasibility
of the implementation of our proposed system. Section VI
evaluates our design using simulations. Section VII presents
relevant previous works. Section VIII concludes this paper.

II. CONTENT AND HOST NAMING

A. Content naming

A content name in our system contains three parts: name
modifiers (NMs), performance cues (PCs), and a tag. We
elaborate on each of them in the following sections.

1) Name modifier: A name modifier is a semantic aware
name (SAN) of the content object. An NM is a string enclosed
by a pair of square brackets. The string is a Boolean expression
(BE). A BE consists of three parts: an attribute name, an
attribute value (or two values), and an operator. For example,
“[height, 180, ≤]” describes that the “height” attribute has
values less than or equal to “180.” Using BEs facilitates
efficient content aggregation. Based on the operators used in
NMs, they are classified into equality NMs (a “=” operator)
and aggregate NMs (<, >, ≤, ≥, IN). Here, IN means inside
a range.



2

2) Performance cue: Inspired by the work in [3], we
introduce performance cues (PCs) in content name. A PC has
the same format as a normal NM. It is indicated by a “.”
symbol at the beginning of the NM string. A PC is a semantic
interface exposed to the upper-layer application by the naming
system, which grants the applications the capability to specify
certain performance requirements. For example, “[., delay,
100, <]” indicates that the delay should be less than 100. PCs
are not mandatory but directive, since our system is built on top
of IP networks, which only provide “best-effort” service. The
underlying protocols, name resolvers, and content routers are
free to choose appropriate actions based their local policies.
Details on PC processing in name resolution algorithm are
presented in Section III.

3) Tag: A tag is a semantic-free bit signature that uniquely
identify the content object itself. As discussed in previous
works [4], cryptographic hash function is used to obtain a 128-
bit value for a content object. This tag is a unique identity
of the data itself. It can be used in various scenarios to
provide additional performance gains. For example, a cache
management service can use tag to facilitate fast lookup; and
the integrity of contents is provable by verifying its tag. Tag
is not used in name resolution. The reasons to prefer NMs,
which are semantic-aware, to Tags are as follows:

• SFN/SFR causes semantic mismatch between the content
name and the underlying storage details. The same object
may be stored in different formats, which results into
distinct tags. They will be treated as multiple objects
in SFN/SFRs. However, such differences are really not
crucial for users to access the content. For example,
the same movie may be encoded using different video
codec, whereas the viewers are only concerned the visual
presentation.

• SFN/SFR are difficult to understand and interact with for
users. A opaque binary string does not help users decide
what to do with the content it refers to.

• SANs are more flexible than SFN/SFRs. SANs can
be converted to SFN/SFRs, for example, through a
hash function. But it is impossible to infer SANs from
SFN/SFRs.

Nonetheless, SFN/SFRs are considered more efficient for
machines to process. This is why they are included in the
content naming. But our system works with SANs most time.
The use of SFN/SFRs is left for potential future work. The
number of TAGs is equal to that of the content objects in the
whole network. For the reason mentioned above, the number
of names is much less than that of TAGs. This fact reduces
the hardware requirements to implement the system. A realistic
analysis on the feasibility of the system is in Section V.

B. Host naming

We borrow the design of DNS in our host naming scheme.
The details can be found in relevant standards [5], [6] and
are omitted here. In a fully-qualified content name, the host
name is treated as a literal string name modifier, although its
processing method is unique. For the fast processing of names,

MAN

Name registration:
[attribute1=val1][attribute2=val2]

attribute1attribute2

Request:
[attribute1=val1][attribute2=val2]

Name resolver

Content holder

Content consumer

Fig. 1. The overview of our name resolution system. There is a two-level
hierarchical indexing system organized around attributes and their metadata.
Content holder registers the names of their contents in to the corresponding
ARNETs. User requests a content object by its name. The name resolution
network returns the hostname and the corresponding IP address to the
requester.

the host name should be the first NM. In order to eliminate
the ambiguity with a normal literal string NM, we use double
brackets to enclose a host name: “[[host name]][NM1]...”.
Note that host name can also be an IP address. In case the
user prefers to obtain content from a provider, he/she can
put the name of that provider in the content name he/she is
interested in. For example, Alice wants to find news about
Libyan’s revolution from “cnn.com”, she will coin a name
“[[cnn.com]][Libyan revolution][type,=,text]”.

III. NAME RESOLUTION

A. Attribute-wise resolution network

Fig. 1 depicts the overall architecture of our naming system.
The whole system has two levels: an attribute meta network
(AMNET) at the higher level; and multiple attribute-wise
resolution networks (ARNETs) at the lower layer, which
store the name records. Both AMNET and ARNET require a
key-value storage service. The following sections present the
details of these two networks. An ARNET for attribute “X”
indexes name records according to their values of attribute X.
Thus, if a name record does not define attribute X, it will not
exist in this ARNET. There are the same number of ARNETs
as the number of attributes defined in the system. They are
not required to be physically separated, i.e. a name server may
join multiple resolving networks. As a result, every ARNET
contains only a fraction of the name records in the system,
which balances the workload. The union of the name records
on all ARNETs consummates the name records in the entire
name space. This scheme requires that every name record
must be replicated |NM | times over |NM | name resolving
networks for |NM | number of name modifiers of the name
record. This will potentially require a huge amount of storage
space. The impact of this design on the overall practicality
and performance of the system is presented in Section V.

When a name resolution request is issued from an end-host,
it is first sent to its connected name resolver (NR). The end-
host delegates its name resolution to the NR and waits for the



3

Algorithm 1 Name resolution algorithm
1: INPUT: name a name needs to be resolved;
2: OUTPUT: A host name and an IP address;
3: ATTRname ← the attributes of name;
4: ATTRARNET ← the attributes of connected ARNETs;
5: ATTRmatch ← ATTRname ∩ATTRARNET ;
6: if ATTRmatch = ϕ then
7: ATTR← a random attribute from ATTRname;
8: Query AMNET to get available name servers for ATTR;
9: Delegate the query of name to the name server with the

smallest RTT to the name resolver;
10: else
11: for Each attribute attr of ATTRname do
12: Obtain the hash value of attr;
13: end for
14: Find the name server s that has the minimum distance to the

location pointed by the hash value of attr;
15: Forward the request to s;
16: end if
17: if Query failed; then
18: Try the next available name server with the minimum distance

to the hashed location;
19: end if
20: Return the response obtained from s;

response. A NR accesses multiple ARNETs by connecting to
the name servers of the ARNETs. As shown in Fig. 1, a host
named “no1.ccm” connects with a name resolver, which are
connected with two name servers of two distinctive ARNETs.
An ARNET contains name servers (NSes) that store name
records. The NR forwards the request to the ARNET that has
the minimum latency by sending the resolution request to the
corresponding name server. As discussed above, name records
are indexed according to their NMs. NMs can be literal strings
or BEs. We use ChordDHT [1] to organize ARNETs. There are
different types of NMs that require different treatment when
storing them into the ChordDHT.

• String-valued equality NMs. A string hash function pro-
vided by the DHT of its associated ARNET is applied.

• Numerical-valued equality NMs. The entire value range
is distributed on the identifier space of the DHT. The
mapping is provided as default in ChordDHT.

• Numerical-valued range NMs. These refer to the NMs
with operators <, >, ≤, ≥, IN. Follows the same value-
space-to-identifier-space mapping presented above, such
NMs are replicated on all name servers of which associ-
ated value range overlapped with the range specified by
the NMs.

B. Meta network

An NR forward a name resolution request to the ARNET(s)
that it is aware of. Such information is configured by a human
network administrator. If the NR has no connected ARNET
for any of the attributes defined by the resolution request, the
portal will consult another network to access the appropriate
ARNETs. This network is called attribute meta network or
AMNET. An AMNET is also a distributed database. However,
it stores the IP addresses of the name servers of every ARNET.

Name Meaning
numname the total number of names present in the system
numattr the total number of attributes present in the system
avgnumattr the average number of attributes per name in the system
k the maximum number of ARNETs a name can replicate
numns the total number of name servers in the system
num

attri
ns the total number of name servers for attribute attri

numattr
ns the average number of name servers per attribute

avgnumarnet the number of ARNETs connect to each name resolver

TABLE I
SYMBOLS USED IN THE PERFORMANCE ANALYSIS OF ALGORITHM 1

The stored data looks like “[attribute, IP addresses]”. The key
is the attribute name, the value is the IP addresses of all
name servers on the ARNET of that attribute. There is only
one AMNET on the entire Internet. It handles request like:
“what machines stores name record information for attribute
X”, and returns a set of IP addresses of the machines of the
ARNET for attribute X. In our design, the AMNET should be
managed by a independent global organization like ICANN;
and various ARNETs are managed by individual participating
organizations and ISPs.

C. The name resolution algorithm and its performance anal-
ysis

We list the pseudo code for the name resolution algorithm
in Algorithm 1. Its complexity is analyzed in this section. The
metric we consider is the hop count traversed on ARNETs
for a end-user to resolve a content name. First, we define the
notations used in the analysis in Table I. Suppose every name
resolver connects to the most popular ARNETs for the end-
users connecting to it. Suppose that the probability of every
attribute appears in every name follows a uniform distribution,
then for each attribute, the number of names containing that
attribute is numname× avgnumattr

numattr
. The total number of names

in the system is avgnumattr × numname because names
are replicated on ARNETs associated with its attributes. So
each ARNET should allocate a proportional number of name
servers, which is given by the following equation:

numattri
ns =

numname × avgnumattr

numattr

avgnumattr × numname
× numns

=
numns

numattr
(1)

That is, all name servers are equally allocated for all
ARNETs. So the average query hop-count for each ARNET
is log2(

numns

numattr
) = log2numns − log2numattr. The above

analysis is valid only for the case where k ≥ avgnumattr. If
k < avgnumattr, Eq. 1 becomes:

numattri
ns =

k

avgnumattr
× numns

numattr
(2)

IV. CONTENT DELIVERY

A. Basic content transport scheme

The control logics of the content delivery is separated from
transport layer details. An end-host sends the name resolution



4

mobility path

A AA

Fig. 2. Selecting a gate keeper for mobile host “A” in a tree topology. It
is straightforward to find a content router that preserve the shortest path on
a tree topology, i.e. by selecting the lowest common ancestor of the possible
leaves where the host may reside.

request to the system, which is processed as discussed above.
After obtained the address of the content holder, the end-host
send requests in a separate channel to the content holder. Host
mobility is handled by a novel idea called mobility realm
(MR). A mobile host belongs to a MR, if the host can be
addressed at any time by a static entity called gate keeper.
Every mobile host must register its address to the gate keeper
of the MR it resides. The intention is to guarantee the routing
performance: for any MR, the shortest path connecting any
host outside of the MR and any mobile host within the MR
contains a gate keeper. For example, as depicted in Fig. 2,
select the lowest common ancestor of all the addresses that
the mobile host is possible to reside in the hierarchical address
tree. Gate keeper is the key to efficiently handling content
mobility and host mobility. A mobile content holder reports its
host name and the IP address of the gate keeper (remember that
it is statically addressed). The information is then sent with
the request to the gate keeper. The gate keeper then obtains the
current IP address of the content holder by looking up its local
address table, and forward the request to the host. Similarly,
a mobile host needs to report its name and the IP address of
its gate keeper, so the content holder can dynamically forward
the content back to a mobile host.

B. Load balance

Our load balance scheme is based on dynamic name res-
olution. In the first place, our naming system has the ability
to return appropriate results when multiple hosts providing
the same contents, which provide a effective way for content
holders to deploy distributed content store system that spread
the load. Our scheme, on the contrary, is centered on the dy-
namic name resolution. There are an overlay of content routers
(CRs). They are situated over the underlying IP networks.
CRs do not directly possess data but only forward and cache
content sent from end-hosts. When an end-host is overloaded,
it informs a down-stream CR and then requests the CR to
help itself forward part of its content. The CR achieves this by
registering itself as the content holder of the data the end-host
wants to migrate to the ARNET. This registration has a TTL.
The logic is that the CR is for transient load migration. A TTL
ensures that the registered contents get purged from ARNETs
to avoid a persistent load on CRs. If a end-host is constantly

overloaded, the content provider should deploy more machines
instead of relying on the load balancing feature.

V. FEASIBILITY

A. Name server

We use the number of web pages to estimate the number of
name records. The estimated count of indexable web page is
11.5× 109 as of 2005. Since these objects can be aggregated,
the actual name counts can be noticeably less. We assume that
the number of name records is 1010. A name record contains
a name, a host name, and an IP address. According to the
measurement study in [7], the average URL length ranges from
62 to 81 for 8 countries. We use 81 bytes as the average URL
length, and a 128-bit tag is included in every content name.
So the average content name size is 97 bytes. We obtained
the average length of the domain names of the top 1 million
sites listed on Alexa [8] to 14.8 bytes. The size of an IPv4
address is 4 bytes. So the average size of a name record is
the sum of these three parts, which is 116 bytes. The size
of all name records on Internet is 1012 bytes. Suppose each
name record is replicate for 5 times. If we assume 10% of
them are frequently requested and should be put into RAM,
then the required RAM size is 5×1011 bytes. Assuming that a
machine has 16GB or 16×109 bytes, less than 50 machines is
enough to store all name record in RAM. Therefore, memory
is not a limiting factor for performance or cost. We assume
that the rate of the name resolution request will be in the same
order as the HTTP request. We use the analysis results given
in [9]. Each peripheral name server handles 20,000 requests
per second. If 8 core machines are used, each core needs to
process 2,500 requests per second. Each request consumes 400
microseconds. This is considered an achievable requirement
according to the analysis in [9]. The required bandwidth is
16Mbps given an average name record size of 116 bytes,
which is a modest requirement. Suppose each named content
has a valid lifetime of 1 week. In 1 week, all name records
are refreshed and need to register again. The equivalent name
registration rate is 16,535 names per second. So the estimated
registration bandwidth cost is 15.3Mbps.

B. Content router

Content routers’ use of hardware and network resources
is hard to predict since it depends on the sizes of content
objects and underlying transport protocols. According to the
statistics of Google [10], the average size of web pages is
320KB. This is about 3,200× of the size of the name records
on Internet. Since content delivery requires lower response
rate than the name resolution, disks can be used. The disk
volume of the existing commercial PCs can have a 1,000×
space of the RAM. Suppose each content object needs to be
replicated for 10 times, the required machines will be 32 times
of the name servers. It is even more difficult to predict the
bandwidth use of content routers. The only plausible argument
is that most CDN service providers can make profits from their
business, therefore, it is reasonable to predict that by deploying
such infrastructure of content routers, companies can make



5

Abstract AS graph

Abstract AS router
Tier-2 AS link

40Gbps

Tier-1 AS link
10Gbps

Name server

Name 
resolver

1Gbps

100Mbps

End-user/-host

Tier-1-to-2 AS link
10Gbps

Fig. 3. The illustration of the simulation settings. An abstract AS graph is
extracted from a detailed router-level graph. End hosts are wired with routers
of every AS. A name server and a name resolver is allocated for each AS.

profit from content holders who are willing to provide better
performance to their users.

C. AMNET

Recall that AMNET is a globally-visible distributed
database of the servers location information of the ARNETs.
The required storage space will be much smaller than the
ARNETs. Since name servers are contributed by individual
organizations, their IP addresses are generally stable, so the
registration load on AMNET should be easy to handle. The
query load, however, can be quite overwhelming, since any
name resolver can initiate queries if it has not sufficient
knowledge of the ARNETs. A solution would be letting all
name resolvers maintain connections to at least one name
servers of all ARNETs. If the total number of attributes
present in the system is small, this can be a viable solution.
But it is generally believe that the interests of Internet users
follow a long-tail distribution, which means a large number
of attributes are necessary to accurately describe the majority
of user demands. Another possible, solution will be using
caching on name resolvers to reduce unnecessary queries
to AMNET. Similar techniques are used in CoDNS [11].
We deem AMNET is best deployed and maintained by a
global third-party organization, like ICANN. Considering the
relatively low hardware requirements, this makes most sense
from a economic and political point of view.

VI. PERFORMANCE EVALUATION

A. Simulation settings

The Internet topology data from CAIDA data trace is
used to extract a realistic network setting. The data set
contains a router-level topology of over 3 million routers
are collected. More details of the dataset are available at
CAIDA’s website [2]. We extract the AS-level topology from
this topology, with the help of a router-to-AS mapping data.
We model the link delay between ASes in three parts: queuing
delay, transportation delay, and propagation delay, which are
determined by the routers’ processing power, link bandwidth,
and geographic distance between end-routers, respectively.
The link delay is shown in Fig. 3 and the propagation delay
is derived from the geographical distance between ASes. A
machine of 16GB memory and 8-3GHz core CPU is used as

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

C
D

F

Delay (milisecond)

 Name resolution delay

Fig. 4. The CDF of the name resolution delay.

name server and content router. We perform a measurement
of the processing speed on the machine. The result shows that
the average processing time is about 100ms.

Each end-host populates 10 name records. The total number
of end-hosts is 1,703,858, and the totally number of name
records in the system is 17,038,580. Each name record has 5
attributes, of which 2 are string valued and 3 are numerical
valued. A end-host is chosen uniformly to an existing name
record in the system. We perform 10,000 such requests and
record their delays, and plot a CDF figure of the obtained
data. To measure the content delivery throughput, we randomly
chose 100 end-hosts to request the same content.

B. Name resolution delay

Besides the delay incurred by network transport, another
important source is the internal processing speed on namer
servers. This metric is closely related to the size of the stored
elements. We employ a hash-table. Based on the analysis in
Section V, the total number of name records is 1010, and the
total number of ASes in the system is 18,810, the average
number of name records per name server is 531,632. The
results of simulation has small deviations due to imbalanced
loads. The delay of name servers looking up the name record
is measured by the actual running time of the corresponding
code, on a 3GHz Intel CPU. The CDF of the delay of name
resolution is given in Fig. 4. The delay is measured as the
time duration from the request is issued to the results are
received by the requester. The measured largest delay is around
700ms, which is resultant from the inter-continental paths.
We found that the processing time on each name servers is
a major source of the end-to-end delay. The lookup in DHT
networks is very sensitive to the placement of data. This set
of simulation is insufficient to evaluate its impacts since the
settings are much simplified. This will be addressed in our
future work. The average value is 275ms. Overall speaking,
the performance is quite appealing. Note that we have not
applied any optimization techniques here, like exploiting query
locality or caching.

C. Content delivery throughput

TCP is used for the transport between end-users and
content-holders, and content routers. Congestion control and
reliability follows the basic TCP designs, certainly it cannot



6

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

 

 

Th
ro

ug
hp

ut
 (M

bp
s)

Host ID

 Achieved throughput

Fig. 5. The achieved throughput of all hosts.

compete with the optimized implementation in modern operat-
ing systems. A 100MB file is sent to all requester, we plot the
achieved bandwidth for all the 100 requesters in Fig. 5. We
conclude that the content delivery scheme achieves sufficiently
good results. The access link bandwidth is 100Mbps. However,
we would like to point out that the simulation settings for
throughput measurement is extremely simplified from the real
Internet environment. In the future work, we will evaluate the
scheme in a testbed environment.

VII. RELATED WORK

In [12], the authors study the impact of DNS lookup on
the performance of web content retrieval. Their findings show
that DNS lookup delay contribute a significant part of the
content delivery delay, which proves the importance of fast
name resolution systems. Semantic free reference (SFR) [4]
is a proposal to use fixed-length bit-strings to index all web
objects. A global DHT-based P2P network is used to store
and indexing all SFRs. Our system differs from SFR in
two important ways: our use of semantic-aware names, and
hierarchical indexing networks, which results into a more
commercially applicable system. In [13], the authors advo-
cate a layered naming architecture for the future Internet.
Intentional Naming System (INS) [14] is another hierarchical
naming protocol. Our naming scheme uses independent name
modifiers, which does not enform fixed hierarchy. Our design
provides more flexibility in implementation at the cost of
name record replications. INS’ hierarchical routing structure
is based on names, which limits the flexibility of participating
organizations. CDNs utilize various existing infrastructure
to facilitate efficient content delivery. Among many CDN
designs, CoralCDN [15], [16] has a hierarchical P2P network
to support fast name resolution. CoralCDN’s P2P network is
based on physical network connection speed, which oppor-
tunistically finds the closest content copy to the requester. Our
design only resolves names to content holders, which dose not
itself handles content copying. CoralCDN has a data transfer
protocol [17] provide anycast service for content delivery
from multiple content-holders. Our system is more general
than CDN in the sense that it is implemented as a global
infrastructure and grant individual organizations the ability to
manage their own content delivery policy.

VIII. CONCLUSION

We present the design and evaluation of a naming system
for scalable content distribution for dynamic networks. The
system aims to be a general content distribution platform for
the future Internet. We designed a flexible and extensible
naming scheme based on independent name modifiers. To
achieve fast name resolution, we employ a novel hierarchical
name resolution network, which achieves fast name resolution
through name record replication and provides a simple and
flexible interface to application developers. Using this flexible
naming system, we described how to balance system load.

ACKNOWNLEDGEMENT

This work was partially supported by the National Natural
Science Foundation of China under Grant No.60903222.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Netw., vol. 11, pp.
17–32, February 2003.

[2] CAIDA, “Topology research,” http://www.caida.org/research/topology/.
[3] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek,

and R. Morris, “Flexible, wide-area storage for distributed systems
with wheelfs,” in Proc. of NSDI’09. Berkeley, CA, USA: USENIX
Association, 2009, pp. 43–58.

[4] M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from
DNS,” in Proc. of NSDI’04. Berkeley, CA, USA: USENIX Association,
2004, pp. 17–17.

[5] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034
(Standard), Internet Engineering Task Force, Nov. 1987. [Online].
Available: http://www.ietf.org/rfc/rfc1034.txt

[6] ——, “Domain names - implementation and specification,” RFC 1035
(Standard), Internet Engineering Task Force, Nov. 1987. [Online].
Available: http://www.ietf.org/rfc/rfc1035.txt

[7] R. Baeza-Yates, C. Castillo, and E. N. Efthimiadis, “Characterization
of national web domains,” ACM Trans. Internet Technol., vol. 7, May
2007.

[8] Alexa, “Top 1 million site list,” http://s3.amazonaws.com/alexa-
static/top-1m.csv.zip.

[9] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 181–192,
August 2007.

[10] Google, “Web metrics: Size and number of resources,”
http://code.google.com/speed/articles/web-metrics.html.

[11] K. Park, V. S. Pai, L. Peterson, and Z. Wang, “CoDNS: improving
dns performance and reliability via cooperative lookups,” in Proc. of
SOSP’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 14–
14.

[12] C. E. Wills and H. Shang, “The contribution of dns lookup costs to web
object retrieval,” WPI technical report, 2000.

[13] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,
I. Stoica, and M. Walfish, “A layered naming architecture for the
internet,” SIGCOMM Comput. Commun. Rev., vol. 34, pp. 343–352,
August 2004.

[14] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The
design and implementation of an intentional naming system,” SIGOPS
Oper. Syst. Rev., vol. 33, pp. 186–201, December 1999.

[15] M. J. Freedman, “Experiences with coralcdn: a five-year operational
view,” in Proc. of NSDI’10, ser. NSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 7–7.

[16] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
content publication with coral,” in Proc. of NSDI’04. Berkeley, CA,
USA: USENIX Association, 2004, pp. 18–18.

[17] M. J. Freedman, K. Lakshminarayanan, and D. Mazières, “Oasis: anycast
for any service,” in Proc. of NSDI’06, ser. NSDI’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 10–10.


