
A Cluster-Based Backbone Infrastructure for Broadcasting in MANETs ∗

Wei Lou and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431, USA

E-Mail: {wlou, jie}@cse.fau.edu

Abstract
Broadcasting is a fundamental service in mobile ad hoc
networks (MANETs). Two categories of algorithms, based
on source-independent and source-dependent connected
dominating sets (CDSs), are proposed in literature to re-
duce the broadcast redundancy. In this paper, a cluster-
based backbone infrastructure is proposed for broadcast-
ing in MANETs. The backbone of the network takes ad-
vantage of the cluster structure and only requires cluster-
heads and some selected gateways to forward the broad-
cast packet. The static backbone (cluster-based source-
independent CDS) consists of fixed clusterheads and se-
lected source-independent gateways. Each clusterhead in-
dividually selects its gateways to connect all the cluster-
heads in its coverage set. The dynamic backbone (cluster-
based source-dependent CDS) consists of fixed clusterheads
and dynamically selected gateways. It is constructed step by
step as the broadcast packet traverses the network. Each
clusterhead selects some gateways to forward the packet
when it sends the packet to all the clusterheads in its cov-
erage set. Both the static and dynamic backbone struc-
tures have a constant approximation ratio to the minimum
CDS. Simulations are conducted to compare both the static
and dynamic backbones with another cluster-based source-
independent CDS algorithm proposed recently.

1 Introduction

Mobile ad hoc networks (MANETs) are collections of au-
tonomous mobile hosts without the help of center base sta-
tions. Applying such networks into practice brings many
challenges to the protocol design, such as routing in highly
dynamic networks, allocating shared wireless channels and
saving limited bandwidth. Trade-offs are needed in the pro-
tocol design to achieve these conflicting goals.

∗This work was supported in part by NSF grants CCR 9900646 and
ANI 0073736.

Broadcasting is a fundamental service in MANETs. The
broadcast nature of wireless transmissions, that all the
neighbors of a host will receive the packet when the host
transmits a packet, extremely limits the scalability of the
network. When the size of the network increases and the
network becomes dense, even a simple broadcast operation
may trigger a huge transmission collision and contention
that may lead to the collapse of the whole network. This is
referred to as the broadcast storm problem [9]. Therefore,
building some type of backbone infrastructure for a network
can enhance the performance of the whole network when
the network becomes dense. Basically, the backbone of a
network converts a dense network to a sparse one to relieve
the communication overhead of the whole network. The
cluster structure is a simple backbone infrastructure which
has only two levels of hierarchical structure. The network
is partitioned into a group of clusters. Each cluster has one
clusterhead that dominates all other members in the cluster.
Two clusterheads cannot be neighbors. Gateways are those
non-clusterhead nodes that have at least one neighbor that
belongs to other clusters. It is easy to see that clusterheads
and gateways form a backbone of the original network.

Theoretically, we can describe a MANET as a unit disk
graph G =(V, E), where the node set V represents a set of
wireless mobile hosts and the edge set E represents a set of
bi-directional links between the neighboring hosts, assum-
ing all hosts have the same transmission range r. Two hosts
are considered neighbors if and only if their geographic dis-
tance is less than r. We use Nk(v) to represent v’s k-hop
neighbor set, including v itself. Generally, a backbone in-
frastructure of a network can be considered as a connected
dominating set (CDS) of a given graph. A dominating set
(DS) is a subset of nodes such that every node in the graph is
either in the set or has an edge linked to a node in the set. If
the subgraph induced from a DS of the graph is connected,
the DS is a CDS. Another concept, an independent set (IS),
is defined as a set of nodes of the network, in which each
pair of nodes are not neighbors. In a cluster network, the set
of clusterheads is an IS and the set of the clusterheads and

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

3-hop coverage

v

clusterhead

gateway

c

c’

u

2.5-hop coverage

non-clusterhead

Figure 1. 3-hop and 2.5-hop coverage areas.

gateways is a CDS. It has been proved that finding a min-
imum CDS (MCDS) in a given graph is NP-complete; this
applies to a unit disk graph as well. In cluster networks, the
challenge is to select a small subset of gateways to connect
clusterheads to form an approximation of the MCDS. Even
when an MCDS is identified, maintaining such a backbone
infrastructure in a mobile environment is a costly operation.

In this paper, the notion of coverage set is introduced. A
node v’s coverage set C(v) is a set of clusterheads that are
in a specific coverage area of v. It can be a 3-hop coverage
set, which includes all the clusterheads in its 3-hop neighbor
set N3(v), or a 2.5-hop coverage set, which includes all the
clusterheads in N2(v) and the clusterheads that have mem-
bers in N2(v). Specifically, C(v) consists of C2(v), a set of
clusterheads that are 2 hops away from v, and C3(v), a set
of clusterheads that are 3 hops away from v. In Figure 1, the
clusterhead of c′ is in v’s 3-hop coverage set, but not in v’s
2.5-hop coverage set. In general, the size of a clusterhead’s
2.5 hop coverage set is less than that of its 3 hop coverage
set. Therefore, the cost of maintaining the 2.5-hop coverage
set is less than that of the 3-hop coverage set.

We propose a cluster-based backbone infrastructure for
broadcasting in MANETs. The backbone of the network
takes advantage of the cluster structure and only requires
clusterheads and some selected gateways to forward the
broadcast packet. For each broadcast, the backbone can
be formed statically or dynamically. The static backbone,
or cluster-based source-independent CDS, consists of the
fixed clusterheads and selected source-independent gate-
ways. Each clusterhead individually selects its gateways
to connect all the clusterheads in its coverage set. Only
nodes in this CDS will participate in forwarding a broad-
cast packet. The source-independent CDS can be used for
all broadcasting (i.e., it is irrelevant to the location of the
source). The dynamic backbone, or cluster-based source-
dependent CDS, is constructed at the time when the broad-
cast starts and is dependant on the location of the source of
the broadcast. It consists of the fixed clusterheads and dy-
namically selected gateways that are used for the delivery
of the broadcast packet. The CDS backbone can be con-
structed step by step as the broadcast packet traverses the
network, where a clusterhead selects some gateways to for-
ward the packet when it sends a broadcast packet. Through

history info
sourcesource

(a) (b)

Figure 2. (a) The SI-CDS and (b) the SD-CDS.

the selected gateways, the clusterhead connects all the clus-
terheads in its coverage set. Because the backbone is con-
structed step by step, the information of the network can
be propagated from upstream nodes to downstream nodes.
Therefore, some pruning techniques can be used to further
reduce the transmission redundancy. The fact that most
source-dependent CDSs have no theoretical constant ap-
proximation ratio to the MCDS leads to the result that they
have poor performance in the worst case when the network
is dense. Both static and dynamic backbone structures have
a constant approximation ratio that gives an upper bound
for the worst case. Simulation also shows its good per-
formance for the average case. The communication and
time complexity of such a backbone are linear to the size
of the network, which means the algorithm is message-
optimal. The performances of both the static and the dy-
namic backbones are compared with another cluster-based
source-independent CDS algorithm proposed in [1].

2 Preliminaries

Source-Independent CDS vs. Source-Dependent CDS
Two categories of algorithms, based on the source-
independent CDS (SI-CDS) and the source-dependent CDS
(SD-CDS), are proposed in literature for broadcasting in
MANETs. The construction of a SI-CDS is proactive and
irrelevant to the source of the broadcast. Many algorithms
have been proposed to form a SI-CDS, such as the Spine [3],
the marking process with rules 1 and 2 [13], the spanning-
tree-based CDS [2], and the message-optimal CDS[1].

Broadcasting in a SI-CDS works as follows: (1) The
broadcast starts from the source by sending the broadcast
packet to all its neighbors. (2) When a node in the CDS
receives the broadcast packet for the first time, it forwards
the packet among its neighbors; otherwise, it does nothing.
(3) When a node that is not in the CDS receives the broad-
cast packet, it does nothing. Figure 2 (a) shows a network
with a SI-CDS. The black nodes form a CDS, and they are
connected by the marked edges. For a broadcast, the source
delivers the packet to its black neighbors, and only the black
nodes forward the packet.

In a MANET, the backbone infrastructure is not a real
physical backbone, but a virtual one that always changes
when the topology of the network changes. Therefore,
maintaining a static SI-CDS backbone for broadcasting is

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

costly. The more efficient way is to form a CDS backbone
on-demand. The construction of a temporarily set-up SD-
CDS backbone is activated by the source of a broadcast.
The CDS is constructed step by step and is dependent on
the location of the source. A sending node selects some
of its neighbors and requests those neighbors forward the
broadcast after they receive the broadcast packet. When
the broadcast process terminates, the nodes that forward
the packet form a SD-CDS. Since the broadcast packet tra-
verses the network in steps, the information of upstream
nodes can be propagated with the packet to the downstream
nodes so that the downstream nodes can use this informa-
tion when they select their neighbors for the forwarding
purpose. Therefore, the SD-CDS backbone usually gener-
ates a smaller number of forward nodes than the SI-CDS
backbone. SD-CDS algorithms often differ in the neigh-
bor selection process, such as the multi-point relay [12], the
dominant pruning [7] and its extension the partial dominant
pruning [8], and the ad hoc broadcast protocol [11].

Broadcasting protocols that use a SD-CDS conduct a
broadcast process as follows: (1) The broadcast starts from
the source. (2) Each selected forwarding node (includ-
ing the source node) executes a neighbor selection process:
When it receives a broadcast packet for the first time, it se-
lects some of its neighbors to forward the packet. The se-
lected nodes need to cover the senders’ 2-hop neighbor set
to sufficiently guarantee the success of the broadcast pro-
cess. Information of the upstream nodes can be attached
with the broadcast packet in favor of the use of the down-
stream nodes. (3) A node that is not selected does nothing
when it receives a broadcast packet. In Figure 2 (b), a SD-
CDS is constructed when the broadcast packet traverses the
network. The black nodes are the selected forwarding nodes
and the directed links indicate the paths of the propagation
of the broadcast packet. While the packet traverses the net-
work, the history information of the upstream nodes can be
used by the downstream nodes to select their forward nodes.
We can see that the SD-CDS is dependent on the location of
the source, and the number of nodes that forward the broad-
cast packet is less than the ones in the SI-CDS.

Cluster-Based Broadcasting The distributed clustering
algorithm, lowest-ID clustering algorithm [4], is initiated
by electing as a clusterhead the node whose ID is locally
the smallest one among all its neighbors. At the beginning,
all nodes in the network are candidates. When a candidate
finds itself to be the one with the smallest ID among all its
1-hop candidate neighbors, it declares itself as the cluster-
head of a new cluster and notifies all its 1-hop neighbors.
When a candidate receives a clusterhead notification from
a neighboring clusterhead, the candidate joins in the clus-
ter, changes itself to a non-clusterhead member of the clus-
ter, and announces its non-clusterhead state to all its neigh-
bors. If it receives more than one clusterheads’ declara-

tion, it joins in the cluster whose clusterhead has the small-
est ID. Non-clusterheads that have neighbors belonging to
other clusters become gateways. The network will eventu-
ally be partitioned into clusters where each cluster has one
clusterhead and several gateway/non-clusterhead members.

Jiang et al [5] proposed a cluster-based routing protocol
(CBRP) that forms a cluster structure by first electing clus-
terheads and then letting each clusterhead select one or one
pair of gateways to connect to each clusterhead in its adja-
cent clusters.

In [10], Pagani and Rossi set up a cluster-based forward-
ing tree for a reliable broadcast process. The forwarding
tree is rooted at the clusterhead of source and follows the or-
der of clusterhead, gateway, then clusterhead again to build
the tree. The gateway that connects the clusterheads records
its upstream and downstream clusterheads in the tree when
it receives and forwards the broadcast packet. The forward-
ing tree, thus, can be built level by level until all the clusters
join in the tree. Apparently, such a forwarding tree is hard
to maintain in MANETs.

Kwon and Gerla [6] proposed a passive clustering
scheme that constructs the cluster structure during the data
propagation. A clusterhead candidate applies the “first dec-
laration wins” rule to become a clusterhead when it success-
fully transmits a packet. Then, its neighbor nodes can learn
the presence of this clusterhead and change their states to
become gateways if they have more than one adjacent clus-
terhead or ordinary (non-clusterhead) nodes otherwise. The
passive clustering algorithm has the advantages of no ini-
tial clustering phase, no need of the complete neighborhood
information for the clusterhead election and no communica-
tion overhead for maintaining cluster structure or updating
neighborhood information, but it suffers poor delivery rate
and global parameter requirement.

Alzoubi et al [1] proposed a cluster-based message-
optimal CDS which is formed with two steps: In the first
step, clusterheads are determined by the lowest-ID cluster-
ing algorithm. A clusterhead knows all its 2-hop and 3-hop
clusterheads with two rounds of neighborhood information
exchanges. In the second step, each clusterhead selects a
node to connect each 2-hop clusterhead and a pair of nodes
to connect each 3-hop clusterhead. All the clusterheads and
selected nodes form a CDS of the network. The authors
proved that the size of generated CDS has a constant ap-
proximation ratio to the MCDS, and the time complexity
and message complexity for the construction are both lin-
ear to the size of the network, which means the algorithm is
message-optimal. Note that this message-optimal CDS is a
SI-CDS.

3 A Cluster-Based Backbone Infrastructure
Broadcasting in a Cluster-Based SI-CDS Backbone
The cluster-based SI-CDS backbone of the network consists

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

of all the clusterheads and the selected gateways that con-
nect adjacent clusterheads. The network is partitioned into
clusters where each cluster consists of one clusterhead and
several non-clusterheads. Clusterheads are elected by the
lowest-ID clustering algorithm. Each clusterhead gathers
neighbor set information to build its coverage set. It can be
a 3-hop coverage set or a 2.5-hop coverage set. Each clus-
terhead u applies a neighbor selection process that heuris-
tically determines a set of gateways to connect all cluster-
heads in C(u). The selected gateways will be informed by
u to become members of the backbone. Notice that both
backbones generated with the 3-hop and 2.5-hop coverage
sets are CDSs.

The construction of the backbone, including how cluster-
heads gather neighbor information and how they select gate-
ways to build the backbone is described as follows. Only the
process with the 2.5-hop coverage set is specified here. The
process with the 3-hop coverage set is similar.

Each node can learn its neighbors’ IDs through HELLO
messages. Nodes are grouped into clusters by applying the
lowest-ID clustering algorithm. A clusterhead will broad-
cast a CLUSTER HEAD message and a non-clusterhead
will broadcast a NON CLUSTER HEAD message to in-
form its neighbors.

After the clusters have been formed, each node knows
all its 1-hop neighbors. A non-clusterhead u broadcasts a
CH HOP1(u) message which includes all its 1-hop neigh-
boring clusterheads. Once another non-clusterhead v re-
ceives the message CH HOP1(u) from u, v works as fol-
lows: If the clusterhead of u is a neighbor of v, v ignores
the message; Otherwise, v checks if the clusterhead of u
is a new 2-hop clusterhead of v. If so, v creates a new 2-
hop clusterhead entry that contains u and the clusterhead
of u. When v receives the CH HOP1 messages from all
its non-clusterhead neighbors, it broadcasts a CH HOP2(v)
message that contains all its 2-hop clusterhead entries.

When the clusterhead u receives the CH HOP1 and
CH HOP2 messages from all its non-clusterhead neighbors,
u builds its 2.5-hop coverage set C(u) = C2(u) ∪ C3(u),
where C2(u) consists of all elements in CH HOP1 and
C3(u) consists of all elements in CH HOP2. If a cluster-
head appears in both C2(u) and C3(u), the one in C3(u) is
removed.

A clusterhead u selects gateways that connect all the
clusterheads in C(u) as follows: The neighbor node that di-
rectly covers (i.e., connects directly) the maximum number
of the clusterheads in C2(u) is first selected as a gateway.
A tie is broken by selecting the node that indirectly cov-
ers (i.e., connects via a non-clusterhead) more clusterheads
in C3(u). Node ID is used if the tie still exits. When a
neighbor node, say v, is selected, all of the clusterheads in
CH HOP1(v) are removed from C2(u). If v can indirectly
cover some clusterheads in C3(u) at the same time, these

1

2

45

6

7 10

9

8

3

(c)

C2

C1

C3

C4

1

2

45

6

7 10

9

8

3

(b)

C2

C1

C3

C4

1

2

45

6

7 10

9

8

3

(a)

Figure 3. The construction of a cluster-based
SI-CDS backbone.

clusterheads are also removed and the corresponding non-
clusterheads in CH HOP2(v) that are associated with these
clusterheads are selected as gateways. The selection process
repeats until C2(u) is empty. At this time, if there are any
clusterheads in C3(u) left, the pairs of non-clusterheads that
connect u to these clusterheads are also selected as gate-
ways.

After a clusterhead determines its gateways, it broad-
casts a GATEWAY message that contains all the selected
nodes among its 2-hop neighbor set by setting the time-to-
live field (TTL) of the message to 2. The selected nodes
will be informed to become gateways when they receive the
GATEWAY message and will forward the message if the
TTL field of the message does not reach 0.

Figure 3 shows the construction process of a cluster-
based SI-CDS backbone. The black node represents a clus-
terhead, the gray node represents a gateway, the white node
represents others. At the beginning, all the nodes are can-
didates (Figure 3 (a)). After applying the lowest-ID clus-
tering algorithm, nodes 1, 2, 3 and 4 become clusterheads
and create clusters labelled as C1, C2, C3 and C4, nodes
5, 6 and 7 join in cluster C1, node 8 joins in cluster C2,
nodes 9 and 10 join in cluster C3 (Figure 3 (b)). Node
9 sends a CH HOP1(9) message including nodes 3 and 4,
that is, CH HOP1(9) = {3∗, 4}, where 3∗ means that node
3 is the clusterhead of node 9. When node 9 receives a
message CH HOP1(5) = {1∗}, node 9 builds a message
CH HOP2(9) = {1[5]}, where 1[5] means that node 9 con-
nects to node 1 via node 5. Also, node 5 sends a mes-
sage CH HOP2(5) = {3[9]} after it receives the message
CH HOP1(9). Note that node 4 is not added to node 5’s
2-hop neighbor clusterhead set since only the clusterheads
of those 1-hop neighbors of node 5 (In this case, node
3 is the clusterhead of node 9) will be included. Simi-
larly, nodes 6, 7, 8 and 10 send messages CH HOP1(6) =
{1∗, 2}, CH HOP1(7) = {1∗, 3}, CH HOP1(8) = {2∗, 3}
and CH HOP1(10) = {3∗, 4}. After nodes 1, 2, 3 and
4 receive the messages CH HOP1 and CH HOP2, they
build their 2.5-hop coverage sets, respectively; that is,
C(1) = C2(1) = {2, 3}, C(2) = C2(2) = {1, 3},
C(3) = C2(3) = {1, 2, 3} and C(4) = C2(4) ∪ C3(4) =
{3} ∪ {1} = {1, 3}. Node 1 selects nodes 6 and 7 as
gateways and sends a GATEWAY message GATEWAY(1)
= {6, 7}. Similarly, nodes 2 selects nodes 6 and 8 as gate-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

1 3

(a)

2

4

1 3

(b)

2

4

Figure 4. The cluster graphs with: (a) the 2.5-
hop coverage set and (b) the 3-hop coverage
set.

ways and sends message GATEWAY(2) = {6, 8}; node 3
selects nodes 7, 8 and 9 as gateways and sends message
GATEWAY(3) = {7, 8, 9}; node 4 selects nodes 5 and 9 as
gateways and sends message GATEWAY(4) = {5, 9}. Note
that node 4 selects node 9, not node 10 as a gateway to di-
rectly cover node 3 because node 9 can also indirectly cover
node 1. When nodes 5, 6, 7, 8 and 9 receive the GATEWAY
messages, they become gateways (Figure 3 (c)).

In [14], Lou and Wu proved that the cluster graph G
′
,

generated from a connected graph G by using either the 3-
hop or 2.5-hop coverage set, is a strongly connected graph.
The cluster graph G

′
is constructed from the clusterheads of

a given clustered network G: Each vertex of G′ stems from
a cluster in G and is represented by the clusterhead of the
cluster. Each directed link (v, w) of G′ is from clusterhead
v to each clusterhead w (w ∈ C(v)). When the 3-hop cov-
erage set is applied, for each pair of clusterheads v and w, if
w ∈ C(v), then v ∈ C(w). Both directed links (v, w) and
(w, v) exist in graph G′. But for the 2.5-hop coverage set,
there may exist a pair of clusterheads v and w, where w ∈
C(v), but v �∈ C(w). For the network in Figure 3 (b), the
cluster graphs generated with the 2.5-hop and 3-hop cover-
age sets are shown in Figures 4 (a) and (b).

Theorem 1 The generated static backbone of the network
is a SI-CDS.

Proof: The clusterheads and gateways form a backbone
of the network. The construction process of the backbone
that each clusterhead selects gateways to connect all cluster-
heads in its coverage set maps to the process that generates
a cluster graph from the network, where each clusterhead
corresponds to a vertex of the cluster graph and each se-
lected gateway(s) corresponds to a directed link between
two vertices of the cluster graph. Thus, the strongly con-
nected property of the cluster graph suggests the connected
property of the generated backbone. Notice that the set of
clusterheads are a DS of the network; therefore, the back-
bone that consists of clusterheads and gateways is a CDS.
Since it has no starting source to construct the backbone and
all gateways are individually selected by each clusterhead,
this backbone is also source-independent. ✷

The cluster-based SI-CDS backbone can be used for a

u

v w

Figure 5. An illustration of the transmission
redundancy in a network with three nodes.

broadcast in the same way as any other SI-CDS:

Broadcasting in a Cluster-Based SI-CDS Backbone
1. The broadcast starts from the source by sending the

broadcast packet to all its neighbors.
2. When a node in the backbone receives the broadcast
packet for the first time, it broadcasts the packet among its
neighbors; otherwise, it does nothing.
3. When a node that is not in the backbone receives the
broadcast packet, it does noting.

Broadcasting in a Cluster-Based SD-CDS Backbone
In this part, we consider the case that the backbone of the
network consists of the fixed clusterheads and dynamically
selected gateways that depend on the source of a broadcast;
that is, the gateways are selected at the time when a clus-
terhead needs to relay the packet. Since this backbone is
constructed step by step as the broadcast traverses the net-
work, some pruning techniques can be used to reduce the
broadcast redundancy.

Generally, pruning techniques can eliminate some re-
dundant broadcasting operations between two downstream
neighbors of a sender if these two neighbors know that they
have received a broadcast packet from the same upstream
sender. For a simple network with 3 nodes in Figure 5, sup-
pose node u broadcasts a packet, both nodes v and w receive
the packet, then they rebroadcast the packet to each other.
Apparently, the last two transmissions are redundant.

There are many ways to reduce this kind of transmission
redundancy. When a node receives a broadcast packet, if
it can back-off a short period of time before it relays the
packet, it may receive more copies of the same packet from
its other neighbors. If all of its neighbors can be covered
by these already received broadcast copies, it can resign its
role of re-broadcast operation. For the network in Figure 5,
when both v and w receive the packet from u, if both v and
w have a random delay before they relay the packet, and w
receives the duplicated packet from v before its delay times
out, w realizes that all its neighbors (u and v) have already
received the packet. Therefore, it does not relay the packet.
In this case, one redundant transmission is saved. Another
way to reduce transmission redundancy is to piggyback the
covered nodes with the broadcast packet when the sender
broadcasts a packet. From the information of the piggy-
backed packet, each receiver can compute which subset of

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

its neighbor set has already received the packet. For exam-
ple, in Figure 5, u broadcasts a packet that piggybacks v and
w because they have received the packet when u broadcasts
the packet. At the time that v and w receive the packet, they
know that all of their neighbors (for v they are w and u; for
w they are u and v) have received the broadcast, therefore,
none of them will relay the packet again. In this case, two
redundant transmissions are saved. Of course, these meth-
ods will introduce some extra cost, for example, the first
one will lead to more delay time and the second one will
increase the message length.

By using the pruning technique of attaching the sender’s
coverage set and selected gateways with the broadcast
packet, the broadcast process in a cluster-based SD-CDS
backbone works as below:

Broadcasting in a Cluster-Based SD-CDS Backbone
1. If the source is not a clusterhead, it just sends the broad-

cast packet to its clusterhead.
2. When a clusterhead receives the broadcast packet from
its upstream clusterhead sender for the first time, it executes
the selection process: It chooses some gateways, called for-
ward nodes, to forward the packet to all the clusterheads
in its coverage set. Its coverage set is updated by excluding
the clusterhead sender and those clusterheads in the sender’s
coverage set that are piggybacked with the broadcast packet.
The coverage set of this clusterhead, together with its se-
lected forward nodes, are piggybacked with the broadcast
packet for the forwarding purpose. A clusterhead will do
nothing if it receives a duplicated packet.
3. When a non-clusterhead node receives the broadcast
packet for the first time and if it is a forward node, it re-
lays the packet; otherwise, it does nothing.

The selection process is then modified: When a cluster-
head v receives a broadcast packet coming from clusterhead
u, attached with u’s forward node set F (u) and u’s coverage
set C(u), v knows that all the clusterheads in C(u)∪{u} are
covered by F (u), and they do not need to be covered again
when v computes its forward node set F (v). Therefore, v
can use the heuristic algorithm to determine F (v) to cover
the clusterheads in the updated C(v) = C(v)−C(u)−{u}.
Note that both the 3-hop coverage set and the 2.5-hop cov-
erage set can be used here. If the 2.5-hop coverage set
is used, F (u) may cover some extra clusterheads in addi-
tion to C(u) ∪ {u}. More specifically, if clusterhead v is
3 hop away from u, and u uses a path (u, f, r, v) to de-
liver the broadcast packet to v, clusterheads in N(r) also
receive the broadcast packet. These clusterheads can also
be excluded from C(v). Therefore, the updated C(v) =
C(v) − C(u) − {u} − N(r).

In a clustered network, traversing all nodes in a cluster-
based SD-CDS backbone can be viewed as traversing all

vertices and edges of the cluster graph which is generated
from the original network. As we can see, traversing all ver-
tices of the cluster graph is enough for fulfilling a broadcast
process in this network. Eliminating unnecessary edges in
the cluster graph, therefore, can reduce the number of nodes
that forward the packet in this clustered network. For exam-
ple, suppose a broadcast starts from node 1 in the network
shown in Figure 3 (c). From the view of the cluster graph,
the edges (2, 3) and (4, 1) in the cluster graph (Figure 4 (a))
can be eliminated, which suggests that nodes 8 and 5 of the
original network (Figure 3 (c)) do not need to forward the
broadcast packet. Note that node 9 still needs to forward the
packet to clusterhead 4.

Theorem 2 The generated dynamic backbone of the net-
work is a SD-CDS.

Proof: Based on the selection process, each clusterhead se-
lects a set of gateways to cover all the clusterheads in its
updated coverage set at the time it relays the broadcast. A
clusterhead’s coverage set is updated to exclude those clus-
terheads that are in the coverage set of its upstream clus-
terhead sender. This action corresponds to eliminating an
edge between two vertices in the cluster graph of the net-
work if they are downstream vertices of the same upstream
vertex, that is, assume u is an upstream vertex in the cluster
graph, and both v and w are downstream vertices of u (i.e.,
there exists edges (u, v) and (u,w)), then, edge (v, w) (and
(w, v)) can be eliminated. Eliminating edge (v, w) does not
affect the connectivity of these three vertices in the cluster
graph. This elimination can be applied to each group of
three directly connected vertices in the cluster graph, and
the cluster graph after eliminating edges is still strongly
connected. This suggests that the backbone is connected.
As we know, the set of clusterheads forms a DS of the net-
work. Therefore, the backbone is a CDS. With different
sources, the eliminated edges in the cluster graph may be
different, that is, the backbone is source-dependent. ✷

Illustration We illustrate the broadcast process both in
a cluster-based SI-CDS backbone and a cluster-based SD-
CDS backbone in the network shown in Figure 3 (c). The
2.5-hop coverage set is applied here.

The cluster-based SI-CDS backbone consists of nodes 1,
2, 3, 4, 5, 6, 7, 8 and 9 when the 2.5-hop coverage set is
applied, as shown in Figure 3 (c). Suppose node 1 is the
source, and all the nodes in the backbone will forward the
broadcast packet. In total, 9 nodes (nodes 1, 2, 3, 4, 5, 6, 7,
8 and 9) will forward the packets.

For the cluster-based SD-CDS backbone, suppose the
source is node 1, since node 1’s 2.5-hop coverage set C(1)
is {2, 3}, it selects nodes 6 and 7 to forward the packet to
clusterheads 2 and 3. The broadcast packet piggybacks the
forward node set F (1) = {6, 7} and the 2.5-hop cover-
age set C(1) = {2, 3}. When clusterhead 2 receives the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

broadcast packet from clusterhead 1, it updates C(2) =
C(2) − C(1) − {1} = {1, 3} − {2, 3} − {1} = φ; then,
it only locally broadcasts the packet. When clusterhead 3
receives the packet from clusterhead 1, it updates C(3) =
C(3)−C(1)−{1} = {1, 2, 4}−{2, 3}−{1} = {4}; there-
fore, clusterhead 3 selects node 9 to forward the packet to
clusterhead 4. F (3) = {9} and C(3) = {1, 2, 4} are pig-
gybacked with the packet. After clusterhead 4 receives the
packet, it only locally broadcasts the packet since all clus-
terheads in C(4) have received the packet. In total, 7 nodes
(nodes 1, 2, 3, 4, 6, 7 and 9) will forward the packets.

From this example, we can see that broadcasting in a
cluster-based SD-CDS backbone can reduce more transmis-
sion redundancy than that in a cluster-based SI-CDS back-
bone.

4 Performance Evaluation
Performance Analysis We analyze the performance of
both the static backbone (cluster-based SI-CDS) and the dy-
namic backbone (cluster-based SD-CDS) in the following
three aspects:
Approximation ratio to the MCDS In a static backbone,
as proved in [14] and [1], the size of a static backbone has
a constant approximation ratio to the MCDS, which is an
upper bound for the worst case. In a dynamic backbone,
the backbone eliminates some connections between two ad-
jacent clusterheads if they receive a packet from the same
upstream clusterhead sender. This suggests that the size of
the dynamic backbone is smaller than that of the static back-
bone of the same network. Therefore, the constant approxi-
mation ratio keeps for the dynamic backbone.
Communication complexity In a static backbone, when
the clusters are constructed, each node will send a CLUS-
TER HEAD or NON CLUSTER HEAD message. A non-
clusterhead node will send a CH HOP1 message that con-
sists of the 1-hop neighbor clusterheads and a CH HOP2
message that consists of the 2-hop neighbor clusterheads
associated with their 1-hop gateways. A clusterhead sends
a GATEWAY message that contains the selected gateways
that connect the 2-hop and 3-hop neighbor clusterheads. Fi-
nally, only the selected gateways will forward the GATE-
WAY message for each clusterhead. Therefore, the com-
munication complexity of the algorithm is O(n), where n is
the size of the network. As mentioned in [1], the algorithm
with communication complexity O(n) has already reached
optimal. Therefore, the static backbone algorithm is also
message-optimal. In a dynamic backbone, each clusterhead
needs CH HOP1 and CH HOP2 messages to build its cov-
erage set. The clusterhead does not send GATEWAY mes-
sage, instead, it informs the selected gateways by attaching
them with the broadcast packet and only selected gateways
forward the packet. Therefore, the communication com-
plexity of each broadcast process is still O(n).

Time complexity In a static backbone, when the clusters
are constructed by lowest ID clustering algorithm, the worst
case happens when all the nodes are placed in a chain with
node IDs that are monotonous from one end to the other
end. The cluster construction needs n rounds of unit time to
be formed. For each non-clusterhead node, it waits at most
O(∆) unit time to build CH HOP1 and CH HOP2, where
∆ is the maximum node degree of the network. For each
clusterhead, it also waits at most O(∆) unit time for all of its
non-clusterhead neighbors’ CH HOP1 and CH HOP2 mes-
sages. Since a clusterhead v has a constant size of cluster-
heads in its C(v), the selection process terminates at Θ(1)
unit time. At last, the gateways are informed within 2 unit
time. The overall time complexity of the algorithm is O(n)
in terms of round. In a dynamic backbone, the time com-
plexity for forming clusters is O(n). A clusterhead sender
gathers clusterhead information of its coverage set in O(∆)
unit time. The dynamic backbone is constructed in steps
when a broadcast packet traverses the network, which also
needs at most O(n) unit time. Totally, the time complexity
of each broadcast process is also O(n).
Simulations We measure the average sizes of the CDS
backbones constructed by our algorithm (referred to as the
static backbone for a cluster-based SI-CDS and the dy-
namic backbone for a cluster-based SD-CDS, both the 2.5-
hop coverage set and the 3-hop coverage set are applied)
and by the algorithm in [1] (referred to as the MO CDS).
The simulation runs under the following simulation envi-
ronment: The confined working space is 100 × 100. Nodes
are randomly placed in this area. The nodes have the same
transmission ranges, and the link between two nodes is bi-
directional. The network is generated with two fixed av-
erage node degrees: d = 6 and 18, which are the repre-
sentatives of the common and highly dense networks. If
the generated network is not connected, it is discarded. We
only consider the traffic of the broadcast packets at the net-
work layer. We assume that all the transmission collision
and contention are taken care of at the underground phys-
ical and MAC layers. For each d, the number of nodes in
the network ranges from 20 to 100. We repeat the simula-
tion until the 99% confidential interval of the result is within
±5%.

Figure 6 shows the average size of the CDS generated
by the static backbone algorithm and by the MO CDS algo-
rithm with respect to d are 6 and 18. Both algorithms have
the similar size of the CDS. Although the static backbone
is better than the MO CDS, the difference is insignificant.
We also notice that the difference between the size of the
backbone applied the 2.5-hop coverage set and that applied
the 3-hop coverage set is less than 2%.

Figure 7 shows the average size of the forward node set
for a broadcast process by using the dynamic backbone and
the MO CDS, when d are 6 and 18. The dynamic back-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

0

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 s
iz

e
of

 th
e

C
D

S

Number of nodes

(a) d = 6

Static backbone (3-hop)
Static backbone (2.5-hop)
MO_CDS

0

5

10

15

20

25

30

35

40

20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 s
iz

e
of

 th
e

C
D

S

Number of nodes

(b) d = 18

Static backbone (3-hop)
Static backbone (2.5-hop)
MO_CDS

Figure 6. Average size of the CDS: (a) d = 6
and (b) d = 18.

0

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 s
iz

e
of

 th
e

fo
rw

ar
d

no
de

 s
et

Number of nodes

(a) d = 6

Dynamic backbone (3-hop)
Dynamic backbone (2.5-hop)
MO_CDS

0

5

10

15

20

25

30

35

40

20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

be
r

of
 th

e
fo

rw
ar

d
no

de
 s

et

Number of nodes

(b) d = 18

Dynamic backbone (3-hop)
Dynamic backbone (2.5-hop)
MO_CDS

Figure 7. Average size of the forward node
set: (a) d = 6 and (b) d = 18.

bone algorithm shows much better performance than the
MO CDS.

In Figure 8, we compare the average size of the forward
node set between the static and dynamic backbones for a
broadcast. Apparently, broadcasting in the dynamic back-
bone that uses the pruning technique has less broadcast re-
dundancy than that in the static backbone. We also notice
that the difference between algorithms with the 3-hop cov-
erage set and the 2.5-hop coverage set is very small.

5 Conclusions
In this paper, a cluster-based backbone infrastructure is
proposed for broadcasting in MANETs. We describe the
construction of the cluster-based source-independent CDS
backbone (static backbone) and the cluster-based source-
dependent CDS backbone (dynamic backbone). Actually,
the MO CDS can be treated as a modified version of the
static backbone with the 3-hop coverage set. We point out
that maintaining a static backbone at all times for broad-
casting is costly and unnecessary. Therefore, building a dy-

0

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

be
r

of
 th

e
fo

rw
ar

d
no

de
 s

et

Number of nodes

(a) d = 6

Static backbone (3-hop)
Static backbone (2.5-hop)
Dynamic backbone (3-hop)
Dynamic backbone (2.5-hop)

0

5

10

15

20

25

30

35

40

20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

be
r

of
 th

e
fo

rw
ar

d
no

de
 s

et

Number of nodes

(b) d = 18

Static backbone (3-hop)
Static backbone (2.5-hop)
Dynamic backbone (3-hop)
Dynamic backbone (2.5-hop)

Figure 8. Average size of the forward node
sets of the static and dynamic backbones: (a)
d = 6 and (b) d = 18.

namic backbone on-demand is a better choice. Based on
simulation results, we can conclude that the pruning tech-
nique greatly reduces the number of the forward nodes in
a broadcast process. Also, the algorithm with the 2.5-hop
coverage set has comparable performance to the one with
the 3-hop coverage set while it reduces maintenance cost.

References

[1] K. M. Alzoubi, P. J. Wan, and O. Frieder. Message-optimal
connected dominating sets in mobile ad hoc networks. Proc.
of ACM MOBIHOC’2002, pages 157–164, 2002.

[2] K. M. Alzoubi, P. J. Wan, and O. Frieder. New distributed
algorithm for connected dominating set in wireless ad hoc
networks. Proc. of 35th Hawaii Int’l Conf. on System Sci-
ences (HICSS-35), pages 3881–3887, Jan. 2002.

[3] B. Das, R. Sivakumar, and V. Bharghavan. Routing in ad-hoc
networks using a spine. Proc. of the 6th Int’l Conf. on Com-
puter communications and Networks (ICCCN’97), pages 1–
20, Sept. 1997.

[4] A. Ephremides, J. E. Wieselthier, and D. J. Baker. A design
concept for reliable mobile radio networks with frequency
hopping signaling. Proc. of the IEEE, 75(1):56–73, 1987.

[5] M. Jiang, J. Y. Li, and Y. C. Tay. Cluster based routing
protocol (CBRP) functional specification. IETF Internet
draft, Aug. 1999. http://www.ietf.org/ietf/draft-ietf-manet-
cbrp-spec-01.txt.

[6] T. J. Kwon and M. Gerla. Efficient flooding with passive
clustering (PC) in ad hoc networks. ACM Computer Com-
munication Review, 32(1):44–56, Jan. 2002.

[7] H. Lim and C. Kim. Flooding in wireless ad hoc net-
works. Computer Communications Journal, 24(3-4):353–
363, 2001.

[8] W. Lou and J. Wu. On reducing broadcast redundancy in ad
hoc wireless networks. IEEE Trans. on Mobile Computing,
1(2):111–123, April-June 2002.

[9] S. Ni, Y. Tseng, Y. Chen, and J. Sheu. The broadcast storm
problem in a mobile ad hoc network. Proc. of ACM/IEEE
MOBICOM’99, pages 151–162, Aug. 1999.

[10] E. Pagani and G. P. Rossi. Providing reliable and fault tol-
erant broadcast delivery in mobile ad hoc networks. Mobile
Networks and Applications, 4:175–192, 1999.

[11] W. Peng and X. Lu. AHBP: An efficient broadcast proto-
col for mobile and hoc networks. Journal of Science and
Technology, 2002.

[12] A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying
for flooding broadcast message in mobile wireless networks.
Proc. of IEEE HICSS-35, pages 3898–3907, Jan. 2002.

[13] J. Wu and H. Li. On calculating connected dominating sets
for efficient routing in ad hoc wireless networks. Proc. of
ACM DIALM’99, pages 7–14, Aug. 1999.

[14] J. Wu and W. Lou. Forward-node-set-based broadcast in
clustered mobile ad hoc networks. accepted to appear in
Wireless Networks and Mobile Computing, a special issue
on Algorithmic, Geometric, Graph, Combinatorial, and Vec-
tor Aspects, 2003.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

