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Background

¢ Internet-of-Things (IoT) devices are pervasive. We want to
run Deep Learning (DL) applications everywhere! Not just
in data center.

smartphone
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Background

¢ Deep Neural Networks (DNN) complexity vs IoT speed.

U IoT devices are not powerful enough for DL.
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Objective

¢ Goal: Minimizing DL inference latency
¢ Method: Computation Offloading via edge computing.

1 IoT end device: environment awareness
] edge server: accurate event inference

Computation Offloading Vehicle to Everything (V2X) & 5G

https://www.autonomousvehicletech.com/articles/1129-cohda-

announces-c-v2x-software-development-kit ﬂ ROW&HUI]iV@I'Sity !
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Related Works

s Computation offloading introduces extra latency

U Inference completion time = data transmission delay + data processing delay
] The network may not be that fast and communication delay cannot be ignored®.

Joe W

*Liu et al. A Comparison of Communication Mechanisms in Vehicular Edge Computing. In 3rd USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 20).
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Related Works
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Kang, Yiping, et al. “Neurosurgeon: Collaborative intelligence between the cloud and mobile edge.” ACM SIGARCH 2017.
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Challenges

“* DNN Computation Model

U abstracted as a Directed acyclic graph (DAG)* denoted vl—@m:
as G(V, E), where a vertex v € I/ represents a layer and a / o @\
link e; = (v;, v; ) € E represents the processing Gﬂv\vv o0
dependency relatlonshlp between two layers. @
: SNCEUT ®— @
¢ Cooperative Deep Inference Optimization
Inception

] Task assignment (i.e., how to partition a DNN)
» abstracted as a cut in DAG

1 Scheduling (i.e., how to process vertices)
» Our major contribution!

*Recurrent Neural Networks (RNN) models such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are
out of the scope of this paper.
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Why Is Scheduling Important?

“* A Toy Example
U The local processing time, transmission time, and remote processing time is

denoted as a tuple.
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Solutions in Three Different DNNs

“* We summarize state-of-the-art DNNSs into three categories.
U line, multi-path, and general DAG

(V2)—(vs)

(a) line (b) multi-path (c) DAG

“ Examples
U LeNet, Inception and Inception-ResNet

https://towardsdatascience.com/illustrated-10- ﬁ . .
cnn-architectures-95d78ace614d ROWElIlUanE:rSIty
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Multi-Path DNNs

“* Problem Hardness 2D &
 Line/Single-path S

» Straightforward solution, even without a given cut

(241) 2,1,1)

L Multi-path (Theorem 1: NP-hard)

» Path: a sequence of layers which have sequential dependency relationship (except input
and output vertices)

» Non-overlaps among paths (e.g., v,-v4, V3-Vs)

U Theorem 2: In multi-path DNNs, the optimal schedule can be achieved via
the non-preemptive path-based schedule.
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Multi-Path DNNs

“* Extended Johnson (EJ) Algorithm local _comm, remote

— P T P2 T ps 4}

U Path p(1) in three stages p,(1), p,(1), p;(1)
U Dividing paths into H and L (Linear)
> Eg,H={1},L=1{3 4,2

Algorithm 1 Extended Johnson (EJ) Algorithm
Input: G(V,E), X, t; and ¢}, Vv,
Output: The offloading schedule o
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7: Sort H increasingly based on p; (i) + p2(i)
8: Sort L decreasingly based on p,(i) + p3(i) (a) EJ Algorithm
9: Concatenate H and L to obtain o
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Multi-Path DNNs

¢ Extended Johnson (EJ) Algorithm

U Theorem 3*: If stage 2 is dominated by either stage 1 or 3, max{min p,(1), min
p5(1)} > max p,(i), EJ is optimal.

Path | Pl(_‘) Pz(_‘) p3(i)
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izl 32 4 B
i=3] 4 | 3 3
i=4] 4 ! 2 1 3

U Theorem 47: If Theorem 3 fails, EJ still achieves an approximation ratio of 5/3.

*Chen et al, A new heuristic for three-machine flow shop scheduling, OR, 1996.

“Framinan et al, A review and classification of heuristics for permutation flow shop scheduling with makespan
objectives, JORS, 2004.

€@ RowanUniversity



DAG DNNs

% Graph Conversion Algorithm

U Convert DAG DNNSs to multi-path DNNSs

U Replicate nodes via join and fork operations until it becomes a multi-path
DNN.

» Replicated nodes only execute once (the first time)

(a) before Conversion, G (b) after Conversion, G’
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Experiments

*¢* Testbed:

U IoT device: Raspberry Pi 4 model B

U Server: A desktop in our lab which has a six-core CPU (17-8700) @ 3.20GHz,
a GTX 1080 GPU, and 32 GB RAM

“* Experiment results:

1 LO algorithm: run on the Raspberry Pi; RO algorithm: run DNN on the server

3G 4G WiFi
Model LO RO | Our | RO | Our | RO | Our
AlexNet-P 406 | 4422 | 406 | 877 | 255 | 337 | 187
GoogLeNet | 848 | 4475 | 848 | 879 | 728 | 352 | 352
ResNet18 871 | 4463 | 871 | 946 | 810 | 341 | 341
Siamese 3919 | 8783 | 1998 | 1702 | 1087 | 613 | 469
Multi-stream | 1198 | 13146 | 931 | 2513 | 692 | 891 | 317
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Experiments

“*Experiment results:
 DSL: best existing work (no scheduling optimization)
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Q&A

*¢* Thanks!

*+* Contact Information
O wangn@rowan.edu
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