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Abstract—Computation offloading is proposed to solve one
obstacle of enabling high-accurate and real-time deep inference
in resource-constrained Internet of Things (IoT) devices. Coop-
erative deep inference is proposed recently to further trade-off
the introduced communication latency in computation offloading,
which partitions a Deep Neural Network (DNN) model into
two parts and utilizes the IoT end device and the server to
process the DNN model cooperatively. We observe one important
but ignored fact in all previous works: DNN computation and
communication processing can be conducted simultaneously in
cooperative deep inference. As a result, the DNN layer-wise
processing schedule has an impact on inference latency and it
is non-trivial to find the optimal schedule in State-Of-The-Art
(SOTA) DNNs with Directed Acyclic Graph (DAG) computational
architectures. The contributions of this paper are as follows.
(1) The proposed Deep Inference Optimization with Layer-
wise Schedule, DeepInference-L, is a unique pipeline-based DAG
schedule problem, which turns out to be NP-hard. (2) We
categorize SOTA DNNs into three different categories and discuss
the corresponding optimal processing schedule in special cases
and efficient heuristic schedules in the general case. (3) The
proposed solutions are extensively tested via a proof-of-concept
prototype. (4) Results indicate that our algorithms can achieve
an 8x speedup compared with local inference in the best case.

Index Terms—computation offloading, mobile computing, edge
computing, deep inference, and scheduling.

I. INTRODUCTION

Deep learning has shown success in complex tasks, includ-
ing computer vision [1], Natural Language Processing (NLP)
[2], machine translation [3], and many others. Nowadays,
SOTA DNN models, e.g., ResNet-101, VGG-16 [4, 5], can
achieve more than 95% top-5 accuracy on ImageNet [1]. The
most advanced models, such as FixEfficientNet-L2 [6], can
achieve 88.5% top-1 accuracy by using 480M parameters.
GPT-3, a natural-language deep learning model with 175B
parameters [7] was released recently. GPT-3 achieves SOTA
performance on several NLP benchmarks without fine-tuning.

One obstacle of utilizing deep learning in IoT systems for
inference tasks is that IoT devices cannot provide real-time
and high-accurate result at the same time due to the limited
computation capacity. However, many IoT systems, such as
traffic monitoring, require not only high processing speed, but
high accuracy as well. To deal with this obstacle, computation
offloading is proposed, where an edge/cloud server can assist
IoT end devices for deep inference acceleration. However,
computation offloading introduces extra communication la-

Fig. 1. A motivation example in Inception-v3 module.

tency, which may not be negligible due to the high-resolution
sensory data and the slow transmission speed.

To reduce the introduced communication latency in compu-
tation offloading, recent research has explored a cooperative
deep inference technique [8, 9]. A DNN model is decomposed
into a set of small tasks, i.e., layers, and process layers in the
end device and server cooperatively by following their cor-
responding dependency relationship. Particularly, cooperative
deep inference has three stages. A DNN model is partitioned
into two parts for local and remote processing. In stage 1, the
local device partially processes the first part of the DNN. In
stage 2, the intermediate DNN layer’s output is transmitted
to the remote server. In stage 3, the remote server continues
the DNN processing and get the final inference result. Fig.
1 illustrates these three stages in an Inception-v3 module.
The rationale of offloading intermediate data rather than raw
data is that the data size of some intermediate DNN layers
is significantly smaller than that of raw input data. Therefore,
cooperative deep inference can greatly reduce communication
latency at the cost of small local processing latency.

In this paper, we focus on the Deep Inference Latency Min-
imization with Layer-wise schedule, called DeepInference-L,
whose goal is to minimize inference completion time in a
networked system with a given DNN model partition. We
observe that layers in different stages can be processed in
parallel to further reduce the DNN inference latency. For
instance, in Fig. 1, the local processing of the second con-
volution layer and the communication of the first convolution
layer can be conducted simultaneously. Considering the DAG
processing constraint and the mismatched computation and
communication speeds in three stages, it is challenging to
determine the optimal layer-wise processing schedule. The



complex DNN architecture, abstracted as a DAG [8, 10, 11],
further complicates the problem.

In this paper, we prove that DeepInference-L is NP-hard in
general. Then, we categorize SOTA DNNs into three different
network architectures, i.e., line, multi-path, and general DAG.
We find the optimal data offloading schedule in line architec-
ture. In multi-path DNN architecture, we adopt Johnson’s rule
to derive the optimal solution in a special network environment
and a performance bounded result in the general case. For
general DAG DNN, we propose a graph conversion strategy
so that the proposed solutions for multi-path DNN can be
adopted. The proposed solutions are tested via a proof-of-
concept implementation.

The contributions of this paper are summarized as follows.
• We are the first to consider layer-wise processing sched-

ule optimization in cooperative DNN deep inference.
• We propose an optimal data offloading strategy for line

DNNs and prove that DeepInference-L Problem is NP-
hard for multi-path and general DAG DNNs.

• For multi-path DNNs, we identify an extended Johnson’s
algorithm which solves DeepInference-L problem opti-
mally in a special case and has guaranteed performance
in the general case. In addition, we present a heuristic
schedule algorithm for general DAG DNNs.

• We implement a proof-of-concept prototype and conduct
comprehensive testing on a wide range of DNNs, includ-
ing classification, tracking, scene understanding, to verify
the effectiveness of proposed approaches.

II. RELATED WORKS

In this section, we briefly summarize research efforts in
providing fast and accurate DNN inference in IoT devices via
on-device, server-only, and cooperative computation.

On-device Model Optimization: In order to realize inference
acceleration, works in this category investigated how to opti-
mize DNN models for IoT devices. For example, Microsoft
and Google developed small-scale DNNs for speech recog-
nition on mobile platforms by sacrificing the high prediction
[12]. Tensorflow Lite [13] takes existing Tensorflow models
and converts them into an optimized and efficient version so
that the streamlined model is small enough to be stored on
devices and sufficiently accurate to conduct suitable inference.
Several popular deep learning models for resource-constrained
devices are drawn from Computer Vision. These models in-
clude MobileNets [14], Single Shot MultiBox Detector (SSD)
[15], YoLo [16], etc. However, with a reduced number of
parameters, the inference accuracy decreases as well.

Cloud/Edge-only Offloading: Raw data is offloaded to the
remote server in this category. Han et al. proposed generating
alternative DNN models to trade off accuracy and perfor-
mance/energy [17]. Zhou et al. considered a model partition
and parallelization so that multiple cloud works could work
together to speed up the processing [18]. Canel et al. proposed
to use small filters at the edge device to filter out uninterested
data and thus reduce the communication cost [19]. In [20, 21],
the authors proposed adaptive methods which can dynamically

adjust the accuracy requirement based on the wireless link
condition. However, they focus more on traffic minimization
rather than latency minimization [19, 20]. Approaches in this
category are very sensitive to network environments.

IoT-assist Offloading: Kang et al. first considered the large
communication latency during the offloading and thus pro-
posed to use IoT devices to conduct partial processing [9].
However, they only discussed the solution in line architec-
ture. Hu et al. further considered the optimal partition by
considering the fact the many SOTA DNNs have a DAG
architecture and proposed a min-cut formulation to solve
latency minimization using a max-flow approach [8]. Zhang
et al. further reduce the solution space to increase the running
speed to find the optimal cut [22]. Lin et al. considered a
case where there are multiple servers and a more general 3-
layer network, i.e., mobile, edge, and cloud [23]. A Particle
Swarm Optimization (PSO) algorithm was proposed to solve
the task allocation problem. This paper belongs to IoT-assist
offloading and it further addresses the layer-wise processing
schedule issues which does not be covered in [8, 22]. The
detailed discussion about the difference between this paper
and approaches in [8, 22] can be found in Section III-B.

III. PROBLEM FORMULATION

A. Network Model

We focus on a typical computation offloading environment,
where an end device, e.g., a smartphone, and an edge/cloud
server are connected via WiFi or cellular network. Without
causing any confusion, the end device and server are called
local and remote devices respectively in the remainder of this
paper. The computational architecture of SOTA DNN models
can be graphically abstracted as a DAG, denoted as G(V,E)
with n vertices [8, 11, 22, 24]1, where a vertex vi ∈ V
represents a computational layer rather a neuron and a link
eij = (vi, vj) ∈ E represents the processing dependency
relationship between two layers. In the remainder of this paper,
vertex and layer are used interchangeably. In addition, we use
p(i) to denote a path where a set of vertices, (vb, vb+1, · · · ,
ve), are processed under the partial processing order. The vb
and ve are the beginning and end vertices, respectively.

We consider a cooperative deep inference mechanism,
where the network is partitioned two parts. A network partition
decision can be modeled as a cut of a set of edges in G(V,E)
and the layer processing assignment can be demoted as a
binary vector X ∈ {0, 1}n, where xi = 0 if vi is assigned
to the local device, and xi = 1 if it is assigned to the remote
server. Cooperative deep inference has three stages. In stage
1, the local device will process locally assigned layers, and
the intermediate results of stage 1 will be transmitted to the
remote server, which is stage 2. In stage 3, the remote server
will continue the processing and finish the DNN inference.
The processing times for vertex vi in local and remote servers

1Recurrent Neural Networks (RNN) models such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) are out of the scope of
this paper, which is same as references.
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Fig. 2. A motivation of layer-wise cooperative deep inference (L: local device, C: communication, and R: remote server).

are ti and t′i, respectively. Let si denote the output data size of
vi. In order to process vertex vj remotely, vertex vi’s output,
simply called vertex vi, need to be transmitted to the remote
server if eij belongs to the cut.

Fig. 2 illustrates the deep inference mechanism with a DAG
DNN with 6 vertices. The red line represents the network
partition decision, X = {0, 0, 0, 0, 1, 1}, where v1 to v4 are
processed locally and the outputs of v3 and v4 are transmitted
to the remote server and used as inputs of v5 and v6 for remote
processing. In Fig. 2, a tuple near a vertex vi represents the
corresponding (ti, si, t

′
i).

B. Proposed Idea

The main idea of this paper is that existing works consider
there is no overlap between three stages [8, 22] but we
argue that three stages can happen simultaneously. Therefore,
existing works that claimed to achieve optimal inference
latency can be further reduced. Fig. 2(b) shows the strategy
in [8], which takes 16 time units in this example and there
is no overlap between three stages. We argue that v3 should
be transmitted once the local device finishes it, as shown in
Fig. 2(c). Similarly, the remote server should process v5 once
it receives v3. The final completion time is reduced to 11.
It is worth noting that even for the same network partition
decision, the vertex processing schedule has an influence on
the completion time. In Fig. 2(d), the local device processes
v2 first, followed by v4 and v3. This processing schedule leads
to a completion time of 15.

C. Completion Time Calculation

In Subsection III-B, we discuss that the completion time
of a vertex is not only determined by the network partition
but also depends on the corresponding schedule strategy, σ,
which is the processing order of (v1, v2, . . . , vn). Specifically,
the completion time of vertex vj , Cj(X,σ), can be calculated
recursively and formally written as follows:

maxeij∈E Ci(X,σ) + tij(σ) + t′j , {xi, xj} = {0, 1},
maxeij∈E Ci(X,σ) + tj , {xi, xj} = {0, 0},
maxeij∈E Ci(X,σ) + t′j , {xi, xj} = {1, 1},

(1)

where tij(σ) is the offloading latency of si under the schedule
σ. Note that we only consider computation offloading from
the end device to the remote server and the assumption is that
the remote server is more powerful. In Fig. 2(c), C6(X,σ) =
max{C5(X,σ)+t

′
6, C4(X,σ)+t46(σ)+t

′
6} = max{8+1, 9+

1+1} = 11. It is worth noting that tij(σ) ≥ si, because si may
be queued during the data transmission stage. For example, if
s3 in Fig. 2(c) becomes 7, t46(σ) will change to 2 due to
waiting for the s3’s transmission and C6(X,σ) becomes 12.

D. Deep Inference Optimization with Layer-wise Schedule

In this paper, we would like to investigate the impact
of layer-wise processing pipeline schedule in cooperative
deep inference, called DeepInference-L. The objective of
DeepInference-L is to find the best offloading schedule σ to
minimize the DNN completion time when the DNN DAG,
network environment, local and remote environment, and the
deep inference strategy, X , are known. That is,

P1: argmin
σ
Cn(X,σ)

s.t. Ci(X,σ) ≤ Cj(X,σ), ∀eij ∈ E
Eq. (1), ∀i, j

(2)

where the objective is equivalent to minimize the last vertex’s
completion time. The first constraint is processing dependency.
A vertex can only be processed if all of its predecessors
have been completed. The second constraint is the completion
time calculation. Without causing confusion, we use Ci(σ)
to denote the completion time of a vertex vi under a given
network partition X in the remainder of this paper. We plan
to solve the optimal network partition X in the future.

E. Problem Hardness

Theorem 1. The proposed DeepInference-L is NP-hard.

The detailed proof of Theorem 1 can be found on Appendix.
The insight is that the DeepInference-L can be reduced to a
3-machine flow shop problem.

IV. LAYER-WISE SCHEDULE OPTIMIZATION

In this section, we would like to discuss the optimal sched-
ule algorithms for different network architectures, respectively.
We categorize DNNs into three architectures, shown in Fig.
3, and discuss the corresponding schedule solution. The first
architecture, shown in Fig. 3(a), is the line architecture.
Applications include YoLo, ResNet, DenseNet [25, 26]. The
second architecture is the multi-path architecture shown in Fig.
3(b). Inception-v1 [27], ResNeXt [28], novel networks – such
as Siamese Networks, Triplet Networks, and Multi-stream
[29, 30], also belong to this type. The third architecture is
the general DAG architecture shown in Fig. 3(c). Applications
include Inception-ResNet [31], NASNet [32], RandWire [10].

A. Line Architecture

Line-architecture DNN has one and only one feasible partial
order, i.e., only one vertex is ready for processing at any
time. If only one output needs to be transmitted to the server,
the schedule is trivial. However, “by-pass” link has recently
been used in many models to resolve the vanishing gradient



(a) line (b) multi-path (c) DAG
Fig. 3. State-of-the-art CNN architectures summary.

problem, e.g., ResNet, DenseNet [26, 33]. As a result, multiple
outputs may need to be transmitted to the server in the
cooperative inference and thus there is an intermediate trans-
mission schedule optimization problem for inference latency
minimization. We prove that the optimal schedule can be
obtained from Theorem 2.

Theorem 2. If both eii′ and ejj′ are in the cut and vi′ ≺ vj′ ,
i 6= j, i′ 6= j′, vi’s output should be transmitted first in the
optimal schedule.

The detailed proof of Theorem 2 can be found on Appendix.
The insight of Theorem 2 is that an earlier vertex’s input in
the processing sequence should be satisfied first. Therefore,
vertices transmission priorities can be determined by successor
vertices’ processing sequence at the remote server.

B. Multi-Path Architecture

In this subsection, we discuss the schedule strategy for
multi-path DNNs. A multi-path DNN has a set of parallel
paths which have no overlapping except for the first and
the last vertices. Multi-path architecture is a recent technique
to improve DNN accuracy with the intuition of multi-scale
processing, verification, etc. [27, 29, 30, 34].

1) Path-based Schedule: We find that a cut of a multi-
path DNN will separate every path into two parts (possibly
including multiple vertices). Based on this observation, we
propose a path-based schedule method. Particularly, each path
has three stages and each stage of a path can be considered
as an entity and always be processed (i.e., computation or
communication) consecutively until that stage terminates, i.e.,
non-preemptive schedule. Without loss of generality, we use
p1, p2, and p3 to denote the three stages, i.e., local processing,
transmission, and remote processing, of a specific path. By
a slight abuse of notation, we also use them to denote the
corresponding times of stages.

p1 =
∑c

l=b
tl, p2 = sc, p3 =

∑e

l=c+1
t′l, (3)

where vb, vc, and ve are the beginning vertex, the last vertex
processed locally, and the last vertex of this path, respectively.
For a specific path i, we use p1(i), p2(i), and p3(i) to demote
the processing time in three stages. It is worth noting that we
don’t consider preemptive schedules, e.g., processing a path
partially and resume it later at a stage. The rationale of the
proposed path-based schedule, a non-preemptive schedule, can
be proved by Theorem 3.

Theorem 3. In multi-path DNNs, the optimal schedule can be
achieved via non-preemptive path-based schedule.

The detailed proof of Theorem 3 can be found on Appendix.
The insight behind Theorem 3 is that a partially processed path

(a) EJ Algorithm

(b) NEH Algorithm
Fig. 4. An illustration of the proposed two algorithms.

in a stage does not reduce its own completion time but may
increase the completion time of other paths. As a result, the
path-based schedule will not lose schedule optimality.

2) Problem Formulation: Based on Theorem 3, Problem
P1 can be re-formulated as a Mixed Integer Program (MIP),
whose goal is to determine an optimal path sequence P =
(p(1), p(2), . . . , p(m)) to minimize the completion time. We
can use a decision variable yjk to denote if p(j) is the kth path
in the schedule sequence (yjk = 1) or if not, yjk = 0. The
auxiliary variable Iik denotes the idle time on stage i between
the processing of the path in the kth position and (k + 1)th
position, and the auxiliary variable Wik denotes the waiting
time of the path in the kth position between stages i and i+1.
The idle time on the remote server is

2∑
i=1

pi(1) +

m−1∑
j=1

I3j =

2∑
i=1

m∑
j=1

yj1pi(j) +

m−1∑
j=1

I3j , (4)

where the first part is the waiting time for the remote server
to receive the result of the first vertex, and the second part is
all the following idle time at the remote server.

Note that minimizing the DNN completion time under an of-
floading decision is equivalent to ensure that the remote server
can finish as soon as possible. Therefore, DeepInference-L
problem can be reformulated as follows:

P2: min (
∑2

i=1

∑m

j=1
yj1pi(j) +

∑m−1

j=1
I3j),

s.t.
∑m

j=1
yjk = 1, ∀k,

∑m

k=1
yjk = 1, ∀j,

Iik +
∑m

j=1
yj(k+1)pi(j) +Wi(k+1)

=Wik +
∑m

j=1
yjkpi+1(j) + I(i+1)k∀i, k,

Wi1 = 0, ∀i, I1k = 0, ∀k,

(5)

where the first constraint ensures that a path has to be assigned
to the position k. The second constraint ensures that a path
k has to be assigned to one and only one position. The third
constraint is the physical constraint between waiting time and
idle time. The last two constraints are the initial condition.

3) Optimal Solution in A Special Scenario: Problem P2 is
NP-hard, as proved in Theorem 1. However, we can derive the
optimal solution of P2 in a special network environment.

An explanation of the proposed Extended Johnson (EJ)
algorithm is shown in Algorithm 1. To meet the P2’s objective,
we group paths into a high-priority set, H , and a low-priority
set, L, based on the processing time summation of the first



Algorithm 1 Extended Johnson Algorithm (EJA)
Input: G(V,E), X , ti and t′i, ∀vi
Output: The offloading schedule σ

1: H ← L← ∅
2: for i = 1 to m do
3: if p1(i) + p2(i) ≤ p2(i) + p3(i) then
4: H = H ∪ p(i)
5: else
6: L = L ∪ p(i)
7: Sort H increasingly based on p1(i) + p2(i)
8: Sort L decreasingly based on p2(i) + p3(i)
9: Concatenate H and L to obtain σ

Algorithm 2 Nawaz Enscore Ham (NEH) Algorithm
Input: G(V,E), X , ti and t′i, ∀vi
Output: The offloading schedule σ

1: Create m paths based on Eq. 3.
2: Generate sequence P = (p(1), . . . , p(m)) in non-

increasing order of total processing time p1 + p2 + p3,
and a partial schedule σ = (p(1))

3: for index i = 2 to m in the sorted path set do
4: for possible insert position k = 1 to i do
5: Evaluate the new sequence σ = σ ∪ p(i)
6: Update the partial schedule σ with p(i) with position

causing the minimum completion time

two stages and the processing time summation of the last
two stages, i.e., p1(i) + p2(i) and p2(i) + p3(i) (Lines 1-3).
Particularly, if p1(i)+p2(i) ≤ p2(i)+p3(i), the path p(i) will
be added into the set H . Otherwise, the path p(i) will be added
into the set L (Lines 4-6). To ensure that the remote server can
start its processing as soon as possible, the optimal schedule
will schedule paths at set H first based on the increasing order
of p1(i) + p2(i) (Line 7). Ties may be broken arbitrarily. The
insight of this step is to ensure the remote server will start
its processing as early as possible. To ensure the idle time of
the remote is minimized, the optimal schedule will schedule
paths at set L based on the decreasing order of p2(i) + p3(i)
(Line 8). Ties may be broken arbitrarily. The optimality of this
algorithm is proved by [35].

Fig. 4(a) shows a running example of Algorithm 1, where
there are 4 paths in total (m = 4). The local path processing
time, data transmission time, and remote path processing time
of all paths are shown on the left table of Fig. 4(a). For
instance, the local device needs 3 time units to process the first
part of the path p(1), the intermediate result transmission takes
another 2 time units, and the remote server needs 5 time units
to continue the processing of the path p(1). It is worth noting
that in this example, the minimum value of the processing time
of four paths on stages 1 and 3 are 3 and 2, respectively, and
the maximum communication time for any path in stage 2 is
3. As a result, it satisfies the optimal condition in Theorem
4, i.e., stage 1 dominates stage 2, so that the result generated
from Algorithm 1 is optimal.

In Fig. 4, four paths are grouped into two sets, H and L. The
processing time sum of the first two stages and the processing
time sum of the last two stages are calculated as shown in Fig.
4(a). In this example, p(1) will be inserted into set H and all
other three paths will be inserted into set L. As a result, path
p(1) will be scheduled first, followed by paths p(3), p(4), and
p(2). The overall completion time is 18. This is the optimal
solution, since the remote server starts at the earliest time, 5.
In the meanwhile, there is no idle time at the remote server
and thus it is impossible to find a better schedule.

Theorem 4. If stage 2 is dominated by either stage 1 or stage
3, i.e., max{min p1(i),min p3(i)} ≥ max p2(i), ∀i, P2 can be
optimally solved via Algorithm 1.

This theorem can be proved via 3-machine flow-shop con-
version. Then, we can use the result from [35] to prove it. In
[36], the authors further proved that this approach achieves an
approximation ratio of 5/3 in the general case.

4) Heuristic Solution in the General Case: In the general
case, we propose to apply Nawaz Enscore Ham (NEH)’s
heuristic algorithm, which has good performance in the general
case and low time complexity [37]. The key idea of NEH is
that it provides time-consuming paths with a high schedule pri-
ority. The longest path has the highest schedule priority and is
scheduled first. Then, the NEH algorithm iteratively adds one
new path into the partial schedule by trying all possible insert
positions and select the best one. The detailed explanation
for the NEH algorithm can be found in Algorithm 2. First,
paths are sorted based on their corresponding processing time
summation of three stages (Lines 1-2). Then, the remaining
paths will be inserted into the best position in the current
schedule one-by-one (Lines 3-7).

The NEH’s running procedure for the same toy exam-
ple is shown in Fig. 4(b). First, the path sorting result is
(p(1), p(3), p(4), p(2)) since their corresponding processing
times are 10, 10, 9, and 7, respectively. Then, pick the longest
path, which is p(1). Ties may be broken arbitrarily. Then,
we further add p(3) into the current schedule and there
are two possible schedules. For the schedule (p(1), p(3)),
the overall processing time is 13 time units. However, for
the schedule (p(3), p(1)), the overall processing is 15 time
units. As a result, the best partial scheduling order so far
is (p(1), p(3)). Then, NEH will further insert the remain-
ing paths, i.e., p(4), p(2), in the best possible positions.
Three possible schedules will be generated after the insertion
of p(4), which are (p(4), p(1), p(3)), (p(1), p(4), p(3)), and
(p(1), p(3), p(4)). The corresponding completion times are 17,
17, and 16, respectively. Then, the best partial scheduling order
so far is (p(1), p(3), p(4)). Following the same procedure,
we can get the final schedule, (p(1), p(3), p(4), p(2)), which
achieves the best result of 18.

C. General DAG Architecture
In this subsection, we would like to discuss the general DAG

DNNs. A general DAG DNN has a set of dependent paths
whose vertices may overlap with each other. The dependent



v1

v2 v3

v5v4

(a) before Conversion, G

v1

v2 v3

v5v4v2

v4

(b) after Conversion, G′

Fig. 5. Apply to general network architecture.

Algorithm 3 DAG Conversion Algorithm
Input: G(V,E)
Output: A multi-path architecture DNN G′

1: Sort V via the topological order.
2: while ∃vi ∈ V \ {v0, vn} and out/in-degree(vi) > 1 do
3: if out-degree(vi) > 1 then
4: Replicate vi and its incoming edge.
5: A vi links to a unique vj , eij ∈ V .
6: if in-degree(vi) > 1 then
7: Replicate vi and its outgoing edge.
8: A unique vj links to vi, eji ∈ V .

relationship between paths introduces a new challenge, and we
cannot directly use the solution discussed in Section IV-B. An
example is shown in Fig. 5(a), where two paths use the layer
v2 to continue their processing.

To decouple the dependency between paths, we propose a
network conversion strategy without changing the intermediate
results. The detailed conversion is shown in Algorithm 3. For
any vertex in the middle of the graph,
• If the out-degree of a vertex is k (k > 1), that vertex

replicates k times so that each new vertex connects to
one unique successor vertex.

• If the in-degree of a vertex is k (k > 1), that vertex
replicates k times so that each new vertex connects to
one unique predecessor vertex.

A conversion example of Algorithm 3 is shown in Fig. 5.
We first find all vertices whose in-degree or out-degree are
larger than 1 and conduct replication. In this example, vertex
v2 is selected and will be replicated once. one v2 links to v3
and one links to v4. In the second round, we find v4 whose
in-degree is 2 and thus it will be replicated once. Then, one
links to v2 and one links to v1. After the second round, all
vertices except v1 and v5 have the in-degree and out-degree of
one and Algorithm 3 terminates. After the conversion, we can
apply the corresponding solutions in Section IV-B. Note that
the replicated vertices in the converted graph (e.g., vertices v2
and v4) are only used to generate the scheduling order of each
path. Only one of the replicated vertices will be processed and
all other replicated vertices will be skipped in the actual DNN
computation and communication processing.

V. EVALUATION

A. Device Information

We implement our proposed scheduling algorithms on a
typical computation offloading setting. Specifically, we use a
Raspberry Pi 4 model B as the local end device, which has a

quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz and
4 GB RAM. We set up an edge server by using a desktop in
our lab which has a six-core CPU (i7-8700) @ 3.20GHz, a
GTX 1080 GPU, and 32 GB RAM. The operating system and
key software that we use are Ubuntu 20.04, Python 3.8, Torch
1.7, CUDA 11.0, and cudnn 8.0.3.

B. System Setup

In the experiments, each DNN model is partitioned based
on the network partition decision. We use gRPC, an open
source flexible remote procedure call interface for inter-
process communication. torch.save() function is called
to conduct serialization for the intermediate result of the
local device and measure the size of the generated data
(e.g., sys.getsizeof()). The intermediate result is then
saved into an BytesIO which uses memory buffer for quick
transmission without disk read/write operation.

In our implementation, the local device will send a gRPC
request to the server, including (1) a string which indicates
DNN model and partition information, so that the server can
resume with second part of the DNN model correctly (the
string encodes the name of the DNN model and pre-defined
IDs of partitioned layers instead of the model parameters to
reduce communication volume), and (2) a byte array data
contains the serialized intermediate result. Once the server
receives a gRPC request, it will decode the request message
to get the DNN model information from the string and decode
the byte array data with torch.load() function. The
server will send back a gRPC message after finishing the
second part of DNN models with two pieces of information,
(1) the DNN result and (2) the remote processing latency.
With the remote processing time returned, the local device
can further calculate communication latency.

The proposed schedule algorithm is conducted on local end
device based on the latency measurement of three stages.
Specifically, the latency measurement results is conducted
offline and stored into a lookup table. As a result, the lo-
cal device can choose the best schedule in real-time based
on the current network environment. We test the prototype
under different wireless connection conditions by varying the
bandwidth between local and remote servers. Particularly, we
emphasize three common network conditions, including, 3G,
4G and WiFi environments. Typical bandwidths of 3G, 4G
and WiFi network are set to 1.1 Mbps, 5.85 Mbps and 18.88
Mbps, respectively, same as [8].

C. Algorithm Comparison

To test the effectiveness of the proposed algorithms, we
compare the following three baselines: (1) Local-Only (LO)
algorithm: the entire DNN is processed on the local device. (2)
Remote-Only (RO) algorithm: the entire data is offloaded, and
the remote server is used to process the entire DNNs. (3) DNN
Surgery Light (DSL) algorithm: this algorithm is proposed in
[8], which doesn’t consider the layer-wise processing pipeline.
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Fig. 6. Latency and accuracy analysis in computation offloading.

D. Performance Evaluation

1) Validating the Necessity of the Proposed Research:
Fig. 6(a) shows the inference time of STOA DNN models
on Raspberry Pi, and the size of each point denotes the
corresponding DNN model size. From Fig. 6(a), a clear trade-
off between DNN inference accuracy and running time can
be observed. The deep learning accuracy improves in recent
models, such as Inception-v3 and ResNeXt50. However, the
running time for these models is also very large, i.e., 10s,
which limits them to be applied into local devices. It is worth
noting that DNNs models on the right-up region of Fig. 6(a)
are general DAG DNNs, and thus the proposed algorithms in
this paper is very suitable for them. In Fig. 6(b), we validate
the computation and communication latency of VGGNet in
4G and WiFi environments. The results clearly show that
cooperative computation offloading can reduce communication
traffic significantly; for example, the communication size
reduces greatly after the first six layers in Fig. 6(b).

2) Improvement over Local Processing: We compare the
proposed EJ and NEH algorithms with two baselines under
3G, 4G, and WiFi environments and the results are shown
in Table I. It is worth noting that NEH and EJ algorithms
always achieve the same performance and the reason is that the
five networks used in the experiments are not very complex.
Results show that the naive computation offloading may not be
able to reduce the inference latency but significantly increase
the inference delay due to the slow communication link. For
instance, in 3G environment, RO algorithm has the worst
performance for all five networks in our experiments. For
large DNN models, such as Multi-stream, the RO algorithm
ends with 5x latency. Cooperative computation offloading can
dynamically adjust its offloading strategy based on the commu-
nication bandwidth and always achieve no worse performance
compared with LO and RO algorithms. The proposed algo-
rithms achieve the best performance in all three environments.
In Table I, we can clearly find a trend that the impact layer-
wise schedule can reduce the inference latency significantly for
AlexNet-Parallel, GoogLeNet, Siamese Network (MobileNet
v2) and Multi-steam Network (CaffeNet/AlexNet).

3) Improvement over SOTA Cooperative Offloading Sched-
ule: We use the speedup ratio, which is the ratio between
the processing time of LO algorithm and the processing time
of other algorithms for quantitative evaluation wit the DSL

TABLE I
COMPARISON OF THE INFERENCE LATENCY OF TYPICAL DNN MODELS

UNDER DIFFERENT OFFLOADING STRATEGIES (MS).

Model LO 3G 4G WiFi
RO Our RO Our RO Our

AlexNet-P 406 4422 406 877 255 337 187
GoogLeNet 848 4475 848 879 728 352 352
ResNet18 871 4463 871 946 810 341 341
Siamese 3919 8783 1998 1702 1087 613 469
Multi-stream 1198 13146 931 2513 692 891 317

algorithms. The results are shown in Figs. 7(a), 7(b), and 7(c).
The results show that the proposed algorithms further reduce
the inference latency compared with the DSL algorithm and
achieve 20%, 70%, and 1x more speedup than DSL algorithm
in Multi-stream and Siamese networks under 3G, 4G, and WiFi
environments, respectively. It is because that computation and
communication load in these networks are relatively large and
thus there is a large room for scheduling optimization.

4) Various Communication Settings: In Fig. 7(d), we in-
vestigate the advantage of the proposed method over the
DSL algorithm in a wide range of network environments.
Particularly, we test AlexNet-Parallel and Siamese Network
under a communication range of [1, 80] Mbps. In Fig. 7(d),
we directly compare the latency improvement over DSL for
the proposed algorithms. The results show that the proposed
schedule methods can further reduce up to 1 second over a
wide range of bandwidths. It is worth noting that AlexNet-
Parallel can further reduce latency in a wider range compared
with Siamese Network. The reason is that if the communica-
tion bandwidth is larger than 26 Mbps, the bandwidth is fast
enough so that the optimal strategy is RO algorithm.

5) Impact of Overhead: We evaluate the overhead intro-
duced by cooperative computation offloading. There are two
types of overhead. First, the proposed schedule algorithms
cause extra scheduling latency. Fig. 8(a) shows the results
of the introduced overhead of the proposed two algorithms.
We run the proposed algorithms 50 times to get the average
running time at the Raspberry Pi. The results show that both
algorithms can finish within the order of microseconds. It
is negligible compared with the inference latency, which has
the order of milliseconds. Overall, EJ algorithm is relatively
faster compared with NEH algorithm. Second, offloading
intermediate data to the server causes extra communication
latency, which is between 5 to 20 ms in our experiments. As
a result, the communication overhead should not be ignored.

VI. CONCLUSION

In this paper, we discuss the importance of layer-wise
processing pipeline on the inference completion time and
prove that it is NP-hard. We categorize SOTA DNNs into three
different architectures and develop the optimal solution in line
and certain multi-path architectures, and efficient offloading
solutions in all other architectures to minimize the processing
latency. We validate the proposed schemes via real-world
implementations on SOTA DNNs and the results show that
the proposed schedule methods can further reduce inference
latency by more than 8x in the best case.
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APPENDIX

A. Proof of Theorem 1

Proof. We can reduce the 3-machine flow-shop problem to the
DeepInference-L. The 3-machine flow-shop problem is a well-
known NP-hard problem [38]. We prove that, for any instance
of 3-machine flow-shop problem with m jobs, we can reduce it
to a special case of our DeepInference-L problem by building
a special DAG which has m separate computational paths as
shown in Fig. 9. Any path will have three stages in such a
special DNN. It is worth noting that if we consider the network
partition in a path-based perspective, we use p1, p2, and p3
to denote the corresponding local processing time, output
transmission time, and the remote processing time for that path
in three stages, respectively. Particularly, (1) p1 =

∑c
l=b tl, (2)

p2 = sc, and (3) p3 =
∑e
l=c+1 t

′
l, where vb, vc, and ve are

the beginning vertex, the last vertex processed locally, and the
last vertex of this path, respectively. We can build layers so
that p1, p2, and p3 are equal to the processing times of job i
in three machines in polynomial time.

3-machine flow shop⇒ DeepInference-L: Assume that there
exists an optimal schedule for 3-machine flow shop. Then, the
optimal solution of 3-machine flow shop can be used for the
DeepInference-L to get the minimum computation time in the
above-mentioned special case.

DeepInference-L⇒ 3-machine flow shop: Similarly, assume
that we find the optimal solution of this special case of
DeepInference-L. Then, we can derive the optimal solution
for the corresponding 3-machine flow shop problem based on
the above reduction.

DeepInference-L is as hard as 3-machine flow shop.

B. Proof of Theorem 2

Proof. Theorem 2 can be proved via contradiction. Assume
that there exists an optimal transmission schedule σ?, where
vj’s output is transmitted earlier than that of vi’s output and
vi ≺ vj . The completion time for vj′ , Cj′(σ?), is∑j

k=1
sk +

∑j′−1

k=1
max{Ck(σ

?)−
∑k′

l=1
sl − t′k, 0}+ t′j′ , (6)

where the first part is the data transmission time up to vj′ , the
second part is the idle time due to speed mismatch between
remote processing and communication, and the third part is the
remote computation time of vj′ . Then, if we compare Cj′(σ?)
with schedule σ’s result Cj′(σ), where the only difference
between σ and σ? is that the transmission orders of vi and
vj’s are swapped, we will get the following result,

Cj′ (σ)− Cj′ (σ
?) =∑i′−1

k=1
max{Ck(σ)−

k′∑
l=1

sl, 0} −
i′−1∑
k=1

max{Ck(σ
?)−

k′∑
l=1

sl, 0}

+max{Ci′ (σ)−
∑k′

l=1
sl, 0} −max{Ci′ (σ

?)−
∑k′

l=1
sl, 0}+

j′−1∑
k=i′+1

max{Ck(σ)−
k′∑
l=1

sl, 0} −
j′−1∑

k=i′+1

max{Ck(σ
?)−

k′∑
l=1

sl, 0},

where the three parts are completion time difference between
all vertices before vi′ , the vertex vi′ , and all vertices between

v1

local

…..
.

…..
.

vn

p1 p3
remotecomm.

p2

Fig. 9. An example of NP-hard reduction.
vi′ and vj′ . Particularly, the first part is 0 since both schedules
are exactly the same until vi′ . The second part is no larger than
0 since the vi does not need to wait for sj in schedule σ. For
the third part, the difference is also no larger than 0 since

j′−1∑
k=i′+1

max{Ck(σ)−
k′∑
l=1

sl, 0} −
i′−1∑

k=i′+1

max{Ck(σ
?)−

k′∑
l=1

sl, 0}

=
∑j′−1

k=i′+1
max{Ck(σ)− Ck(σ

?)− sj , 0} ≤ 0.

Ck(σ) − Ck(σ
?) − sj is no larger than 0 due to overlap

between communication and remote computation. Then, we
find a counter-example.

C. Proof of Theorem 3

Proof. This theorem can be proved with contradiction. A
non-preemptive path-based schedule can be denoted as
(p(1), p(2), . . . , p(m)) at a stage, where the index i to denote
the ith scheduled path. By a slight abuse of notation, we
ignore the subscript information which denotes the stage
in this proof to simplify notation. Assume that the optimal
schedule σ? is preemptive, which means that there exists a
path, e.g., p(i), which is split into two sub-stages, denoted
as p1(i) and p2(i), p(i) = p1(i)||p2(i). If p1(i) and p2(i) are
scheduled consecutively, it is equivalent to a non-preemptive
schedule. Therefore, we can demote this schedule as the
following sequence, (· · · , p1(i), · · · , p2(i), · · · ). without loss
of generality, we assume that the starting time of p(1) is 0 and
the idle time of path p(k) is Ik. Then, the completion time
of p(j) is

∑j
k=1(p(k) + Ik). If we delay p1(i) and process

it together with p2(i) and keep all other paths’ schedule,
we get a new schedule σ, (· · · , p1(i), p2(i), · · · ), and the
completion time of each path should be updated as follows.
For any path p(j), p(j) ≺ p1(i), the completion time of
p(j) should still be

∑j
k=1(p(k) + Ik) since the schedule

sequence is the same in both schedules. For any path p(j),
p1(i) ≺ p(j) ≺ p2(i), the completion time of p(j) should
still be

∑j
k=1(p(k)+ I

′
k)− p1(i)− I1i. It is worth noting that

I ′j ≤ Ij , ∀j due to the fact that

I ′k =

{
0 stage 1
Ik −max{p′(k)− p(k − 1), 0} stages 2 and 3

where p′(k) is the processing time in the previous stage.
Therefore, each path gets a smaller completion time, including
p2(i). For any path p(j), p2(i) ≺ p(j) in σ, the processing
time becomes smaller which is because that paths between
p1(i) and p2(i) have a smaller completion time and thus all
the following paths can start earlier.


