Lecture Set 11

A brief introduction to

Text Files

Some Notes About Text Files – What They Are and How to Use Them

A. What is a Text File?

1. A text file is a sequence of characters stored on an external device (normally a disk – floppy, zip, CD, or hard drive) and terminated by and end-of-file “marker”.

2. Note the emphasis on characters – that’s all there is in a text file – just characters.

3. Sprinkled among the characters may be new line characters, ‘\n’. In addition, each data element in the file is usually (‘though not always) separated from the others by blanks.

Example 1: (text stream pointer input using the internally named file infilep)

Consider the following input file of characters (below) to be scanned using the statement

fscanf (infilep, “%c%c%c %d %f”, &fInit, &mInit, &lInit, &hours,

 &hourlyWage);

where fInit, mInit, lInit, are of type char, hours is an int, and hourlyWage is type float.

Note that except when scanning a character (using the specifier %c) leading blanks are skipped as each data item is scanned for conversion. The scanning of a data element stops when either white space is found or a character that is not legal for the specified data type is found. For each data element, the type of the corresponding storage cell dictates how the conversion to internal representation is done. There must be a one-to-one correspondence between the memory cells listed and the conversion specifiers (%d, %c, %f) listed.

Example 2: (text file output)

Consider the sketch shown above. When examining how file output works simply reverse the direction of the vectors (directional arrows). Instead of scanning characters in a file to locate each data element and then converting to internal representation, we start with the internal representation of each data element, and convert it to a sequence of characters which is then written to the output file. Again, the type of the data elements and the conversion specifiers dictate exactly how the characters are formatted in the output file.

If we consider the data cells shown previously and the statement

fprintf (outfilep, “ %c%c%c %5d %7.3f \n”, fInit, mInit, lInit,

 hours, hourlyWage);

our output stream, outfilep, would appear as shown next.

B. Declaring and connecting files

All files stored on permanent storage devices (usually disks) have file names by which they are known to your computer operating system (Windows or Linux, for example). Names such as students.dat or Lab05.dat are often used for data files used in programs that we write.

In most higher level programming languages, data files to be manipulated must first be declared (using a legal variable name in the language) and then connected to an actual file stored externally.

In the C language, we declare files using the following declaration statement

FILE* infilep;

which declares the variable infilep as a stream pointer variable (or a file pointer variable).

Once this variable is declared, it has to be initialized. This is done using the C standard library fopen function (in stdio.h):

infilep = fopen (“file name complete path”, “r”);

outfilep = fopen (“file name complete path”, “w”);

The fopen function connects the external file (known by its path name, enclosed in quotes) TO information about the external file (stored in the area pointed to by infilep or outfilep) that the program needs to manipulate that file. This connection, as it is called, is illustrated in the diagram below (next page). The “r” is used to indicate a read only or input file; the “w” is used to indicate a write only or output file.

This is how the file is known

to the operating system for your

computer.

When the established connection between an external file and its internal, program information is no longer needed, it may be disconnected using the fclose function:

fclose (infilep);

There are a number of operations that can be performed on text files. We examine a few of them next.

C. Example – Processing Files Using stdio functions: Files Backup Program

fscanf – works the same way as scanf except that it reads from an external file rather than from the standard input file (the keyboard, known to C as stdin).

fprintf -- works the same way as printf except that it writes to an external file rather than from the standard output file (the screen, known to C as stdout).

fscanf (infilep, “ %d “, &num);

fprintf (outfilep, “Number = %d\n”, num);

Note that any valid input (or output) file pointer name may be used as the first argument for these functions.

feof – used to check if end-of-file encountered for an input files

if (feof (infilep)) // true of eof encountered. Otherwise false

putc – used to write a single character to the next position in the specified output file.

putc (ch, outfilep);

getc – used to get a single character (the next character in the input file) from the specified text file.

ch = getc(infilep);

Checking for end of file when getc is used can be done using the condition (ch = EOF)

 J O E 3 2 6 . 7 5 \n …

J

O

E

 32

6.75

Data stored in internal representation

Characters converted to

 internal representation.

 J O E 3 2 6 . 7 5 0 \n

infilep

outfilep

From the variable hours

From the variable hourlyWage

Internal (stream) informa-tion about the external file needed for the program to manipulate the file.

External file name, such as Lab05.dat

This information is stored in a variable such as infilep or outfilep of type FILE*.

Connecting an external file

 to a program (variable)

 using the fopen function.

