Lecture Set 10B – Modular Programming, Part B

Required Reading – HK (Hanly/Koffman), Chapter 6 (Finish It)

Required Assignments – Lab 9R on Separating Parts of a Type Float Variable
C. Reinforcing the points made in Lecture Set 10A

Now let’s examine a function with two output arguments.

// Function to swap the contents of two double precision memory

// cells.

void swap

 (double* xp; // INOUT: Refers to one value to be swapped

 double* yp) // INOUT: Refers to the other value to be swapped

If we call this function, say in main, using

swap (&alpha, &beta);

then our picture of memory at the time the call might look like this.

Main swap (&alpha, &beta);
void swap (double* xp; double* yp);

So – what is the problem here?

The problem is this …

BUT …

The function does not know where these two cells are (if I pass information by value),

because it does not know the ADDRESSES of these two cells.

This is where the address of operator (&) comes into the picture, together with …

 the grease-y, grime-y, ugly world of address, pointers, and address manipulation.

[image: image1.png]it Toos Window Hep

[mery 5

oI5 B B E & BT

YO E Y @=

T

T 073,08 | 13sby 1008 (O 0

)

) @ N B &

7~
3

Remember that the GOAL here is twofold. We need to be able to

1) pass the addresses of (pointers to) alpha and beta to the function

and

2) do all the manipulations inside the function in terms of these addresses.

Now let’s take care of GOAL 1. We begin by recalling that

&alpha represents the address of alpha

The & is known as the address of (unary) operator.

So, if I write the arguments in the call of swap as (alpha, beta) then the contents of

alpha and beta will be passed to swap. This is NOT what I want. But by specifying

the arguments as (&alpha, &beta), then the addressES of alpha and beta will be

passed to swap.

So now we have the following picture.

Main swap (&alpha, &beta);
void swap (double* xp; double* yp);

And now we are ready to handle GOAL 2 – manipulating these addresses so as to

actually swap the contents of alpha and beta.

This is where the asterisk (*) – in this case, used as the pointer dereference

Operator comes into play.

We begin our discussion of this operator by writing the full definition of the

function swap.

void swap (double* xp; double* yp)

{

 double temp; // a variable local to the function

 // needs a memory cell drawn in the picture

 temp = *xp;

 *xp = *yp;

 *yp = temp;

}
WHY? What is going on here?

How do I explain “dereferencing”?

Let’s look at the picture above. If I write the statement

 temp = xp;

what will be stored in temp? (Hint: the address of alpha)

By writing

 temp = *x;

I cause the pointer (address) in cell xp to be dereferenced and the value of what is

pointed to by xp (in this case 2.5) is stored in temp.

Notice that

instead of assigning the contents of xp directly to temp

we

use the contents of xp to determine the location of the information to be

assigned to xp.

Similarly, if I write

 yp = temp;

then the contents of temp will be stored in yp.

This is not what I want. For it moves 2.5 to yp and not into beta and it wipes out the

address of beta.

What I want is for the contents of temp to be stored in the location pointed to by yp.

And this is where dereferencing comes in again.

 *yp = temp;

THE END (of Part 10B)

alpha

&beta = 08F63116

 2.5

beta

yp

Address of alpha

Address of beta

xp

&alpha =08F48D16

The question we now must answer is this:

In order for us to be able to successfully change the values of alpha and

beta in the calling function, how should we pass information to the function swap?

&alpha =08F48D16

&beta = 08F63116

yp

xp

 ?

 ?

beta

alpha

 2.5

-3.75

-3.75

Address of alpha

xp

 temp

08F48D16

temp = xp;

(stores the

address of alpha in temp)

xp

Address of alpha

2 –

temp = *xp;

(stores the

contents of what is point-ed to by contents of xp into temp)

 temp

 2.5

temp

alpha

 2.5

1 - Dereference the pointer in x: effect of *xp

yp

 2.5

Address of beta

 2.5

temp

 2.5

yp

Address of beta

beta

 2.5

1 - Dereference the pointer in yp: effect of *yp

2 –

*yp = temp;

(stores the

contents of temp into the memory cell pointed to by contents of yp)

