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Abstract—Microblogging sites, like Twitter, continuously generate a
large volume of streaming data. This streaming environment creates
new challenges for two concomitant Information Extraction tasks: Entity
Mention Detection (EMD) and Entity Detection (ED). The new chal-
lenges include (1) continuously evolving topics, which may deprecate
model-based approaches quickly; (2) non-literary nature of posts, which
makes traditional NLP techniques less effective; and (3) huge volume
of streaming data, which makes computationally expensive approaches
less suitable. In this paper, we propose an approach for EMD/ED whose
creation is guided by the constraints specific to streaming environments
from the ground up. Our system TwiCS implements this approach.
TwiCS employs a computationally light two-phase process. In the first
phase, it exploits simple (low computation) syntactic cues to suggest
Entity Mention (EM) candidates. In the second phase, it uses occurrence
mining to classify candidates according to their likelihood of being true
EMs. Our experiments show that TwiCS achieves an average effective-
ness improvement of 14.6%, while maintaining at least 2.64 times higher
throughput, when compared to several state-of-the-art systems.

1 INTRODUCTION

Entity Mention Detection (EMD) is the task of automati-
cally extracting contiguous strings that represent entities of
interest in text. In this paper we refer to these excerpts or
surface forms (following the terminology in WNUT17 [1]),
as Entity Mentions (EMs). In the streaming environment,
Entity Detection (ED) aims to cover the breadth of unique
entities within text streams, while EMD compiles the men-
tion variations of entities appearing in text. They belong to
the broader Named Entity Recognition (NER) problem, and
are often the first steps in an NER pipeline.

Example 1. Figure 1 illustrates the variations in which
five unique entities are mentioned in tweets: ‘trump’, ‘sean
spicer’, ‘spicer’, ‘carter page’ and ‘cnn’. They include properly
capitalized phrases (e.g., ‘Trump’, ‘Sean Spicer’, ‘Spicer’ and
‘Carter Page’), an all capitalized abbreviation (e.g.‘CNN’), as
well as completely non-capitalized mentions (e.g., ‘trump’
and ‘carter page’), and a partially capitalized string ‘Carter
page’. ‘Hold’ is a miscapitalized non-entity string.

In this paper, we study near real-time EMD for Mi-
croblog streams, which poses some unique challenges com-
pared with EMD from static or well-formatted text:

• S. Saha Bhowmick is with the Department of Computer Science, Bing-
hamton University, Binghamton, NY 13905.
E-mail: ssahabh1@binghamton.edu

• E.C. Dragut is with the Computer and Information Sciences, Temple
University, Philadelphia, PA 19022.
E-mail:edragut@temple.edu

• W. Meng is with the Computer Science Department, Binghamton Uni-
versity, Binghamton, NY 13902.
E-mail: meng@cs.binghamton.edu

Manuscript received October 6, 2020.

Fig. 1: Entity Mentions in Tweets

(1) Non-Literary Language: Microblog messages tend to
exhibit insufficient context, grammar or punctuation errors,
or misspellings. Pre-Twitter systems (e.g., [2], [3]) seek
understanding of textual semantics through pre-processing
like POS tagging and dependency parsing. But the non-
literary nature of Microblog text renders models trained
exclusively on content with well-formatted grammar and
syntax less effective. Hence it has been addressed by a
variety of supervised systems [4] developed in this space.
(2) Topical Variation and Evolution: A unique challenge
in microblog streams is the coexistence of wide-ranging
topics that evolve over time. This brings in an added risk of
model deprecation when systems designed on static corpora
are applied to streams. Existing EMD systems either refine
feature selection for statistical Machine Learning models
[4], [2] or build upon sophisticated Deep Neural Networks
(DNNs) [5], [6], [7]. These systems are trained off-line with
static corpora. To make up for the expansive scope of
Microblog stream contents, this requires substantial amount
of annotated domain data. Also, the external resources like
embeddings set for DNNs or gazetteers used also need to
be appropriately updated in order to avoid yielding too
many Out-Of-Vocabulary tokens that affect the performance
of statically trained models on streaming data.
(3) Volume: Popular streams can generate high volume of
messages over an extended period of time. It is imperative
for an EMD system operating in this setting to not only
detect good quality entities but also to keep up with incom-
ing message traffic. For most supervised systems, especially
DNNs, model training and hyperparameter tuning [8] are
expensive due to a large number of parameters. This also
prolongs test time and increases the delay between message
generation and eventual output production. In fact, our
experiments showed a state-of-the-art DNN to be 1.83 times
slower in EMD than the fastest non-neural alternative.

In stark contrast to existing solutions, we devise a new
EMD system called TwiCS that requires minimum training,
no expensive NLP, and is computationally light. We view
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Microblogs as non-static corpora where messages on diverse
topics are generated continuously. The streaming nature of
this setting, therefore, demands a continuous, incremental
solution that can analyze topically evolving messages but
with a near real-time processing objective. Our work initi-
ates from the perspective of an EMD system that: (i) is at
least as effective as existing state-of-the-art systems, yet (ii)
uses only a fraction of their runtimes by being computa-
tionally inexpensive. To achieve these somewhat conflicting
objectives and address aforementioned challenges, we pro-
pose to combine several carefully crafted ideas within a two-
phase system. Phase I performs a linguistically shallow and
computationally light scan of incoming tweets to quickly
detect entity candidates. Phase II extracts more mentions of
said entity candidates to validate True Positives (entities)
among them. As a departure from once-and-done solutions,
Phase II reprocesses a small percentage of tweets (about
5.11% in our empirical studies) with downstream tweets
that reveal more information about entity candidates which
could not be confidently processed in the former.

Compared to DNNs our solution may appear “simple”
but the simplicity is by design. We seek to prove in this
study that simple (in the sense of “light”) solutions with
multiple passes on strategically select inputs, can com-
pete with complex techniques in achieving good effective-
ness while significantly outperforming them in throughput,
when based on shrewd insights. This appears to be the right
strategy computationally to cope with the near real-time
constraint of large Microblog streams. We implement TwiCS,
an EMD system on Twitter, based on these ideas.

Example 2. We use Figure 1 to help explain the EMD ap-
proach of TwiCS. Suppose for this example, Phase I extracts
entity candidates based on this heuristic: each capitalized
word sequence (except a single capitalized word at the
beginning of a sentence) is an EM and suggests a candidate.
Suppose the system first encounters T1 in the stream. It
ignores ‘carter page’ in the initial scan and adds T1 to a queue
to revisit later. Next the system encounters T2 and learns
that ‘Carter Page’ is a true entity and adds it to a knowledge
base. At some point, the system decides to revisit T1. This
time it decides that ‘carter page’ is a valid EM because of its
”match” with ‘Carter Page’.

In our experiments, TwiCS is able to achieve an av-
erage effectiveness improvement of at least 14.6%, while
maintaining higher throughput, at least 2.64 times higher,
when compared to single-pass state-of-the-art systems that
are built using DNNs or sophisticated NLP techniques
for EMD. TwiCS has some additional advantages, such as
easy deployment. It can also serve as a strong baseline for
comparing EMD solutions for the streaming environment.

We make the following contributions in this paper.

• We propose a novel multi-pass EMD framework with
the following key features: (1) employ lightweight com-
putation units better suited for microblog streams, (2)
enable collective processing of tweets that leverages
occurrence mining to find and label entity mentions,
and (3) reprocess a small fraction of tweets with initially
ambiguous outputs to get better recall.

• We formulate the Capitalized Shingles (CS) rule to
quickly detect entity candidates from text using shallow

syntactic cues. We conduct an extensive empirical study
to validate its merits.

• Guided by our CS rule, we devise effective, yet efficient,
EM candidate extraction and validation algorithms.

• Our extensive experiments show that TwiCS outper-
forms several state-of-the-art EMD systems in effective-
ness, and achieves significantly higher throughput.

The current version of TwiCS with experiments and datasets
are available at https://github.com/dalakada/TwiCSv2.

2 RELATED WORK

A majority of EMD systems for tweets are supervised,
with either handcrafted linguistic features in a non-neural
system or DNNs with minimal feature engineering. The
first category of systems like [4], [9] recreate an informa-
tion extraction pipeline leading up to NER. Twitter NLP
[4] first builds a POS tagger and a shallow noun phrase
parser, whose outcomes are additional features to a CRF
based entity boundary segmentation module. TwitIE [9]
customizes several initial components of the open-source
GATE ANNIE pipeline, including a tokenizer and a POS
Tagger, for the subsequent Named Entity Tagger to better
adapt with social media content. Alternatively, Liu et al. [10]
proposes a semi-supervised learning model that sequen-
tially applies a K-Nearest Neighbors (KNN) classifier and
a linear CRF model to the target tweets. Other recent efforts
[11], [12], [13], [14], [15], [16], [17] enhance the feature-set
of traditional CRF based models in different ways – with
word embeddings and knowledge gathered from gazetteers
– to better suit the constraints of microblog paradigm. Also,
a variety of systems [18], [19], [20] have adopted neural
network based solutions for the sequence labeling task of
NER. With systems like [5], [21] we observe the advent
of deep learning frameworks to solve the NER problem.
The recent WNUT shared tasks delve into an exploration
of several NLP tasks including NER specifically catering
to the Microblogging domains like Twitter. Both WNUT16
[22] and WNUT17 [1] report multiple systems like [7], [23],
[19], [24], [25], [26] applying deep learning specifically for
Entity Extraction from Tweets. Therefore, we have chosen
Aguilar et al. [6] – a BiLSTM-CNN-CRF architecture that
performed best at the WNUT17 task, and BERTweet [27]–
a BERT model originally trained on a large Twitter corpus
and then finetuned for NER, as two of our strong baselines.

Apart from the aforementioned works, there are also
some systems in the literature that promote alternative
techniques to NER. TwiNER [28], an example of an unsuper-
vised system, leverages collocation features (from Microsoft
Web N-Gram corpus [29]) to generate candidate phrases
and then ranks them by exploiting the ”gregarious nature”
of potential entities in a targeted stream.

A few other systems [30], [31] jointly attempt entity
extraction with another related Information Extraction sub-
task. Among the existing industrial systems, OpenCalais
[32] performs NER and EL (Entity-Linking) online, on doc-
uments submitted as queries. DocTagger [33] implements
an end-to-end system interleaving multiple IE tasks like ER,
disambiguation and linking, in a shared pipeline.

Two major issues for existing EMD systems are cited
in [1]: the lack of annotated data from the Microblog do-
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main, and congruently, the difficulty in identifying emerg-
ing entity forms. A growing body of work (e.g., [34],
[35]) examines cross-domain transferability of DNN features
learned from the abundant labelled well-formatted corpora.
Handling unseen entity forms however remains a problem
that has only been addressed by enhancing architectural
robustness of DNNs [36].

TwiCS distinguishes from these systems. It provides a
semi-supervised framework that initiates with limited an-
notation requirements and supports easy appendage of high
confidence outputs for quick model retraining. In TwiCS,
we posit that better contextualization arrives with targeted
streaming of Microblogs [37], [38], where sentences need not
be examined in isolation during processing. Our insight is
that entity candidate recurrence is typical and should be ex-
ploited before delving into more complex solutions. TwiCS
relies on incremental occurrence mining that collates EM
variations from sentences and analyzes them collectively.
We evaluate TwiCS on entity types (e.g., People, Location
and Organization) that are predominantly covered in most
existing EMD systems. However, TwiCS’ EMD capability is
not constrained to a particular type set and aims towards a
generic Entity Detection objective.

3 SYSTEM OVERVIEW

TwiCS follows a continuous and iterative process for entity
detection. To this effect, it employs a multi-pass approach,
that scans through tweets to accumulate shallow syntactic
features of the constituent candidates. Tweets are retained
in the system until all candidate mentions in them are
confidently detected. This is a significant departure from the
once-and-done approach employed by existing systems. We
argue that tweets introduced at different processing time
points can mutually benefit from knowledge aggregated
over multiple (often non-consecutive) iterations. Keeping
in mind the possible computational overhead of a multi-
pass approach, we intentionally avoid any expensive in-
depth semantic analysis and employ computationally light
methods. Furthermore, we do not process all messages in a
stream multiple times. In fact, only a very small percentage
of them (less than 6% in our experiments) need to be
reprocessed after the first iteration. We now describe the
building hypotheses and architecture of TwiCS.

3.1 Building Hypotheses

We construct our solution based on several hypotheses. We
categorize them as EM extraction [E-Hx] and EM computa-
tion [C-Hx]. A discussion on the validity of these hypotheses
will be presented through analyses in later sections.
E-H1: Messages in targeted streams tend to congregate in

topics or conversations each of which contains a small
set of entities.

E-H2: Entities appear in limited number of appellative
forms that are progressively discovered as more mes-
sages on the same topic are processed.

E-H3: Although nonliterary language is endemic to mi-
croblogs, EMs typically regress to proper orthography
in messages (e.g., capitalization in English and many
other languages).

Fig. 2: Multi-pass Entity Mention Detection System

C-H1: (Base Case) Majority of EMs can be detected with
simple, computationally inexpensive syntactic rules.

C-H2: (Step Case) EMs in messages with language misuse
may not be extracted the first time they are seen, but
they can be confidently extracted if revisited.

These hypotheses are the guiding principles in building
TwiCS: (1) guided by E-H1, we form groups of tweets with
similar topics or contexts (a principle shared with other NER
tools, e.g., [28], [39]); for Twitter, conversation streams usu-
ally circulate using Hashtags which can also be equated with
topic-specific identifiers for topical clustering from streams.
(2) guided by E-H2 and E-H3, we leverage shallow linguis-
tic features (like capitalization and punctuation usage) to
quickly extract many EMs in one pass; (3) guided by C-H1,
we seed the detection of more EMs with the EMs discovered
according to (2); (4) guided by E-H2, we iteratively grow the
set of known EM variants for an entity, and (5) guided by
C-H2, we strategically revisit tweets whose EMs were not
detected in previous iterations. Our empirical studies reveal
that the Base Case (C-H1) helps extract about 55% EMs on
average while the Step Case (C-H2) covers 43% additional
EMs on average. We elaborate on empirical validation of
these hypotheses in Section 4.2.

We use the example in Figure 1 to explain how E-Hx
and C-Hx guide EMD computation in TwiCS. Suppose that
TwiCS first meets T1. It ignores ‘carter page’ as it is not
confident if it is an EM, but it adds T1 to a queue to revisit
later. Suppose that next it encounters T2 which has ‘Carter
Page’. TwiCS supposes that this can be an entity (E-H3) and
adds it to the seed set (C-H1, base case). For T4 next, it is able
to recognize ‘Carter page’ via a ”match” with ‘Carter Page’ in
the seed set (E-H2). It adds ‘Carter page’ to its knowledge
base. With T5, TwiCS is confident that ‘Carter page’ is a
true entity. At some point, TwiCS decides to revisit queued
tweets and re-processes T1 (C-H2, Step Case). It decides that
‘carter page’ is also a valid EM because of its ”match” with
‘Carter Page’ (E-H2) and adds it to its knowledge base.

TwiCS follows the principle of shallow syntactic analysis
to design entity extraction features. While this paper focuses
on messages in English, orthographic distinction of proper
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nouns is common for a variety of languages [40], including
many European languages (e.g., Spanish, French, Italian,
Turkish). So, the shallow syntactic element of TwiCS can
be easily extended to accommodate many other languages.

3.2 Architecture

Figure 2 illustrates the overall architecture of the TwiCS
system. This framework facilitates continuous execution of
a tweet stream over multiple iterations (or batches). A batch
is a set of tweets on the same topic that will be processed
together. A single processing cycle of an incoming batch of
tweets can be divided into the following steps:
(1) Streaming module fetches a stream of tweets, on a
particular topic, using the Twitter streaming API.
(2) Phase I (Base Case) extracts candidate (seed) entities from
these tweets and forwards them to the Active Processing
Queue (APQ).
(3) Phase II (Step Case) recovers mentions of seed entities
from tweets in APQ in a syntax agnostic fashion. It popu-
lates a frequency distribution over the syntactic variations
of mentions per entity.
(4) The cumulative frequencies in the resulting distribution
are sorted by some scores (Z-scores) and candidates with
scores above a pre-defined threshold are classified, accord-
ing to their likelihood of being a true entity. Those whose
scores do not cross the threshold are retained for further
processing.
(5) Candidate database is updated with classification la-
bels. Candidates that are consistently labelled as ‘entity’ or
‘non-entity’, across several iterations, are stored as learned
knowledge, in an internal Candidate Knowledge Base.
(6) Tweets in the current iteration go through a verification
process using the learned labels of candidates. Tweets in
which every candidate mention has been confidently la-
belled based on certain completion criteria are transferred
to an Output Queue.
(7) Tweets that do not satisfy the completion criteria are re-
tained in a Reprocess Queue (RQ). They can later be selected
to be moved to the APQ for re-evaluation or removed from
the system based on an eviction strategy. As will be shown
by experiments later, only a small percentage of tweets (less
than 6%) needs to be reprocessed.

We assume that a topic filtering step extracts targeted
streams from Twitter before they are ingested to TwiCS. This
is common practice in Twitter monitoring [39], [1].

We elaborate on these steps in the following sections.

4 PHASE I: SHALLOW ENTITY DETECTION

We describe Phase I according to hypothesis C-H1 in this
section. We provide a quantitative analysis to support E-H2
and E-H3, which allows us to devise a light computational
unit in TwiCS. This is the only component of TwiCS that
needs to be customized to accommodate other languages. It
is computationally inexpensive and requires no supervision.

4.1 Objectives

This phase is based on the Capitalized Shingles (or CS) heuris-
tic, and some additional considerations. The primary objec-
tives of this phase are two-fold. For tweets in each topic:

(1) generate an initial set of seed entity candidates, and
(2) collect syntactic features for individual entity mentions
during candidate extraction.

We also remove stopwords from individual tweets in
the first pass, except for those appearing in quoted strings.
We also allow singular occurrences of select prepositions
and/or articles within a CS instance. This ensures that
strings like State University of New York can be correctly
recognized as a single CS instance.

4.2 Exploiting Regression to Proper Orthography
We give supporting evidence for hypotheses E-H2 and E-
H3, that help implement C-H1 – the basis of Phase I, in this
section. We conduct a study on five stream datasets (D1-D5)
and one randomly-sampled third party dataset WNUT17,
all to be described in detail in Section 8. They amass over
1M tweets from a wide array of topics (e.g., Sports, Politics,
Entertainment). Such topic diversity ensures an unbiased
assessment of our hypotheses. We also analyze to what
degree these hypotheses are validated in streaming and
non-streaming environments. We now define the concept
of Capitalized Shingle. A capitalized word is a word whose
first character is in upper case.
Definition 1. (Capitalized Shingle) A Capitalized Shingle
(CS) is the longest possible consecutive sequence of capital-
ized words with the following three exceptions: (1) If such
a sequence starts a sentence, it must contain at least two
capitalized words for it to be a CS. (2) Each such sequence is
allowed to contain a singular occurrence of a preposition
and/or article between otherwise consecutive capitalized
words. (3) If every word in a sentence is a capitalized word,
no CS is generated for this sentence.

Figure 6a highlights the CS instances in Figure 1 ac-
cording to this definition. The convention for representing
entities in English is to use capitalized word sequence.
Although not all Twitter users consistently follow this, a
significant fraction of them do. But in English a sentence also
begins with a capitalized word. Thus, when the first word of
a sentence is not immediately followed by (except a singular
occurrence of preposition and/or article) other capitalized
word(s), it might not represent an entity by itself. This
explains the first exception. Through the second exception
we allow single non-capitalized instance of certain prepo-
sitions and/or articles within capitalized words, together
forming a CS. For example, in the sentence ‘Manchester by the
Sea won best picture’, the exception allows the movie name
‘Manchester by the Sea’ to be detected as a CS. Finally, when
every word of a sentence is capitalized, it is more indicative
of a writing style than highlighting entities.

Supporting E-H2. We first examine the various ortho-
graphic patterns in which labelled entity mentions appear
in the annotated datasets. As reported in Table 1, these
mentions can be exhaustively enumerated into six differ-
ent surface forms, thereby validating the assumption in E-
H2. We elaborate on these individual forms in Section 5.3.
Furthermore, we find that this hypothesis holds both in
the case of streaming datasets that we had collected for
experimentation as well as the randomly sampled tweets
in the WNUT17 dataset.

Supporting C-H1 through E-H3. The findings in Table
1 reveal that the two capitalized surface form variants
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TABLE 1: Percentages of different appellative forms of an-
notated EMs. Acronym Legend: Cap = Proper Capitalization;
Sub Cap = Substring Capitalized; s-o-s Cap = Start-of-sentence
Capitalization; full Cap = Fully Capitalized; non Cap = Non
Capitalized; non-Disc = Non Discriminating
Dataset Cap Sub Cap s-o-s Cap full Cap non Cap non-Disc

D1–D3 68.2 1.4 7.1 12.4 3.5 7.4
WNUT17 63.8 7.6 2.4 6.5 17.1 2.5

cumulatively cover a majority of EMs thereby validating
E-H3. For the streaming datasets D1 through D3, about
80.6% of entity mentions appear in these two forms. Our
initial hypothesis expected datasets collected from tweet
streams having high volume topically related content to
exhibit regression to proper entity orthography. However,
as is evident from Table 1, even WNUT17, essentially a
random sampling of content from the Twitterverse, with
little topical integrity, preserves E-H3. Specifically, 70.3%
of entity mentions in WNUT17 appear in some manner
of capitalization. However, the percentage is indeed lower
than the case of streams. Finally, this also provides a clear
intuition to exploit these orthographic patterns and ensure
a high coverage of entities during the candidate extraction
phase, as mentioned in C-H1. To this end, we propose the
CS Heuristic as the basis for entity candidate extraction:

CS Heuristic: Each CS instance is an Entity Candidate.

Characterizing Datasets through Orthographic Regu-
larity. Now with a clear motivation for orthography driven
candidate extraction, we gather some statistics to gauge its
effectiveness. While the CS Heuristic we propose is intended
for tweet steams, these statistics help us characterize and
distinguish voluminous streams from third-party bench-
marking datasets like WNUT17 which collates a random
sampling of tweets. It also helps illustrate to what degree
the CS Heuristic can capture entity candidate in streaming
vs non-streaming Twitter datasets.

We first estimate the tweet-level coverage of CS on
datasets D4, D5 and WNUT17 using two notions. Direct
coverage reflects the percentage of tweets having one or
more CS instances. Indirect coverage is the percentage of
tweets that have no CS instance but contain a string that
matches with a CS instance in another tweet when case
or capitalization is ignored (e.g., “trump” matches with
“Trump”). Note that CS instances or strings that match
with CS instances can all refer to mentions of entities. As
illustrated in Figure 3, a considerable fraction of tweets in
streams contains either CS (between 40% - 50%) or strings
that match with CS (between 35% - 40%). Together they

generate EM candidates through a hefty coverage of 75-
90% of tweets. These strongly motivate our approach. For
WNUT17 though, the direct coverage is lower, at 35.7%
which excludes a sizeable fraction of tweets during candi-
date extraction. However the indirect coverage for WNUT17
is lower still at 15.8% showing that a random sampling of
tweets do not capture the innate tendency of tweet streams
to repeat entity mentions. Since the components of TwiCS
following Phase 1 capitalize on this specific trait, this limits
its overall EMD effectiveness on WNUT17.

Computationally, our approach is useful if CS instances
appear frequently and with a certain degree of regularity.
We introduce the notion of Inter-CS gap, which is the
number of tweets that enter the stream between two suc-
cessive CS occurrences. We plot the CS inter-arrival dis-
tribution over different gap values encountered within a
stream in Figure 4 using the dataset D5. The distribution
closely resembles a negative exponential function of the
form: f(x) = aebx, where the properties of the best fitted
curve are a = 0.552, b =-0.827 at an SSE of 0.00012, with mean
µ=0.907 and standard deviation σ= 1.635. The distribution
is heavily skewed towards lower gap values, indicating
that CS instances appear fairly frequently within a stream:
almost every other tweet in a stream has an CS instance.
This also strongly endorses an approach that capitalizes
on the occurrences of CS instances. Unlike D5, WNUT17
is a random sample of tweets that are not timestamped or
temporally ordered. Therefore the concept of Inter-CS gap
does not apply to WNUT17.

Furthermore, the considerable indirect coverage encour-
ages us to devise a syntax agnostic method in Phase II, and
capture additional mentions of CS candidates. The classifier
used to determine potential entities from the candidate
occurrence distributions will further improve confidence
yielded by using CS alone. We now present the Entity
Candidate Extraction module of TwiCS, guided by the CS
Heuristic, and its associated data structures.

4.3 CS+: CS based Extraction Module

Our CS-based Shallow Entity Detection module considers
individual tweet sentences as input but discards the ones
entirely in uppercase or lowercase, because they cannot
contain CS. It also discards sentences where every word is a
capitalized word, as they cannot contain any meaningful CS.
A basic sentence-splitter and tokenizer is used in the pre-
processing step to split a tweet into sentences and remove
common stopwords from them. Phase I initializes two data
structures, CandidatePrefixTrie and TweetBase, which are
utilized and modified in the later steps of TwiCS.
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(a) EM Boundary Detection
(b) Candidate Syntactic Distribution

Fig. 6: Syntax Agnostic Mention Detection for Quality Estimation

We construct a prefix Trie forest, referred to as Candi-
datePrefixTrie or CTrie, for efficient indexing and storage of
entity candidates extracted in Phase I. CTrie functions like a
regular Trie forest with individual nodes corresponding to
a token in a candidate entity string. A path is a sequence of
nodes starting from the root that forms an entire entity can-
didate string. Entity candidates with overlapping prefixes
are part of the same Trie in the forest. Nodes in the Trie,
which correspond to the last token of extracted candidates,
contain: (a) a Flag set to True indicating the path from root to
this node represents a prefix that is a CS instance, found in
Phase I and (b) additional information about syntactic fea-
tures of the candidate string (e.g., length). They are gathered
during Phase I from the contexts of its occurrence in many
tweets. Entity candidates stored in CTrie are all in lower case
format. While hash table is a reasonable alternative data
structure for storing candidate entity strings, CTrie better
facilitates the boundary segmentation algorithm in Phase II
(as explained later) and is thus preferred.

Every record in TweetBase consists of individual tweet
sentences indexed by both tweet ID and sentence ID, and an
entity candidate list to be updated after each phase.

In addition to generating entity candidates using the CS
Heuristic, we pass them through a series of filters. Each
filter considers additional syntactic features and removes CS
instances that are unlikely true entities. These filters include:

(1) Digit Processing: Standalone numbers are not re-
garded as entity candidates. Numeric tokens are allowed
only if they are part of a longer CS candidate.

(2) Slang Check: Removes commonly used slangs.
(3) Length Check: Since entities are typically short, we

do not allow candidates longer than 6 tokens and discard
single character candidates, which are unlikely to be entities.

Misspelled entities can still be recognized as candidates
separately and detected through the rest of the pi like their
intended counterparts. We plan to include clustering of
misspelled entities with the actual ones in future work.

Example 3. We use the set of tweets from Figure 1
to demonstrate how CS+ contributes to the EMD process,
along with modifying the internal data structures. CS+ is
able to detect all entities within the tweets of Figure 1 as
potential candidates: ‘Trump’, ‘CNN’, ‘Spicer’, ‘Carter Page’
and ‘Sean Spicer’. However, it failed to detect several entity
mentions: ‘Spicer’ in T2 owing to Exception 1, ‘carter page’
and ‘trump’ in T1; it only detected part of another mention
of ‘Carter page’ in T4, and also wrongly recognized Hold as
an entity candidate. In Section 5, we introduce Phase II that
aims to correct these failures in detecting entity mentions.

5 PHASE II: EM BOUNDARY DETECTION

In this phase (the Step Case), the primary goal is to identify
additional EMs of existing entity candidates by devising
a procedure that overcomes the reliance of Phase I on
syntactic features. This phase aims to collect all possible
candidate mention variations of the seed entities in a tweet,
irrespective of their capitalization patterns. This helps improve
the recall. To improve precision, this phase constructs a
frequency distribution over the different syntactic variations
of each candidate entity and utilizes it to distinguish entities
from non-entity strings.

5.1 Objectives
We have the following specific objectives in this phase:

1. Removal of False Negatives: False Negatives happen
in Phase I when true EMs are not valid CS instances,
mostly because of being improperly capitalized or single
word entities appearing at the start of a tweet sentence. For
example, in Figure 1, carter page and trump in T1 and Spicer
in T2 are false negatives.

2. Removal of False Positives: Misleading capitaliza-
tions may result in non-entity phrases to be extracted as
entity candidates in Phase I. For example, Hold in T6 in
Figure 1 is a false positive.

3. Correction of Partial Extraction: Partial extractions
happen when only part of an entity string is extracted. Such
a phenomenon is usually caused by mis-capitalization of
multi-word entities. In T4 in Figure 1, entity mention Carter
page was only partially extracted in Phase I. Correcting such
partial extractions improves both recall and precision of
tweet-level EM detection.

5.2 EM Boundary Segmentation
Some traditional NER systems use CRF (conditional random
field) to segment and identify EM boundaries in text (e.g.,
[2], [10]). They require large feature spaces that include rich
token tagging and parsing. These pre-processing steps are
computationally expensive. Since we deliberately constrain
TwiCS to not use them and be computationally light, we
face different challenges in EM segmentation.

In Phase I, recognizing an EM is pre-conditioned to the
capitalization consistency exhibited by each of its tokens. In
Phase II, we solve the boundary problem by interpreting
tweet tokens without any reliance on syntactic cues. We
analyze a token in conjunction with CTrie. We encounter
three types of tokens when traversing CTrie:

(i) A token whose first letter is capitalized.
(ii) A token that is not capitalized, but matches a candi-

date node on the current CTrie path, when cases are ignored.
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(iii) Non-capitalized token matching no node in current
path. The problem is to determine whether a token cor-
responds to an entity candidate, either alone or together
with up to k tokens following it. Note that the case of
partial capitalization can appear both in the prefix or suffix
of a candidate. Phase II checks every tweet t in TweetBase
and identifies the set of longest possible subsequences that
match existing entries in the CTrie, while case is ignored
(e.g., ”sean” is a match for ”Sean”). With the matches hereby

Algorithm 1: Boundary Segmentation

input : sequence of consecutive tokens with
positions sequence, CandidatePrefixTrie
CTrie

output: candidates extracted, EM Candidate List
1 left← 0; right← 0; start node← CTrie;
2 last cand← ”NAN”;last cand substr← ””;
3 reset← False; last cand pos← empty tuple;
EM Candidate List← [];

4 while right < len(sequence) do
5 if reset then
6 start node = CTrie;
7 last cand substr = ””;
8 last cand pos← empty tuple;
9 left = right;

10 curr = sequence[right];
11 last cand sequence = sequence[left:right];
12 cand str = last cand substr+curr;
13 if curr ∈ start node.path.keys() then
14 reset = False;
15 if start node.path[curr].flag then
16 last cand= cand str;
17 //position of last matched subsequence;
18 last cand pos← (left,right);
19 else
20 if ((right==len(sequence)) &

(last cand==”NAN”) &(left < right))
then

21 right = left;
22 reset = True;
23 start node=start node.path[curr];
24 last cand substr=cand str;
25 else
26 if last cand 6= ”NAN” then
27 EM Candidate List.append(last cand);
28 last cand = ”NAN”;
29 //restarts scan after last matched

subsequence;
30 right= last cand pos[1];
31 reset = True;
32 else
33 if left < right then
34 right = left;
35 reset = True;
36 right+=1;
37 end
38 if last cand 6= ”NAN” then
39 EM Candidate List.append(last cand);

return : EM Candidate List

encountered, Phase II constructs a frequency distribution
over the different mention variations of each entity can-
didate. As a consequence, candidate mentions extracted
during Phase I are verified, and sometimes corrected. For
example, CS guided extraction for T4 can only find the
partial EM, ‘Carter’ in Figure 1 which stands corrected to
the complete mention, ‘Carter page’ in Figure 6a. Algorithm
1 compiles the various considerations of this module. The
resulting process is syntax agnostic. It initiates a window to
incrementally go through a sequence of consecutive tokens.
In each step it checks:

a) whether the subsequence within the current scan
window corresponds to an existing path in the CTrie (lines
13-24). If true, it implies that the search can continue along
the same path, by including the next token to the right
within the window in the next iteration.

b) whether the node corresponding to the last token of
the subsequence, has its flag set to True (lines 15-18). This
implies that the subsequence is the current longest match
with a candidate found in Phase I.

Note that the subsequence match is performed without
checking any immediate syntactic evidence of constituent
tokens. This renders the aforementioned scenarios (i) and
(ii) to be equivalent in terms of Algorithm 1. In case of
a mismatch, i.e., scenario (iii), the module stores the last
recorded matching subsequence within the current window,
and then skips ahead by initializing a new window from
the position right after the last matched subsequence. The
search for a new matching subsequence path is initiated
from the root of the CTrie. However, if the last search had
failed to yield a match with any of the existing candidates
in CTrie, the new window is initialized from a position
that is to the immediate right of the first token in the
previous window (lines 32-35). The process is repeated until
all tokens in the sequence are consumed.

Example 4. Consider T2 in Figure 6a. The CTrie, at
the end of Phase I, has both ‘spicer’ and ‘carter page’ as
candidates (Figure 5). The window initiates scan from the
first token ‘Spicer’. The algorithm traces the path from root
to the node having ‘spicer’ and recognizes this instance of the
candidate. Appending the ensuing token ‘owes’ to ‘Spicer’
fails to find a match in the CTrie. Thus, it stores ‘spicer’ as
the previous longest match, thereby detecting this mention
missed earlier during Phase I, and resets both the window
and the CTrie traversal from the mismatched token. Since no
other path from the root begins with the node ‘owes’, another
mismatch will reset search from the next token, ‘Carter’.
Tracing the path in CTrie starting from the node ‘carter’, the
module matches this token and subsequently finds ‘Carter
Page’ as the longest matching subsequence, along this path.

5.3 Syntactic Distribution of Candidates
An important task of Phase II is to construct the syntactic
distribution of each entity candidate, over its different men-
tion variations encountered in the tweets processed thus
far (Figure 6b). Phase II enumerates six syntactic variations
of each entity candidate and computes their corresponding
frequencies (E-H2).
(1) Proper Capitalization: This corresponds to a CS.
(2) Start-of-sentence capitalization: A single word (uni-
gram) is capitalized at the start of sentence.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3

End-of-
Iteration

Tweet Sentences Processing State

1

@Millennial_Dems carter page was not with trump for trans team.
Spicer owes Carter Page
I?ll lose my mind if CNN shows the Spicer  interview one more time. 
 Please ask Trump, why he chose Carter page. Who told him to hire him? 
 So, it seems Carter Page and Spicer are having bad days 
 Sean Spicer please Hold my schnapps.

Complete
Incomplete
Incomplete
Complete

Incomplete
Complete

2
Spicer owes Carter Page
I?ll lose my mind CNN shows the Spicer interview one more time
So, it seems Carter Page and Spicer are having bad days 

Incomplete
Incomplete
Incomplete

3
Spicer owes Carter Page
I?ll lose my mind CNN shows the Spicer interview one more time.
So, it seems Carter Page and Spicer are having bad days 

Complete
Complete
Complete

(d) Multipass Tweet Processing
Fig. 7: Multi-pass Processing of Ambiguous Candidates and Incomplete Tweets

(3) Substring capitalization: Only a proper substring of a
multi-gram candidate is capitalized.
(4) Full capitalization: Abbreviations like ‘UN’ or ‘USA’
where the entire string is capitalized.
(5) No capitalization: The entire string is in lower case.
(6) Non-discriminative: A sentence in full upper or lower
case, or with first character of every word capitalized is not
informative for classification, even if a candidate is found.

These frequencies form the syntactic distribution over
mention variations of each seed entity candidate. The dis-
tribution is subsequently used to predict the likelihood of a
candidate being a true entity. We use a hash table like data
structure, called CandidateMentionBase (CB), to update
these frequencies during the execution of Phase II.

6 CANDIDATE QUALITY ESTIMATION

We use the frequency features collected in CandidateMen-
tionBase at the end of Phase II to learn a candidate quality
function (CQ(candidate)), that determines the likelihood of
a candidate being true positive. We use semi-supervised
learning to train an SVM classifier [41] (with an RBF ker-
nel and L2 regularization) on dataset D4. We periodically
expand the training set with test cases that produce high-
confidence outputs, where class labels (e.g., ‘entity’ or ‘non-
entity’) remain unchanged for five consecutive processing
cycles. The quality score is interpreted as the probability of
a candidate being a true entity. It is divided into three em-
pirically determined ranges– from variation in performance
over different values on our entire annotated data (D1-D3)
– each corresponding to a class label:
(1) α: ≥0.8, candidate is confidently labelled as an entity.
(2) β:≤0.4, candidate is confidently labelled as a non-entity.
(3) γ: ε(0.4, 0.8), candidate is deemed ambiguous and re-
tained in RQ for future computation cycles.

A candidate’s frequency distribution over mention vari-
ations is more reliable when the frequencies are collected
over more than just a few occurrences (avoiding random-
ness). Consequently, the classifier also performs better in
distinguishing entities from non-entity strings for frequent
candidates. Thus, it is important to classify candidates when
their cumulative frequency over all mention variations is
sufficiently high. Since the absolute cumulative frequency of
candidates depends on the number of tweets in a discussion
stream, we use Z-score [42], [43] to achieve normalization.
Theoretically, Z-score indicates how many standard devi-
ations apart the candidate frequency is from the expected
value (or mean) of the distribution. For a distribution with
mean µ and standard deviation σ, the Z-score is given as
Z = freq−µ

σ . Only candidates with Z-score higher than
an optimal threshold are sent to the classifier for Quality
Estimation. For this reason, the classification label of the
candidate ‘CNN’ in Figure 6b is not available (‘na’) and does
not appear in Figure 7a, even though it was discovered.

We performed a t-SNE [44] based transformation of the
candidate feature space for visualization. Figures 7a to 7c
reveal an interesting behavior – the ambiguous candidates
separate data points from the ‘Entity’ and ‘Non-Entity’
classes, much like a decision boundary between them.

7 VERIFICATION OF TWEETS AND EVICTION

Once the candidate quality scores are obtained from the
classifier, the TweetBase is checked to find tweets that have
been completely processed, i.e., their Phase II EM candidates
have all been confidently labelled by the classifier (classifi-
cation score is in range α or β). Note that any candidate that
receives a score in the ambiguous range γ requires further
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TABLE 2: Twitter Datasets

Dataset Size #Topics #Hashtags #Entities/TweetSet

D1 1K 1 1 283
D2 3K 3 6 906
D3 6K 5 5 674
D4 38K 1 1 ≈7000
D5 1.035M 3 23 -
D6 10.26M - - -

WNUT17 1287 - - -
BTC 9553 - - -

syntactic evidence to be successfully classified in later pro-
cessing cycles. Tweets containing ambiguous candidates are
tagged ”incomplete” while the rest are tagged ”complete”
at the end of an iteration. Tweet sentences that tagged
”complete” are evicted from the TweetBase and appended to
an Output Queue (OQ). Figure 7 illustrates how incomplete
sentences are completed through different iterations.

Incomplete tweets remain in the Reprocess Queue (RQ) so
that they can be selectively included into the Immediate Pro-
cessing Queue (IPQ) of Phase II, and processed in subsequent
iterations. Such a mechanism converts the Phase II processes
and associated data-structures into stateful computational
units, that maintain and update their execution states in
every processing cycle. The CTrie is also a stateful data
structure as it stores newly discovered candidates from each
iteration and expands the Prefix Trie accordingly. However,
the Shallow Entity Detection module of Phase I is stateless.
It processes each tweet only once during its lifecycle within
the system, in the order of its entry into the processing cycle.

TwiCS also updates a list of entities and non-entities,
labelled during each iteration. Reusing previously learned
candidates helps to accelerate processing of later tweets.

Example 5. Over three successive iterations, Figures 7a
to 7c demonstrate how various ambiguous candidates from
earlier iterations get disambiguated (confidently classified)
in later ones. In each figure, we label the candidates that
remain ambiguous in the current iteration, along with the
ones that were previously ambiguous, but have just been
disambiguated (as an entity or non-entity). Consider am-
biguous candidates ‘Spicer’ and ‘CNN’ in the first and sec-
ond iterations (Figure 7a and 7b; ‘CNN’ is actually not in
Figure 7a due to its low Z-score in iteration 1), respectively.
They are eventually classified as entities in the third iteration
(Figure 7c), after repeated processing attempts over a course
of three iterations. Figure 7d shows how processing states of
incomplete tweets (from iterations 1 and 2) simultaneously
change with the disambiguation process of their constituent
ambiguous candidates, over multiple iterations.

The multi-pass framework of TwiCS retains incomplete
tweets in RQ until confident classification of all of their
EM candidates. However, further processing of incomplete
tweets, after a certain number of iterations, has dimin-
ishing returns in improving effectiveness, while piling up
processing overhead. To remedy this, we limit retention of
incomplete tweets to only a small number (ep) of additional
processing cycles since entry, before they are evicted. In the
current version of TwiCS, ep = 2. We leave the investiga-
tion of more performance optimizing and memory efficient
eviction techniques for future work.

8 EXPERIMENTS

We conducted extensive experiments to evaluate the effec-
tiveness and efficiency of TwiCS for Entity Mention Detec-

TABLE 3: Evaluating EMD on Third Party Datasets
Dataset System Precision Recall F1

WNUT17
Aguilar et al. 0.73 0.42 0.53

BERTweet 0.63 0.46 0.53
TwiCS 0.497 0.50 0.50

BTC
Aguilar et al. 0.77 0.40 0.53

BERTweet 0.66 0.59 0.62
TwiCS 0.64 0.54 0.59

tion in tweets. We implement our algorithms in Python 3.5
and execute them on a system with 3.60GHz Intel Core(TM)
i7-4790 CPU and 8GB memory. The Deep learning models
were executed on a NVIDIA Tesla T4 GPU on Google
Colaboratory. Datasets and pieces of software used for our
experiments are available at Github.

Baselines: We compare TwiCS with six state-of-the-art
systems: BERTweet [27], Aguilar et al. [6], Stanford NER
[2], Twitter NLP [4], OpenCalais [32], and TwiNER [28].
BERTweet, Aguilar et al., Stanford NER and Twitter NLP
are supervised, with the first two being Deep Learning
architectures; TwiNER is unsupervised and performs EMD
(without type classification) in an offline setting; OpenCalais
is an industrial system operating in an online setting. We
were unable to compare TwiNER’s performance against
TwiCS at scale because of its reliance on Microsoft Web
NGram, that supports limited API calls.

Datasets: We use a combination of third-party datasets,
along with the ones curated (in Table 2) by crawling actual
message streams from Twitter, to evaluate both EMD effec-
tiveness and efficiency. We follow the principle of focused
crawling in data collection so that they reflect topical coher-
ence (recall hypothesis E-H1). The topics covered include
Politics, Sports, Entertainment, Health and Science. This
helps to preserve the naturally occurring topic-specificity of
tweet streams, that we exploit for candidate extraction, with-
out making the analysis biased towards a particular topic.
In practice, a topic classifier [45] is to preface an NER tool
for streams. We seed the search with a set of top trending
hashtags and iteratively enlarge the dataset by submitting
queries with frequent n-grams and new hashtags.

We begin our effectiveness evaluation with two pop-
ular third-party datasets WNUT17 [1] and BTC (Broad
Twitter Corpus) [46]. In order to test recognition of novel
and emerging entities, these datasets collect content from
different social media platforms, with little adherence to
specific events and/or topics. WNUT17 draws tweets from
time periods of recent disasters like the Rigopiano avalanche
and the Palm Sunday shootings and samples from Reddit,
YouTube and StackExchange comments. BTC dataset cu-
rates a general collection of tweets out of which only 200
adheres to the MH17 disaster. Rest are randomly sampled.
Hence these datasets are very different from a typical mi-
croblog streaming dataset. Their low direct and indirect cov-
erage of entity mentions do not conform with the E-H1 hy-
pothesis. Despite extensive search we could not find third-
party datasets directly accommodating targeted streams.
However it is still interesting to compare the performance
of TwiCS with other baselines on WNUT17 and BTC.

TwiCS’s results on third-party datasets are shown in
Table 3. When computing performance we only consider EM
(called surface form in [1]) detection without the entity type
information. To compensate for these datasets’ low direct
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TABLE 4: Effectiveness of TwiCS vs. state-of-the-art

Dataset↓ Task→ EMD ED
System ↓ P R F1 P R F1

TwiCS 0.83(0.81) 0.79(0.77) 0.8(0.79) 0.79(0.76) 0.72(0.68) 0.75(0.72)
Aguilar et al. 0.76(0.72) 0.58(0.61) 0.66(0.66) 0.76(0.72) 0.55(0.52) 0.64(0.60)

BERTweet 0.66(0.65) 0.49(0.50) 0.56(0.57) 0.42(0.43) 0.50(0.51) 0.46(0.47)
D1 Twitter NLP 0.65(0.65) 0.47(0.49) 0.55(0.56) 0.64(0.60) 0.51(0.48) 0.57(0.54)

Stanford NER 0.66(0.67) 0.30(0.31) 0.41(0.42) 0.74(0.74) 0.31(0.35) 0.43(0.48)
OpenCalais 0.49(0.38) 0.48(0.40) 0.48(0.39) 0.59(0.54) 0.37(0.35) 0.45(0.42)

TwiCS 0.81 (0.73) 0.76 (0.73) 0.79(0.73) 0.65 (0.61) 0.63 (0.61) 0.64 (0.61)
Aguilar et al. 0.78 (0.77) 0.64 (0.62) 0.70 (0.68) 0.65 (0.62) 0.59 (0.60) 0.62 (0.61)

BERTweet 0.77(0.72) 0.63(0.65) 0.69(0.68) 0.5(0.52) 0.63(0.62) 0.56(0.57)
D2 Twitter NLP 0.77 (0.76) 0.48 (0.50) 0.59 (0.59) 0.64 (0.63) 0.51 (0.53) 0.56 (0.58)

Stanford NER 0.79 (0.79) 0.41 (0.43) 0.54 (0.56) 0.69 (0.69) 0.36 (0.38) 0.47 (0.49)
OpenCalais 0.62 (0.62) 0.32 (0.30) 0.42 (0.40) 0.55 (0.53) 0.31 (0.33) 0.39 (0.40)

TwiCS 0.84(0.77) 0.80(0.84) 0.82(0.8) 0.62(0.59) 0.63(0.63) 0.63(0.61)
Aguilar et al. 0.84(0.76) 0.63(0.66) 0.72(0.70) 0.63(0.61) 0.61(0.63) 0.62(0.62)

BERTweet 0.70(0.68) 0.54(0.58) 0.59(0.63) 0.53(0.57) 0.55(0.52) 0.54(0.55)
D3 Twitter NLP 0.67(0.59) 0.41(50) 0.52(0.51) 0.54(0.53) 0.49(0.51) 0.52(0.52)

Stanford NER 0.82(0.8) 0.40(0.48) 0.53(0.58) 0.62(0.61) 0.34(0.35) 0.44(0.45)
OpenCalais 0.46(0.45) 0.43(0.37) 0.44(0.38) 0.45(0.44) 0.41(0.27) 0.43(0.33)

coverage on candidate extraction, the Z-score threshold for
candidate classification is adjusted to a lower value. But
the lack of candidate surface form repetition in WNUT17
and BTC can often result in noisy infrequent false positives,
leading to TwiCS’s low precision for this dataset. However,
TwiCS still obtains a competitive performance in F1 measure
due to its generally higher recall. This is rendered possible
with the combination of syntax agnostic mention detection
of Phase II and the classifier. Please note that unlike TwiCS,
Aguilar et al. also used two sets of external resources – a
Word2Vec embedding set prepared by Godin et al. [47] on
Twitter and gazetteers constructed by [17] – and POS-tags
generated using [48].

For effectiveness study on real Twitter streams that con-
form to the E-H1 hypothesis, we use a total of three test sets
(D1 through D3) varying both in size and topic coverage.
To the best of our knowledge, this expands the scope of
our effectiveness evaluation in size (over 10K tweets in
total) than that conducted by baselines (like TwitterNLP)
or the third party datasets. We also conduct the evaluation
in a staggered fashion by separately evaluating datasets of
different sizes. This helps us better gauge the impact of size
and topic diversity of dataset on the performance of TwiCS.
D1 is the smallest dataset with 1,000 tweets from 1 topic.
D2 is generated by extracting 3K tweets (≈5K sentences)
seeded with three topics consisting of six different top-
trending hashtags (2 hashtags/topic). D3 is the largest with
over 6,000 tweets from 5 topics.

Annotation of each tweet in these datasets has been in-
dependently conducted by two graduate students. Disagree-
ments are resolved by either arriving at mutual consensus
or involving the supervision of one of the authors. Further
annotation details can be found in TwiCS’ Github page.

For training, we extract sample entity candidates and
their syntactic distributions with a separate dataset D4 with
tweets of a single topic. They are labelled and fed into the
classifier described in Section 6.

For efficiency study, we use two larger datasets (D5 and
D6). The first consists of 1.035M tweets collected from 3
topics. It has a roughly uniform distribution of tweets per
topic to avoid bias. D6 is the 2011 NIST Tweets Collection
(available at https://trec.nist.gov/data/tweets) and was part of the

TREC 2011 Microblog track [49]. Of the original 16M tweet
IDs, some are no longer accessible due to the tweet or its
user account being taken down. The NIST provided twitter-
tools API can recover 10.26M tweets that were fed to TwiCS
as a continuous message stream to test its EMD efficiency
on large streams. Note that unlike our other datasets, the
tweets in D6 are not topically coupled from selective hash-
tags. They are meant to be a representative sample of the
Twittersphere, during the course of sixteen days when it
was collected. This further tests TwiCS’ performance by
removing the scope of relying on hypothesis E-H1.

Performance Metrics: In compliance with WNUT17, we
compare TwiCS’ performance with all baseline systems for
two tasks. We use Precision (P ), Recall (R) and F1-score to
evaluate effectiveness for these tasks. The first task, EMD,
requires the identification of all occurrences of entities in
their various surface forms within the dataset and is cap-
tured in WNUT17 as F1 (Surface). ED requires the discovery
of unique entities in a dataset and is measured as F1 (entity)
in WNUT17. Note that since TwiCS currently focuses only
on detecting entity mentions, our evaluation excludes type
classification when considering performance for either task.

8.1 Effectiveness

Table 4 gives the outcome of our effectiveness analyses on
D1,D2 and D3 for EMD and ED. We report the average
performance using 5-fold cross-validation with 4 folds to
tune the Z-score threshold and one fold as the test data.

TwiCS outperforms the state-of-the-art for both ED and
EMD tasks (see the numbers in Table 4 that are not within
parentheses). For EMD, TwiCS’s F1-score is about 17.2%
better than the best baseline, Aguilar et al. on D1. The im-
provement over the best state-of-the-art F1-score on D2 and
D3 are 12.8% and 13.8%, respectively. Although BERTweet
is the latest state-of-the-art in NER, its performance lags
behind both TwiCS and Aguilar et al. Performance gains
for TwiCS are mostly from better Recall, while still achiev-
ing good precision. The high quality candidate extraction
of TwiCS owing to good direct coverage, followed by its
ability to recognize different mention variations of the same
entity due to high indirect coverage in streams, is the main



11

400K 800K 1.2M 1.6M

1200
1300
1400
1500

TwiCS-C
TwiCS-CE

275

300 Twitter NLP

Aguilar et al.

80
90

100
110

OpenCalais

400K 800K 1.2M 1.6M
Tweet (Sentences) in Input Stream D5
0.0

0.5

1.0

Stanford NER

T
w
ee

t 
P
ro

ce
ss
in
g 

T
h
ro

u
gh

p
u
t

(a) Tweet Processing

200K 400K 600K 800K 1M

1500

1750
TwiCS

50
100
150
200
250

Twitter NLP

Aguilar et al.

30
40
50
60 OpenCalais

200K 400K 600K 800K 1M
Tweets in Input Stream D5

0.0

0.5

1.0

Stanford NER

M
en

ti
on

 D
is
co

ve
ry

 T
hr

ou
gh

pu
t

(b) Mention Discovery
Fig. 8: Throughput of TwiCS vs. state-of-the-art on D5

reason why it performs so much better for EMD. TwiCS
is able to eliminate many one-pass false negatives using
boundary segmentation and classification in later cycles.
Since ED concerns with only detecting unique entity strings
in the dataset, irrespective of all its mentions, the efficacy
of TwiCS is slightly reduced for this task. Nonetheless, it
still demonstrates superior performance compared to the
baselines. For ED, the improvement in TwiCS’s F1-score is
nearly 17.8% on D1, 3.2% on D2, and 1.6% on D3, over that
of the best baseline numbers.

Since Stanford NER is pre-conditioned to detect entities
of only limited types, we also measure effectiveness with a
set of alternate annotations, limited to types covered by all
methods (Person, Location and Organization). This ensures
a fairer comparison across all systems. The results for this
evaluation are also provided in Table 4 (see numbers within
parentheses). Note that the precision drops slightly for
TwiCS, Aguilar et al. and Twitter NLP due to a number of
previously legitimate EMs (of alternate types) now declared
False Positives. However these are only a few in number,
with majority of EMs belonging to these 3 common types.

TwiCS also performs better because it handles cases like:
(1) Incomplete Entity Mentions: This case is particularly

frequent in Twitter where EMs tend to be more noisy than
in a formal setting. For example,‘Trump’ as a candidate was
consistently more frequent than ‘Donald Trump’. Systems like
OpenCalais do not handle Incomplete (or Partial) Mentions
particularly well, e.g., it was unable to identify ‘Trump’ as
an entity. At this point, we do not make any distinction in
the treatment of partial and complete mentions for the ED
task. For example, ‘Trump’ and ‘Donald Trump’ are treated as
distinct and valid entity candidates, if identified as such. We
leave the clustering of partial mentions with complete entity
mentions into a unified canonical form as a future work.

(2) Multiple Mention Variations of the Same Entity:
The baselines exhibit subtle differences in performance of
the two tasks. In Table 5, we present the variation in output
of Stanford NER for different Mentions of the same entity.
TwiCS, on the other hand, can correctly extract all mention
variations of an entity once it is discovered.

(3) Alphanumeric Entities and Abbreviations: Entities
like Maroon 5/Win7 and abbreviations are fairly frequent in
tweets. We do not make any distinction in their handling.

A weakness of using frequency-based method for ED is
that less frequent entities are unlikely to be recommended as
candidates for classification, impacting the recall. We study
this later in Section 8.3. This is consistent with the observed
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Fig. 9: Throughput of TwiCS vs. state-of-the-art on D6

superior performance of Aguilar et al. and BERTweet on
identifying less frequent true positives, which TwiCS does
not find. Supervised techniques can overcome this impedi-
ment as they do not rely on frequency estimates, and con-
sider immediate semantic context to recommend candidates.
Aguilar et al. also uses external word embeddings and
gazetteers that are particularly useful in this regard.

8.2 Efficiency

The two larger datasets D5 and D6 are used to measure ef-
ficiency. For these test sets, we execute TwiCS over multiple
batches to mimic its behaviour in an online setting, with
continuously incoming batches of tweets. The batch size is
set to 100K tweets for the execution of both datasets.

The only other online system in our baselines is Open-
Calais, but its offline version is not yet available for third-
party usage. OpenCalais requires its client to send out
input in batches, but the batch-size needs to be typically
low (set to 1,000 tweets per batch) to avoid receiving an
HTTP Error Code 500. Being a web service, OpenCalais
has to balance its access by hundreds of clients. Since it
does not explicitly return timing estimates with its output
packets, we had to determine efficiency by measuring the
response time for individual packets. However, this might
include the response latency caused by OpenCalais’ internal
load-balancing mechanism and might not be the accurate
indicator of the efficiency of the real system behind. On the
other hand, systems like OpenCalais often operate on more
powerful servers than non-commercial systems. Therefore,
we note that an exact efficiency comparison with Open-
Calais is difficult to conduct.

Both Stanford NER and OpenCalais take near-constant
time per tweet sentence, but are significantly slower than
the rest. Executing these systems on D6 therefore required
a very long time and was difficult to finish in a timely
manner. Additionally, continuous iterative execution of D6

on OpenCalais, like a large message stream, resulted in
sending too many API calls and consequent unsuccessful
responses. TwiNER also yielded a constant low throughput
by processing 0.06 tweet-sentences per second. For these

TABLE 5: Detecting multiple Mention Variations

TweetText Stanford TwiCS

spicer should resign - spicer
Spicer should resign Spicer Spicer

we demand spicer’s resignation - spicer
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Fig. 10: Change in performance with Z-score threshold
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reasons, we present the efficiency results of only TwiCS,
Gaguilar at al. and Twitter NLP on D6. We compare the
efficiency of these systems using two types of throughput:

(1) Tweet Processing Throughput: Existing baselines all
employ a once-and-done approach when processing tweets.
In this case, throughput is simply the number of tweet sen-
tences processed per time unit (second). In contrast, a tweet-
sentence in TwiCS remains incomplete until all of its EM
candidates are confidently labelled, i.e., tweet sentences may
be processed multiple times before completion or eviction.
To this effect, we define two measures of throughput for
TwiCS. The first is the Tweet Completion Throughput – the
number of tweet sentences marked completely processed by
TwiCS (curve TwiCS-C in Figure 8a and Figure 9a) per sec-
ond. The second is the Tweet Processing Throughput – the
number of sentences exiting the system per second, either
completely processed or evicted (curve TwiCS-CE in Figure
8a and Figure 9a). Incomplete sentences, accumulating at
any given processing cycle, do not contribute towards either
of these measures. This explains the fluctuation in TwiCS’s
throughputs over time compared to other baselines.

(2) Mention Discovery Throughput: Measures the num-
ber of EMs discovered in the stream per time unit. On
average, TwiCS discovers approximately 1603 mentions per
second on D5 and 566 mentions per second on D6.

Figures 8 and 9 show the performance of TwiCS and
other baselines on D5 and D6, with respect to the above
two throughput metrics. TwiCS consistently outperforms all
the baselines. Its average Tweet Completion Throughput is
approximately 3.67 times of the throughput of Twitter NLP
on D5. For D6, the average completion throughput is 2.75
times of that of Twitter NLP. The Tweet Processing through-
put, in both cases, is higher than the corresponding Tweet
Completion throughputs, as is evident from the figures.
Despite the overhead caused by its multi-pass framework,
the gain in TwiCS’s efficiency is due to the computationally
inexpensive nature of individual phases.

Additionally, note that the Mention Discovery Through-
put on a dataset is dependent on its mention density, i.e., the
number of entity mentions per tweet sentence of the dataset.
A large yet mention-sparse dataset will result in low Men-
tion Discovery Throughput. This is consistent with the low
Mention Discovery Throughput of all system on D6, which
is a vast collection randomly sampled from Twitterverse
and includes spam tweets. However, even for D6, the im-
provement of TwiCS’s Mention Discovery Throughput over
other systems persist. The throughput here is approximately
6 times of Twitter NLP and 10.4 times of Aguilar et al.

8.3 Independent Analysis of Our Approach

We now analyze the impact of individual components and
parameters of TwiCS through a number of experiments.

1. Z-score threshold: As mentioned before, we conduct
5-fold cross-validation for all our annotated datasets and
tune the Z-score threshold parameter to its optimal value.
Each iteration in Figure 10, corresponds to one of five train-
test splits. The optimal value for a test fold is the one which
maximizes effectiveness on its training fold. Performance is
evaluated in 2 dimensions: 1) Entity Discovery over Candi-
dateMentionBase, and 2) Tweet-level Mention Detection. In
our experiment, the F1-score was maximized at a Z-score of
-0.7, across all test partitions.

2. Contribution of Individual Components: For eval-
uating the contribution of the different elements of our
multi-pass framework towards TwiCS’s EMD effectiveness,
we use the entire collection of manually annotated tweets
as the test set. We have 4 variants of TwiCS. Figure 11
shows the improvement in performance as individual sys-
tem components are added. From bottom to top, the first
curve (with only Phase I) reports the weakest performance
proving just a CS guided candidate identification is not
enough. The third curve from bottom is TwiCS’ once-and-
done version while the topmost one is multi-pass enabled
TwiCS. The performance gain makes it clear why systems
like TwiCS that prioritized computational efficiency over
sophistication, surely benefits by having a selectively multi-
pass strategy in place. We will also establish shortly the
fact that the multi-pass overhead of TwiCS is fairly minute,
considering the improvement achieved.

3. Limitations: Here we analyze two main factors that
affect the performance of TwiCS.

(1) Memory consumption: The multi-pass approach
with a simple eviction strategy (last paragraph of Section
7) retains all incomplete tweet sentence until their eviction
threshold is reached. This will incur additional memory
consumption. We track the additional memory overhead
incurred due to retention of incomplete sentences during
the execution of D5 in Figure 12. Compared to the incoming
batch size (which is the only input retention for traditional
once-and-done EMD executions), the multi-pass overhead
(with additional incomplete sentences) is minimal – approx-
imately 5.11% of the once-and-done counterpart.

For D6, the total size for 10.26M tweets is approximately
1.3GB. With a batch size of 100K, the average memory use
for multipass TwiCS was 113MB per batch with a similar
5.09% overhead. We plan to investigate more efficient strate-
gies for incomplete tweets to further limit the overhead.
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Fig. 12: Multi-pass Memory Consumption

1000 2000 3000 4000 5000
Tweet Sentences in Input Stream

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CS
 I
nt

er
es
tin

gn
es
s 
M
ea

su
re
s

Recall Confidence

Fig. 13: CS-guided Candidate Extraction

45-50 95-100 145-150 195-200 245-250
Mention Frequency Bins

0.0

0.2

0.4

0.6

0.8

1.0

En
tit

y 
De

te
ct
io
n 

Re
ca

ll

Fig. 14: Impact of Frequency on ED Recall

(2) CS-guided Candidate Extraction: The histograms
in Figure 13 depict the outcome of our evaluation of the
CS Heuristic on our three annotated datasets, using in-
terestingness measures common in information retrieval.
The confidence estimation denotes the likelihood of a CS
occurrence being an EM. Recall denotes the percentage of
actual EMs captured by the CS Heuristic.

A limitation of TwiCS is that it can only recognize an
entity and its mentions if the entity appears as a CS at least
once in the tweet stream. Let’s call entities that appear as a
CS at least once in a dataset as CS entities and other entities
as non-CS entities. Our analysis of datasets (D1 to D3) shows
that CS entities appear significantly more times than non-CS
entities on average. This implies (1) more important entities
and EMs are more likely to be discovered by TwiCS and (2)
the discovered entities contribute more to EM discovery as
they correspond to more EMs. Of the 283 entities in D1, 211
(74.5%) are CS entities and 72 (25.4%) are non-CS entities.
Additionally, on average, each CS entity appears 5.65 times
(i.e., has 5.65 mentions) and each non-CS entity appears 2.3
times. As a result, the 211 CS entities contribute to nearly
88% EMs while the 72 non-CS entities deliver only about
12% EMs. In D2, there are 906 unique entities, among which
331, or about 36.5%, are non-CS entities and the remaining
are CS entities. The non-CS entities appear a total of 405
times – averaging a mere 1.22 times per entity. In contrast,
the 575 CS entities appear a total of 2,966 times – averaging
more than 5 times each and contributing to 88% of the EMs.
Dataset D3 also exhibits a similar behavior. There are 675
unique entities among which 225 (33%) are non-CS entities
and they only contribute 539 (about 9%) of the EMs in D3

– averaging at 2.39 times per entity – as opposed to the
CS entities that generate 5,554 mentions, averaging at 12.34
times and contributing to more than 91% of the total EMs.

From these numbers, it is reasonable to speculate that,
in general, when an entity appears a sufficient number of
times (5 or above for our datasets), it is likely to appear as
a CS at least once. In larger datasets (the annotated datasets
used in our experiments are rather small), higher percentage
of entities would likely become CS entities. As TwiCS is
designed to target large datasets, it is expected to perform
well for real-world message streams. Finally, despite this
limitation, TwiCS still significantly outperforms the baseline
state-of-the-art methods in stream settings.

Figure 14 illustrates how well TwiCS is able to detect
high-frequency entities in datasetsD1-D3. We group entities
of different mention frequency in bins of width 5 and track
the Entity Detection Recall that TwiCS yields for each bin.
For low frequency entities the recall is lower, indicating
more mislabeling. But TwiCS is able to consistently discover

high frequency entities. This validates the intuition that
TwiCS is able to learn better the more mentions it sees of
an entity.

9 CONCLUSIONS

In this paper, we presented the design and evaluation of a
novel system, TwiCS, for EMD/ED from microblog streams.
The approach behind this system is guided by several
empirically validated principles about entity mentions in
microblog streams. TwiCS is unique in that it consists of
two novel phases, where the first phase performs a lin-
guistically shallow and computationally light analysis of
incoming tweets to quickly detect entity candidates while
the second phase extracts more mentions of said candidates
and validates true EMs among them. Furthermore, as a
departure from once-and-done solutions, the second phase
strategically reprocesses a small percentage of tweets. Based
on this approach, TwiCS processes tweet streams over mul-
tiple iterations with each iteration first focusing on refining a
set of seed entity candidates and then verifying entities from
them to detect entity mentions. We conducted extensive
experiments using a variety of datasets to show that for
EMD/ED from microblog streams TwiCS is able to achieve
significantly higher effectiveness as well as much higher
efficiency compared with several state-of-the-art systems. A
key insight to TwiCS’s good performance is that for tweets
with entity mentions that cannot be identified confidently
at the first attempt, additional passes can recover initially
missed mentions, which is particularly effective for improv-
ing recall. We believe that this insight is also applicable to
ED and EMD in many non-English languages. For future
work, we aim to grow a complete IE pipeline that performs
Entity Detection and Linkage on tweet streams at scale.
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