
Leveraging Social Media Signals for Record Linkage
Andrew T. Schneider

Temple University

atschneider@temple.edu

Arjun Mukherjee

University of Houston

arjun@cs.uh.edu

Eduard C. Dragut

Temple University

edragut@temple.edu

ABSTRACT
Many data-intensive applications collect (structured) data from

a variety of sources. A key task in this process is record linkage,

which is the problem of determining the records from these sources

that refer to the same real-world entities. Traditional approaches

use the record representation of entities to accomplish this task.

With the nascence of social media, entities on the Web are now

accompanied by user generated content. We present a method for

record linkage that uses this hitherto untapped source of entity in-

formation. We use document-based distances, with an emphasis on

word embedding document distances, to determine if two entities

match. Our rationale is that user evaluations of entities converge

in semantic content, and hence in the word embedded space, as the

number of user evaluations grows. We analyze the effectiveness

of the proposed method both as a stand-alone method and in com-

bination with record-based record linkage methods. Experimental

results using real-world reviews demonstrate the high effectiveness

of our approach. To our knowledge, this is the first work exploring

the use of user generated content accompanying entities in the

record linkage task.

CCS CONCEPTS
• Information systems→ Deduplication; Data cleaning;

KEYWORDS
Record Linkage; Word Embeddings; Word Mover’s Distance

ACM Reference Format:
Andrew T. Schneider, Arjun Mukherjee, and Eduard C. Dragut. 2018. Lever-

aging Social Media Signals for Record Linkage. In WWW 2018: The 2018
Web Conference, April 23–27, 2018, Lyon, France. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3178876.3186018

1 INTRODUCTION
Record Linkage (RL) is the task of identifying record entries from

different (Web) sources that refer to the same real-world entity. RL

is an important component of processes that collect and aggregate

data from multiple sources, such as Web data warehousing (e.g.,

Google and Bing Shopping), data aggregation (e.g., product and

service reviews) [48], and security data mining for tracking crim-

inal activities [12]. Records to be resolved reside in independent

and uncooperative data sources. For example, Yelp.com (Yelp), Tri-

pAdvisor.com (TA), and OpenTable.com (OT) have business listings

(e.g., restaurants) and there is substantial overlap in the entities

This paper is published under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5639-8/18/04.

https://doi.org/10.1145/3178876.3186018

to which the entries in these listings refer. Each entry takes the

form of a record with multiple attributes: e.g., Yelp has the entry

r1 (Table 1) which refers to the entity Parc Restaurant, containing
attributes such as name, address, and phone.

Traditional RL techniques [9] focus on attribute similarities

to determine if the same real-world entity appears in multiple

sources. The problem is notoriously hard if one resorts to attribute-

to-attribute similarity since there can be multiple correct values for

the same attribute and incomplete, out-of-date, and erroneous data.

For example, the entity Parc Restaurant in Table 1, has the names

“Parc Restaurant, Bistro & Cafe” in Yelp, “Parc Brasserie” in TA, and

“Parc” in OT and its address varies between “227 South 18th Street”

and “227 S 18th St.” Tru Restaurant has different phone numbers in

the OT and TA records, r4 and r5, in Table 1. As an example of erro-

neous data, r6 and r7 in Table 1 have the same address and phone,

but different names. r7 is an incorrect piece of data. Record-oriented
matching of entities develops similarity functions and thresholds

per attribute [31]. Oftentimes these functions necessitate domain

knowledge and manually created rules [22, 31], e.g., “St." expands

to “Street" helps to match the addresses of r1 and r2.
As a consequence, techniques using auxiliary information have

been proposed for the task of RL, for example, mining entity rela-

tions [4] and query logs [47]. We propose an RL technique of this

class in this paper. We consider the user generated content (UGC)
accompanying entities on the Web as a new source of information

to enhance the quality of RL. Virtually all entities on the Web are

now accompanied by UGC in the form of user reviews, which are

freely accessible. We propose an NLP-driven solution to RL, which

has customarily been solved with record-centric techniques.

Brief Approach Overview. Figure 1 gives a graphic depiction
of the basic steps of our algorithm. Our solution infers if two enti-

ties match based on their UGC. For each entry (Fig. 1.a) in a Web

source, we collect its user reviews (Fig. 1.b) and organize them in

a document, called a user review document (URD) (Fig. 1.c). Steps
b and c are opaque to the user. All that we consider in assessing

similarity are the resultant vectors (Fig. 1.d) that are the output

of these processes. We determine whether two entities match by

computing the similarity or distance between their associated vec-

tors (Fig. 1.e); a key feature of these vector representations is that

they are conducive to pairwise distance measures. For example, we

collect and organize the reviews of r1 in Yelp into URD d1 and those
of r2 in TA into URD d2. We decide whether r1 and r2 refer to the

same real-world entity based on the similarity between d1 and d2.
To our knowledge, this is the first work exploring the use of such

content in the task of RL.

Numerous algorithms have been proposed to compute the dis-

tance between documents represented as vectors, or collections of

vectors [2, 6, 34, 36, 43]. Our work is largely focused on a recently

proposed algorithm, Word Mover’s Distance (WMD) [20]. WMD

https://doi.org/10.1145/3178876.3186018
https://doi.org/10.1145/3178876.3186018

Table 1: Example of real-world business listings.

RID Name Phone Address Reviews Source

r1 Parc Rest., Bistro & Cafe 215-545-2262 227 S. 18th St. 1,360 Yelp

r2 Parc Brasserie 215-545-2262 277 S 18th Street 1,294 TripAdvisor

r3 Parc 215-545-2262 227 South 18th Street 5,479 OpenTable

r4 Tru Restaurant 312-202-0001 676 N Saint Clair St 1,796 OpenTable

r5 Tru Restaurant 312-488-2488 676 North St. Clair Street 329 TripAdvisor

r6 Zahav 215-625-8800 237 St James Pl 1,434 Yelp

r7 Zahav’s Down the Shore Party 237 St James Pl 215-625-8800 3 Yelp

employs word embeddings, where semantically meaningful repre-

sentations of words are learned from their local occurrences within

sentences. The appeal of word embeddings in our setting is that, in

the embedded space, semantically related words, such as “Japanese”

and “sushi” or “table” and “seating” from the restaurant domain,

become very close, allowing entities to be matched with high accu-

racy. WMD has been shown to give unprecedented low k-nearest
neighbor document classification error rates compared to the state-

of-the-art document distances [20]. The problem of entity matching

can be considered an instance of k-nearest neighbors clustering.
Once the distance measure has been calculated, a decision is made

(Fig. 1.f) as to whether this pair of entities constitutes a matching

pair. We explore the decision process in multiple contexts. In one

paradigm, we assume that there exists at most one correct match for

each entity. The decision process here is based on determining the

best possible assignment of pairings, in which we use an approach

derived from the stable marriage problem [13]. In the more general

setting, we make no such assumptions and use a general document

clustering algorithm, specifically Ricochet [15, 45]. In both cases

we show that the URD distance is a highly accurate measure for

distinguishing entity matches.

The key principle of our approach is that a sufficient level of

similarity between two URDs suggests that their respective en-

tries refer to the same entity. This idea is based on the empirical

observation that in the limit people tend to say the same things

about the same entities. In other words, two individuals may focus

on different aspects of a given entity in each of their respective

reviews, but when considered as a group, the set of all reviews will

exhibit a substantial internal similarity in content. This is similar

to the motivation behind an aggregation of reviews (say 1 – 5 star

reviews), where a product is tagged with the average over all the

reviews, and it is assumed that as the number of reviews grows,

this average converges to a stable limit. Intuitively, our approach

mirrors those instances when a person draws a blank when trying

to recall the name of an entity in a conversation (say an actor or a

scientist), and then starts providing details (e.g., movies or papers,

co-stars or co-authors, types of roles or areas of expertise) until the

other person is able to correctly identify the entity in question.

It is intuitive that entities within a certain subdomain will cluster

together. For instance, in the restaurant domain, two entities with

the same cuisine type (e.g., Japanese) would be expected to contain

much similar language and therefore have a small document dis-

tance. The empirical results of our experiments, however, show that

this similarity extends beyond the subdomain to such a degree that

pairs of records referring to the same entities consistently occur as

the best match despite the existence of multiple subdomains across

our datasets. Empirically, our results show that the semantics of

the UGC do converge and that our proposed technique is effective.

Main Goal.We study the value of UGC in the task of RL both

as a stand-alone method and in conjunction with a record-based RL

method. Since our approach and the record-based approaches utilize

complementary input: unstructured (user reviews) vs. structured

(records), the use of one approach does not exclude the other. We

first describe and analyze our UGC-based method in isolation. Then

we discuss its added benefit when used together with a record-based

RLmethod.We use FEBRL [8] for the latter. FEBRL includes features

that are useful in our study: a tool for the generation of records

with random typo noise and a clustering-based RL algorithm. We

show that the joint application of our approach with a record-based

approach can improve upon the latter by up to 11%.

Our experimental study with a large volume of reviews from the

Restaurant and Hotel domains (about 1.7GB of total data) shows

the promise of the approach. Our lead method obtains an average

f1-score accuracy of .92, which matches or exceeds that of record-

based approaches reported in the literature. We empirically show

that the proposed WMD-based approach is robust to review sizes

and results in graceful degradation in performance as the number

of reviews is reduced.

The contributions of this paper are:

• Give the first RL solution using user generated content, to

our knowledge.

• Showcase an emerging application of word embeddings.

• Show that social media signals improve record-based meth-

ods from 3%, in the presence of modest UGC (20 reviews per

entity), to 12%, when UGC abounds (at least 100 per entity).

• Show the high effectiveness of our approach with experi-

ments on real-world data sets from varied domains, electron-

ics, commodity goods, and business listings.

2 RELATEDWORK
The work on RL can be broadly classified into three categories: (i)

effective RL, (ii) optimal selection of similarity measures, and (iii)

efficient RL. The works in (i) [4, 5, 10, 11, 17, 32, 37, 38] employ a

broad range of machine learning techniques such as decision trees,

SVM, logistic regression, correlation mining, and clustering. In (ii),

the goal is to automatically select optimal similarity functions [7] for

each attribute of an entity (e.g., using edit distance for the attribute

phone and Jaccard distance for name) and determine similarity

thresholds [31]. Scaling to large datasets increases the challenge

r1 : Parc Restaurant,
Bistro & Cafe (Yelp)

r2 : Parc (OpenTable)

v1 =

v2 =

0.013
0.012
0.105
⁞

0.001
0.015

distance
σ(v1, v2)

entities
(a)

reviews
(b)

URDs
(c)

vector
representation

(d)
distance

(e)
decision

(f)

...
ive been to parc a few times before and its
always been great this was a good experience
but not the best ive had there im writing a
review not because i dont like the place but
rather because i really do like the place i want
parc to get even better food i had the skate
and it was fine i was assuming id be blown
away but it was good like b+ good i dont have
any adjectives to describe the meal other ...
this philly mainstay feels just like the real thing
one note of caution is that the facility may be
getting a little peaked the draft beers were flat
and the smell of fish permeates the entire
facility service is ...
plating of steak was just thrown onto plate
sauce spilling everywhere french fries piled
high no garnish steak had mediocre flavor
nothing special not worth $30 french onion
soup tasty nice crock but again looked like it
was thrown into a broiler or toaster oven to
melt cheese with big piece of bread
underneath ...
...

...
ive now been to parc a few times and it has
impressed each time the appetizers ive tried
the onion soup and the cheese plate have
been superb the that adorn the meats and
cheeses are delicious ive now had the burger
and the trout amandine and both ...
certainly can understand why it is always so
crowded here at brunch food was excellent
service was terrific and all in a great bistro
atmosphere the breakfast pastries to start
are a must and provide a nice selection to
share for the entrees we enjoyed the smoked
salmon tartine the lamb sandwich and the
cheese omelette they were all delicious...
i cant wait for summer weather just so i can
sit outside great drinks and people watching
place i love their bread of all things...
...

0.003
0.107
0.055
⁞

0.000
0.101

r1 ≈ r2

yes

no

Figure 1: Process flow of our matching algorithm.

of RL and the works in (iii) aim to develop parallel and efficient

techniques to speed up the process [1, 3, 18, 19, 26, 33, 44, 46]. There

are two broad approaches: distributed RL using MapReduce-like

frameworks [42] and blocking [40]. Blocking uses a subset of the

attributes to partition a set of entity records into blocks of records
and treats records in different blocks as non-matching a priori.

Many approaches are built around locality-sensitive hashing. RL is

only applied within blocks to ameliorate its O(n2) complexity. All

works in (i) assume that data is partitioned a priori. We make the

same assumption, except in Section 6.4.

Our work falls into (i) but distinguishes itself from the above

approaches in that it is a record oblivious technique. It completely

disregards the record attribute values of the records and relies

entirely on the entities’ UGC.

3 PROBLEM FORMULATION
Let E be a set of real-world entities within the same application

domain (e.g., restaurant, hotel, book). Each entity has a set of at-

tributes (e.g., a business entity has the attributes name, address, and

telephone). Let S1 and S2 be two independent and uncooperative

Web sources, each of which has records about the entities in E and

each record is accompanied by a set of user reviews. We call these

records entity records. The RL problem is to determine all entity

records in S1 × S2 that represent the same real-world entity.

Denote by Rr ei , for i ∈ {1, 2}, the set of user reviews attached to

the entity record re in Web source Si . The problem to be solved is:

given two review sets Rr e
1

and R
r f
2

determine whether re ≃ r f , i.e.,
whether re and r f refer to the same real-world entity e ∈ E.

4 TECHNICAL INGREDIENTS
In this section, we introduce the main technical tools utilized in our

proposed technique: word embeddings, document representations

for URD, and the Word Mover’s Distance (WMD), which gives a

measure of the dissimilarity between two text documents.

4.1 Word2Vec Embedding
A word embedding is a mapping of a vocabulary L to a real number

vector space Rd . d is typically in the range 50 to 1000. The key idea

to embedding is that semantically similar words become “close" in

the embedded vector space. Several (deep) learning methods have

been proposed to generate this mapping [21, 23, 28, 39, 41]. We

use the word2vec embedding method [27, 28]. word2vec learns a
vector representation for each word using a shallow neural network

language model, using the skip-gram method. For a sequence of

training wordsw1, ...,wT , the objective of word2vec is to maximize

the average log probability

1

T

∑
i ∈[1..T]

∑
j ∈nb(i)

loдp(wi+j |wi)

where nb(i) is the set of neighboring words of the word i and
p(wi+j |wi) is defined using the softmax function of the associated

word vectorsvwi andvw j . One reason for choosing this model is its

“light” computation requirements: we conduct all the experiments

on a conventional desktop computer. The outcome is a lookup table

(or matrix) with a column for each word.

4.2 Document Representations
We represent documents as real number vectors d over the vocabu-

lary L, |L| = n. We consider three different document representa-

tion models: Binary, TF-IDF, and Normalized. The latter two are

instances of normalized bag-of-words (nBOW) models. The moti-

vation for exploring multiple models is to try to determine which

one gives the highest accuracy and consistency. We elaborate on

this notion in the discussion in Section 6.3. We define the word

weighting of these models here. In the following ci denotes number

of occurrences of the word i from L in the document at hand. We

discard the stop words in all cases.

Binary: di = 1 if word i is present in the document and di = 0

if it is not.

TF-IDF: di = t fi × id fi . We consider two weighting schemes

[25], referred to as NT and LT. In both cases, id fi = loд
N
dfi

, where

N is the number of documents, and d fi is the number of documents

that have word i . t fi = ci in NT and t fi = 1 + loд(ci) in LT.

Normalized: (ND) di = ci∑n
i=1 ci

.

We implemented a fifth model, Okapi BM25, but due to its con-

sistently poor performance, we omit it from the results.

4.3 Word Mover’s Distance
WMD [20] is inspired from the Earth Mover’s Distance metric [30,

35]. It interprets the distance between two documents, D and D ′
, as

a transportation problem: the distance is the minimum amount that

the embedded words of D need to travel to become the embedded

words of D ′
.

Let d and d′ be the document representation vectors of D and

D ′
, respectively. Let X ∈ Rd×n be the matrix embedding produced

by word2vec for the vocabulary L. The ith column of X, denoted
xi , represents the embedding of word i in Rd . WMD allows each

word i in d to be transformed into any word j in d′, subject to the

constraints that the amount leaving word i in d equals di and the

amount received by word j in d′ is dj . These constraints can be

expressed using a matrix flow T, where Ti j denotes the “amount”

of word i in d that travels to word j in d′. The WMD between two

documents is defined as the minimum weighted cumulative cost

required to move all words from d to d′ and is given by the solution

to the following linear program:

minT≥0
∑

i, j ∈[1..n]
Ti j c(i, j)

subject to

∑
j ∈[1..n]

Ti j = di ∀i ∈ [1..n] (1)

and

∑
i ∈[1..n]

Ti j = dj ∀j ∈ [1..n]

where c(i, j) = | |xi − xj | |2 is the Euclidean distance computed in

the word2vec embedding space and represents the distance between

words i and j.

5 RECORD LINKAGEWITH SOCIAL MEDIA
We present our RL algorithm in this section, whose main ingredient

is the social media content accompanying the records. Our solution

is built upon the following hypothesis: A single user review may

not give enough details to unambiguously infer the entity to which

it refers, but collectively (hundreds of them) they converge to a

“signature” that uniquely identifies the entity. The set of users from

a Web source (e.g., Yelp) and the set of users from another Web

source (e.g., TripAdvisor) give, independently of each other, very

similar aggregated depictions of a given entity. As long as the

physical entity is fixed, user evaluations will converge in the review

semantics of the word embedded space.

Out algorithm has the following steps:

(1) Create the URD for each entity record.

(2) Create the domain vocabulary and compute the vectors d
for the URDs.

(3) Compute the document distance σ (d, d′) for every pair of

URDs.

(4) Identify matching entity records. (Section 5.4)

We describe the steps of the algorithm in the following sections.

5.1 User Review Document
For each entity record re in the source Si , i = 1, 2, we collect the

set of all its reviews Rr ei . We create a URD Dr e from Rr ei as follows.

We discard the metadata (e.g., user name, time and date) from each

review u ∈ Rr ei and perform basic text normalization steps to the

content of u, yielding u ′. This u ′ is appended to Dr e .

5.2 Domain Vocabulary
The domain vocabulary L is the set of all unique words found among

all URDsDr e in all Si ’s. We perform basic word normalization steps

to reduce the size of L. We remove all words that appear less than

a specified threshold ζ across all Dr e ’s in each source. ζ = 5 in

this work. Table 3 gives the sizes of L for the various datasets we

utilized. We then compute the vector dr e of each URD Dr e over L
as described in Section 4.2.

5.3 Document Distances
After finding the URDs of all entities from sources S1 and S2, re-
spectively, we compute the distances between every pair of entity

records in S1 × S2. Let re1 ∈ S1 and re2 ∈ S2 be two entity records

and dr e1 and dr e2 their vectors, respectively. Let σ (dr e1 , dr e2) be the
distance between dr e1 and dr e2 . We use two standard distances, Eu-

clidean and Jaccard [16], for σ in Rn . These constitute our baseline
distances. For WMD, we use each of the document representations

as the word weights, which determine the amount required to move

between two document representations in the WMD space Rd . The
location of each weighted point in this space is determined by the

word’s word2vec embedding.

5.4 Identify Matching Entity Records
We now discuss how to produce the final set of matching entity

records from the σ ’s computed in the previous step. We call amatch
a subsetM ⊆ S1 × S2. Among all possible matchesM we seek the

match M̂ with the property that for every pair (re, r f) ∈ M̂ , re and

r f refer to the same real-world entity. In general, M̂ may contain

pairs of the form (re, r f) and (re, r f ′), r f , r f ′, i.e, an entity record
in S1 is mapped to multiple entity records in S2, which can happen

when S2 contains duplicates. For example, the entity records r6 and
r7 (Table 1) are duplicates. We distinguish two cases: (1) S1 and S2
are duplicate free and (2) S1 and S2 may each contain duplicates.

We study both in this work and show that our approach to RL leads

to substantial improvements in both cases.

5.4.1 Duplicate Free Sources. In practice, one may assume that

S1 and S2 are duplicate free on the following empirical observation:

Observation 1. LetAm be the set of entity records in aWeb source
such that each record has at least m user reviews. We empirically
observed that for a moderately largem (e.g.,m = 20),Am is duplicate
free, i.e., �re1, re2 ∈ Am such that re1 and re2 refer to the same
real-world entity.

This observation has the following intuitive basis. If a source has

two (or more) entity records about a real-world entity e , then users

converge in large numbers toward the entity record that is the cor-

rect representation of e and avoid the incorrect one. Some users may

still add their reviews to the wrong entity record, but their num-

ber is very small. For example, r6, which is correct, amassed 1,434

reviews, whereas r7, which is incorrect, amassed only 3 reviews.

We implicitly meet this constraint onm, because we require each

entity record to have sufficient reviews to allow accurate document

to document comparison. We present a study about the sensitivity

of our RL approach to the number of reviews in Section 6.5.

With the assumption that S1 and S2 are duplicate free, the prob-

lem of finding M̂ is closely related to well-known matching prob-

lems in bipartite graphs [14, 24]. In particular, it becomes an in-

stance of the stable marriage problem (SMP). The basic formulation

of the SMP is as follows. We are given two disjoint sets of size n,
the men and the women. Each person has a list of strictly ordered

preferences that contains all the members of the other sex. Person

x prefers y to z, where y and z are not in the same set with x , iff
y precedes z on x ’s preference list. A matching ϒ is a one-to-one

correspondence between men and women. ϒ is stable if there are
no two pairs (x ,y) and (x ′,y′) in ϒ such that x prefers x ′ to y and

y′ prefers x to x ′. The SMP is to find a stable matching. The SMP

can be extended to the cases where (i) the sets of men and women

are of unequal sizes and (ii) each person’s preference list is a subset

of the members of the opposite sex in strict order. This is called the

SMP with incomplete lists (SMI). A stable matching always exists

for an instance of SMI and can be found in O(n2) time complexity

[13]. The matching may be partial: there may be men or women

who do not have a partner in ϒ.
Our RL problem is an instance of SMI because, in general, S1

and S2 are of unequal sizes. We utilize a learned distance threshold

τ with which we eliminate possible pairings. If σ (dr e , dr f) > τ
our method determines that re ; r f , even if r f is the best match

for re . The list of preferences of an entity record re ∈ S1 is the

list of entity records [r f1, ..., r fs] in S2 with the property that τ >
σ (dr e , dr fj),∀j ∈ [1, s] and σ (dr e , dr fj) > σ (dr e , dr ft), 1 ≤ t <

j ≤ s . We similarly obtain the list of preferences of an entity record

r f ∈ S2 in S1. M̂ corresponds to ϒ.

5.4.2 Non Duplicate Free Sources. There may be instances when

either S1 or S2, or both, contain duplicates. In that case, the previous
approach will not work. We need a grouping or clustering approach.

A cluster is a set of duplicate entity records from both S1 and S2.
We follow the Stringer duplication detection framework [15] for

this setting. Stringer examines a broad spectrum of algorithms for

documents clustering as pertains to the RL problem. We considered

all the algorithms presented in Stringer together with our proposed

WMD measures. For many of them the performance was poor.

The Ricochet family of algorithms [45], particularly the Sequential

Rippling (SR) algorithm, performed well for our task. We present

the empirical results in Section 6.4. The SR algorithm takes as input

the similarity between pairs. We convert the WMD distance into a

similarity s as:

s(dr e , dr f) =
1

1 + σ (dr e , dr f)

In the SR algorithm, vertices (representing entities) are sorted

in descending order of the average weight of their adjacent edges

Table 2: Dataset characteristics. Total and average # reviews
per entity, average # words per review. # entity matches be-
tween sources, # entities per source in magenta.

Document Stats Entity Matches
Src. #Revs Avg#Revs Avg#W Yelp TA OT
Yelp 550,598 1,130 29,343 741 131 187

TA 125,133 500 15,195 - 250 147

OT 399,019 1,596 20,797 - - 487
R-Y R-T

R-Y 112,153 714 39,270 - 331 112

R-T 58,295 366 13,542 - - 533
H-H H-T

HC 195,750 522 48,892 - 169 152

HT 225,108 1,332 9,567 - - 375
Amazon Entities

Bike 65,843 289 10,729 - 157 -

Mattress 39,049 434 19,359 - 72 -

TV 33,253 384 15,779 - 124 -

Laptop 116,262 848 28,300 - 78 -

(pairwise similarity scores). The vertex with the highest weight

is chosen as the seed of the first cluster, and all other vertices

are assigned to this cluster. Subsequently, each following vertex

is selected as a seed of a new cluster in order. For each new seed,

vertices are reassigned to the new cluster if their similarity to the

current seed is greater than to its previous cluster seed [45].

5.5 Matching Entity Records with Structured
and Unstructured Data

In a real world setting, entity records may be accompanied by vary-

ing amounts of UGC or none at all. In Section 6.6 we show that our

UGC based technique can be effective in conjunction with tradi-

tional record based methods, even when the amount of available

UGC is small (e.g., 20 user reviews). For a data source Si , letUSi be
the subset of entity records accompanied by UGC and SSi be the
subset of entity records without UGC.

For datasources S1 and S2, we apply a purely record-based ap-

proach to the pairs in the sets: SS1 × SS2, SS1 ×US2, andUS1 × SS2.
We are able to make use of the available UGC and apply a combi-

nation of the structured and unstructured approaches to the pairs

in the sets UG1 ×UG2. In a basic record based RL setting, we first

find the pairwise distance for all equivalent fields between two sets

of records. This distance ρ is some type of string edit distance.

For example, for records R1 and R2, with fields namei , phonei ,
and addressi for i = 1, 2, we first find the vector of distances

ρ = [ρname , ρphone , ρaddress] where ρname = ρ(name1,name2),
ρphone = ρ(phone1,phone2), and ρaddress = ρ(address1,address2).
These distances serve as the input to a decision function f (d), typi-
cally a linear function: f (ρ) = ∑

k αk · ρk . The weights αi can be

learned using a training set of pairs of recordswhosematch/nonmatch

status are known. If the value f (ρ) > θ for some threshold θ , then
the pair is predicted to be a match. A straightforward way to com-

bine our UGC distance, σUGC
, with this system is to append it to

the vector ρ. The system then learns the optimal weight αUGC for

combiningσUGC
with the record field values. This is themethodwe

consider in this work. The exploration of alternative formulations

for this combination is left as future work.

Table 3: Entity matching framework instantiation.
Document Models

NT, LT, Binary, ND

Document Similarity Measures : σ
Jaccard, Euclidean, WMD-G, WMD-D

Lexicon Sizes |L | = n
TA-OT : 36,293, TA-Y : 48,329, Y-OT : 55,194,

RIDDLE : 26,668, HOTEL : 35,031, Bike : 20,347,

TV : 16,944, Laptop : 28,288, Mattress : 15,417

Word Embeddings Dimensions : d
WMD-G : 300, WMD-D : 50

6 EXPERIMENTAL STUDY
This section describes experimental results on real-world Web

sources from a diverse spectrum of application domains, business

listings, electronics, and consumer goods. We first analyze the pro-

posed approach in isolation and then in connection with a record-

based approach. The main takeaway is (1) in the presence of UGC

our method is at least as effective as a record-based approach, but

it requires each entity record to have at least 100 user reviews, and

(2) when combined with a record-based approach the overall RL

effectiveness improves by 7% on average, in some domains by up

to 12%. Improvements in accuracy can begin at only 20 reviews per

entity record.

6.1 Experiment Setting
We describe the datasets and experiment settings in this section.

We report accuracy with f1-scores.

6.1.1 Datasets. We evaluate our approach on four real-world

datasets: TOY,HOTEL, and Amazon compiled by ourselves
1
, and

Restaurant based on the dataset from the RIDDLE repository
2
.

Table 2 gives the statistics of the datasets. We report our empirical

findings using the traditional f1-score measure. The results are

reported in Table 4.

TOY contains three lists of restaurant records from TA, OT and

Yelp. They have 741, 487, and 250 entity records, respectively. We

pair them giving us 3 sets: Yelp-TA, Yelp-OT, and OT-TA. We man-

ually identified 131, 187, and 147 matched entity record pairs, re-

spectively (Table 2).

Hotel contains lists of hotel records from TA (HT) and Ho-

tels.com (HC). There are 169 entities in HT and 375 in HC. We

identified 152 matched pairs between the 2 sources (Table 2).

Riddle has lists of restaurants from Zagat.com and Fodors.com,

of sizes 331 and 533, respectively. It has 112 matched pairs. It does

not have user reviews. We searched for the Fodors restaurants in

TA and the Zagat restaurants in Yelp to find their respective UGC.

Amazon has lists of products from the categories Bikes, Mat-

tresses, TVs, and Laptops with 157, 72, 124, and 78 entities, respec-

tively. We use this dataset to show the percentage improvement

to the task of RL when we combine our proposed method with a

record-base matcher and to demonstrate the applicability of our

technique across domains.

1
These datasets will be shared upon individual requests.

2
www.cs.utexas.edu/users/ml/riddle/data.html

Figure 2: Accuracy variation across top-n words.

6.1.2 Document models. For comparison, we implement 4 doc-

ument models, Binary, LT, NT, and ND (Section 4.2); and four docu-

ment distances, Jaccard, Euclidean,WMD-G, andWMD-D.WMD-G

is backed by the Google News word2vec model, which has an em-

bedding for 3M words/phrases; WMD-D is backed by a domain

word2vec model trained on all the URDs from Yelp, TA, and OT, in

the Restaurant domain, and on all the URDs from HT and HC in

the Hotel domain. WMD-G and WMD-D operate on the embedded

space Rd , d = 300 and d = 50, respectively. In total, we implement

10 RL algorithms: the Jaccard distance and binary document model

are paired together; each of Euclidean, WMD-G and WMD-D is

paired with each of the document models LT, NT, and ND. The

Jaccard and all Euclidean instantiations of the RL algorithm are the

baselines against which we compare the WMD-G and WMD-D in-

stantiations, our contribution. The baselines operate in Rn , where n
is the size of vocabulary L. n varies between 26,668 (in Riddle) and
55,195 (in Yelp–OT) (Table 3, third item). We remove all words that

appear fewer than ζ = 5 times across all URDs. Table 3 summarizes

the instantiations of the proposed RL framework.

6.2 Top-n Words
Asmentioned in Section 5.3, the computation ofWMD can be costly.

In this trial, we study the number of words n over which we need

to compute WMD (Eq. 1) to achieve high accuracy. We use WMD-

D-NT and WMD-G-NT, the best two performing instantiations of

our algorithm. We randomly select a set V of 100 matched entity

record pairs from TOY. The words are ranked by their di weights
(Section 4.2). We range n from 10 to 100 in increments of 10 and

run both WMD-D-NT and WMD-G-NT onV , every time recording

the f1-scores. Figure 2 shows the outcome of this study. We observe

that both WMD-D-NT and WMD-G-NT converge very quickly to

high f1-scores. This allows us to select low n’s, thus ameliorating

the computational demands of our algorithm. In all subsequent

experiments, we set n = 40 for WMD-G and n = 50 for WMD-D.

6.3 Evaluating Effectiveness
Table 4 compares the accuracy of all 10 instantiations of the pro-

posed RL algorithm across the 3 datasets. The table shows for each

method the highest f1-score and the overall accuracy in the domain.

We give the threshold τ of the latter in the header of each column.

The shaded columns in the table correspond to the best performing

document model for particular a document distance. We draw a

number of interesting observations from this set of experiments.

www.cs.utexas.edu/users/ml/riddle/data.html

Table 4: Overall effectiveness results on TOY, Riddle, and HOTEL datasets. The shaded columns highlight the best performing
document model for each distance type. In particular, WMD-G-NT, the darker shaded column, shows the highest average
performance (.92) with the lowest fluctuation (standard deviation = 0.3).

EUCLIDEAN DOMAIN (WMD-D) GOOGLE (WMD-G)

Jaccard(.7) LT(320.) NT(1229.) ND(.03) LT(3.7) NT(6.2) ND(8.9) LT(2.8) NT(1.9) ND(1.4)

TA-OT .52 .07 .2 .93 .87 .94 .81 .88 .9 .85

Yelp-OT .62 .22 .36 .49 .44 .8 .63 .75 .87 .7

TA-Yelp .47 .1 .2 .87 .68 .85 .83 .8 .91 .73

Rest. Domain .55 .13 .25 .76 .66 .86 .72 .8 .87 .74
Riddle .34 .12 .3 .78 .66 .78 .77 .87 .96 .73

Jaccard(.72) LT(311.) NT(617.) ND(.03) LT(4.8) NT(6.7) ND(5.2) LT(3.3) NT(2.8) ND(.8)

Hotel .32 .1 .47 .92 .25 .75 .85 .81 .94 .92

Avg. .45 .12 .31 .8 .58 .82 .78 .82 .92 .79
Std. .11 .05 .1 .16 .21 .07 .08 .05 .03 .09

(i) WMD-G-NT obtains the highest f1-score in most cases (the

right most gray shaded column in the Table 4). The 3Mword Google

News model performs superior to the smaller domain model. This

supports the finding that more data creates better embeddings than

less, but domain relevant data [27].

(ii) The NT document model gives the best performance for both

WMD-D and WMD-G, and also performs consistently well with

the lowest standard deviation of all methods (the middle and right

most right gray shaded columns in the Table 4). Euclidean performs

unexpectedly poorly with either of the TF-IDF weighting schemes.

The least sophisticated of the considered document models, binary,

outperforms it by a significant margin, over 130%.

(iii) Euclidean distance under the ND model looks to perform

comparably to both WMD-G-NT and WMD-D-NT on several pair-

ings of the entity record lists (the left most column in the Table 4).

This however is a high accuracy fool’s gold. If we instead train the

threshold τ across the entire Restaurant domain and then apply it to

each of the individual list pairs, the average f1-score drops by more

than 15% to 73% (see row Rest. Domain). For instance, it attains an

f1-score of .5 for Yelp-OT, as under the ND document model many

unrelated URDs cluster closely together in the Rn space.

Our experiments show that word embedding-based distance

measures are marginally affected by the heterogenous content of

URDs, less than 3% on average for WMD-G-NT (row Avg. / Std. and

column NT in the section GOOGLE (WMD-G) of Table 4). They

remain consistent both vertically, i.e., across the pairs of entity

record lists, and horizontally, i.e., across the document representa-

tion models. The last row of Table 4 gives the average f1-scores and

the standard deviations. Based on the results reported in this row,

we claim that WMD-G-NT is the most accurate (highest average)
and most consistent (lowest standard deviation) of all the models.

Our explanation for the poor performance of the baselines, is

that the URDs are generated by a diverse user population, with

varied writing skills. Binary and TF-IDF document representation

models perform well in classical information retrieval tasks since

documents are in general created by individual users, but here two

URDs of the same entity may have different unique words and thus

reside in different regions of space over the vocabulary L. However,
these documents become semantically close in the embedded space.

Table 5: RL via clustering with Ricochet Sequential Rippling

domain source prec. rec. f1-score

Rest.

TA-OT .91 .89 .89

TA-Yelp .89 .9 .9

Yelp-OT .88 .87 .88

Rest. TA-OT-Yelp .89 .84 .86

Hotel TA-HC .86 .86 .86

Comparison with Record-based Matchers. We use Riddle
to compare our method with two record-based methods [29, 49] on

the task of RL. The two works report f1-scores of 89.8% and 94.6%,

respectively. We obtain 96% with our best performing algorithm,

WMD-G-NT. This is quite remarkable given that we do not use

a single bit of data from the records themselves, such as phone

numbers, addresses or names. This showcases the effectiveness of

our NLP-driven technique and the usefulness of user reviews in the

RL task.

6.4 Clustering and Deduplication
In the previous experiments, we assumed that each data source

was internally duplicate free. To study how our method performs

when this assumption does not hold, we investigate the perfor-

mance using a general clustering algorithm for the RL problem.

In this investigation we artificially divide the UGC for a random

sample of entities from each source, such that each entity may be

represented up to 5 times in a given data source, each containing

non-overlapping content. Specifically we generate the data sets

examined here as follows: For each review source, we uniformly

randomly select 10% of its entities. For each selected entity e , we
uniformly randomly assign each of its reviews to one of k pseudo-

entries, e1, . . . , ek . For each e , k is selected randomly from the range

[2, 5] subject to the constraint that each pseudo-entry has at least

100 reviews (we justify this choice in Section 6.5). These k new en-

tries are added to our review corpus and the original e is removed.

This process generates a significantly larger data set than used in

the previous study. For example, for the restaurant domain, it con-

sists of 855, 202, and 594 entities for Yelp, TA, and OT, respectively.

In addition, for a given entity e , any other entity is a possible match,

whether from the same or a different source. This process generates

Table 6: Review Size Ranging: TOY / HOTEL

LE10 10-25 25-50 50-100 GT100
LE10 0.0 / .02 .02 / 0.0 0.0 / .07 .04 / .1 .07 / .2

10-25 .13 / .07 .15 / .25 .19 / .36 .51 / .45

25-50 .51 / .55 .58 / .51 .69 / .76

50-100 .67 / .52 .93 / .6

GT100 .94 / .88

a total of 1741 and 653 entities for the restaurant and hotel domains,

respectively. The WMD distances are then calculated as before. As

discussed in Section 5.4.2, we use the Ricochet algorithms [45], in

particular the Sequential Rippling (SR) algorithm.

The goal now is to find for any given entry, those entries which

refer to the same real world entity, both from its own data source

and from separate data sources. Under this set-up, each entry may

have anywhere from zero to fourteen correct matches (for TOY-
ALL, zero to nine for the pairwise trials), which makes this a far

more complicated task. The results reported here show our best

performing model, G-WMD-NT.

We consider the clustering task pairwise for the TOY data for

each pair of sources, as well as for all sources combined. As we

show, the performance is only marginally worse when all sources

are considered. The results of the general clustering approach are

comparable to the duplicate free case utilized in the previous set of

experiments. The average f1-score drops by only 4%, from 92% to

88%, despite this being a more difficult task. This shows that our

methods can be applied in the presence of internal duplicates or

when more than two data sources are being combined in one pass.

The results reported in Table 5 are in terms of clusters, following

the method used in the original paper [45] for computing precision,

recall, and f1-score.

6.5 Sensitivity to Volume of Reviews
In this experiment we want to understand where our approach is

most effective and where it begins to break down. We use our best

performing method WMD-G-NT.

Experiment Design. Consider a set of matched pairs M =

{(re1, re2)|re1 ∈ S1, re2 ∈ S2}; a set Ω = {ωi } of k ranges of in-

teger numbers, e.g., ω1 = (0, 10], ω2 = (10, 25] and so on; and

B = {bi j |1 ≤ i, j ≤ k} a set of buckets so that if (re1, re2) is in
bucket bi j then one of re1 or re2 has its number of reviews in the

range ωi and the other in ωj . One iteration of the experiment has

the following steps. First, we randomly and evenly distribute the

pairs in M over B. Second, for each pair (re1, re2) in bucket bi j ,
we randomly generate a numberm1 ∈ ωi and a numberm2 ∈ ωj .

Third, we randomly selectm1 reviews for re1 from the set of all

reviews for re1, andm2 reviews for re2 from the set of all reviews

for re2. Fourth, we run the matching algorithms and collect their

f1-scores at each bucket.

We run the experiment on TOY andHotel.M has 120 randomly

chosen matched pairs in each case. k = 5 with ranges: ω1 = (0, 10]

(LE10), ω2 = (10, 25], ω3 = (25, 50], ω4 = (50, 100], and ω5 = (100,

Z] (GT100), where Z ≥ 200. We iterate through each trial 10 times.

The averaged values of the f1-scores are given in Table 6.

Table 7: Record-based improvement. f1-scores with no re-
views (records only), records + 20 reviews, records + 100 re-
views. % improvement over records only reported.

domain recs only recs+20 revs. recs+100 revs.
bike .874 .938 / 7% .977 / 12%

hotel .807 .899 / 11% .898 / 11%

restaurant .907 .955 / 5% .98 / 8%

TV .747 .75 / .3 % .788 / 6%

laptop .849 .864 / 2% .903 / 6%

mattress .851 .861 / 1% .878 / 3%

Outcome. We observe two main tendencies. (1) as we follow

the diagonal from the top left to the bottom right, accuracy steadily

improves. This agrees with the general intuition that more reviews

leads to improved accuracy, as well as the convergence of review

semantics in the limit. (2) further from the diagonal, when the

disparity between the number of reviews for each record is high,

accuracy suffers. These results suggest that our method as a stan-

dalone RL method is most effective whenever entity records have at

least about 100 user reviews in practice, which is a modest number

in today’s Web.

6.6 UGC with Structured Data
In this section we show that we obtain significant percentage f1-

score improvement when we combine UGC-based techniques with

record-based RL techniques. In many cases, only a small amount of

UGC substantially improves the accuracy of the matching. This im-

provement is exhibited across multiple domains. In this experiment

we use the publicly available record-based RL tool FEBRL [8].

For this study we consider review text and record data from

6 very different domains: restaurant, hotel, TV, laptop, mattress,

and bike. The record attributes are collected from the original data

sources. For restaurant (TOY) and Hotel, the records come from

different data sources. For the Bike, Mattress, TV, and Laptop do-

mains, the records are all collected from a single data source. This is

useful since we can easily construct gold standards. We use Ama-
zon dataset to simulate the effect of combining data records from

distinct data sources. We synthetically perturb the attribute values

of a copy of the original record. We use standard practices to per-

turb the record-level data– at random: swap two characters, delete

one character, and insert one character– which have been used to

simulate common errors found in imprecise data sources [15]. Each

error is introduced with .5 probability in the record. In addition,

with .05 probability a record field value is dropped completely.

We learn the best threshold model on the record data using

an 80/20 train/test random split of data using FEBRL’s optimal

threshold classifier and run this classifier on the test set. For

k ∈ {20, 40, . . . , 100}, we take a sample of k reviews without re-

placement for each entity. (For domains from a single source, we

take 2k reviews and disjointly split them randomly between the

two matching entity records.) We use our G-WMD-NT model to

compute the pairwise UGC similarity between the entities from

each data source using each k-set of reviews. These pairwise simi-

larities are appended to the set of record field similarities. We learn

the optimal threshold classifier and run this on the test set.

The results in Table 7 show that for half of the domains, the

addition of the information extracted from only 20 reviews can

improve the f1-score of RL by at least 5%. This is useful in situations

where the individual quantity of UGCmay be limited and the record

representations suffer from some inaccuracies. The structured and

unstructured data can be incorporated to yield a higher performing

matcher than either in isolation. As the number of reviews increases,

the RL performance both improves and becomes more stable.

The TV domain is an interesting case study. We did not perturb

the records for this domain. The record-based matcher yields an

f1-score of only .75. The record data for the TV domain contains

many fields with very similar values for example:

• “Samsung UN75JU7100 75-Inch 4K Ultra HD 3D Smart LED

TV (2015 Model)”

• “Samsung UN50HU6950 50-Inch 4K Ultra HD 60Hz Smart

LED TV (2014 Model)”

• “Samsung UN55JS8500 55-Inch 4K Ultra HD 3D Smart LED

TV (2015 Model)”

These products differ by only a few characters, thus the string

similarities between any two pairs are very high. The challenge

for record-based RL techniques to delineate between true and false

match pairings is greatly complicated when non-matches have very

similar record representations, as can often be the case. In these

situations, the additional information beyond the record represen-

tations, such as UGC, can prove very useful, given an RL technique

that can make use of such information.

6.7 URD – Entity Record Overlap
Intuition might lead one to the assumption that the good accuracy

of our method can straightforwardly be attributed to the frequent

mentions of attribute values in an entity record across user reviews,

like pieces of restaurant names (e.g., ‘Parc’) or cuisine (e.g., ‘French’).

In this section, our goal is to (in)validate this intuitive statement.

Specifically, we aim to compute the average overlap between an

entity record re and its document vector d. A large overlap would

confirm the statement, and thus, imply that the feature set of a

regular record-oriented method and that proposed in this work are

indistinguishable, a low overlap will disprove it, and show that the

user generated content about entities brings a new set of features

not available in their record representations.

We examine the overlap of words (tokens) from an entity record

with the top 50 highest weighted words (i.e., most important words)

from the vector representation. Recall that only those, or a subset

thereof, are used in our algorithms (Section 6.2). LetWr e be the

set of words found in the attributes of re , and letWd be the set of
words which are the 50 highest weighted from the URD of re . We

design a measure inspired from the f1-score measure, fr e , which is

robust against the variation in the number of words across entity

records. It is defined as follows:

Pr e =
|Wr e ∩Wd |

|Wr e |
, Pd =

|Wr e ∩Wd |
|Wd |

, fr e =
2Pr e · Rd
(Pr e + Pd)

fr e has the classic properties of the f1-score measure, such as

fr e ∈ [0, 1], forWr e =Wd, fr e = 1, and forWr e ∩Wd = ∅, fr e =
0. In addition, it has the desired property that fr e << 1 when

|Wr e | << |Wd |. The final measure Fr e averages the fr e ’s over

Table 8: Review – Record text overlap measure
Domain Google

OT Yelp TA OT Yelp TA
avg. 0.103 0.08 0.083 0.089 0.069 0.073

std. 0.047 0.04 0.048 0.045 0.042 0.046

the set of all entity records RE in an application domain. In our

experiment, RE is the set of all entity records in the TOY dataset.

Table 8 summarizes the outcome of this study: average Fr e and

standard deviation across all entities in a domain are given. The

table shows that there is very little overlap between the entity

records and their URDs and that there is a substantial amount of
useful information beyond the record attributes that is not yet utilized
for the task of RL. Additionally, this shows that the high accuracy

of our technique is not due to a small set of key words found in

the attribute fields, for example, in entity names or street addresses.

The information found in the record attributes has only a minimal

impact at most, and it is the convergence of the reviews themselves

that renders our technique effective.

6.8 Runtime
We observe that the time requirements for WMD are higher than

for the baselines. The greatest time cost is the calculation of the pair-

wise distance between vector representations. For the Euclidean

baseline this calculation is roughly 2 × 10
−4

seconds per pair of

records, for WMD it is roughly 2×10−2 seconds per pair. For reason-
ably large datasets, the time demands of the WMD calculation can

be high. For example, we compute theWMD for 222,623 entity pairs

on average in TOY. Blocking would substantially help ameliorate

the computational requirements of the WMD calculation by reduc-

ing the number of exact WMD calculations. Our focus in this work

however is on the accuracy of the method. Future work includes

the additional implementation of performance improvements.

7 CONCLUSION
In this paper we showed that social media content accompanying

entities on the Web is a valuable resource in the task of RL. We

utilized a word embedding-based distance to compute the distance

between UGC documents. We argue the effectiveness of our pro-

posed method in classic RL settings and empirically show that the

proposed method is highly accurate in the presence of UGC despite

not using any entity specific attributes, such as name or address.

We also show that it can be combined with record-based methods

where it can lead to a substantial improvement in effectiveness.

Future work includes expanding the integration of our technique

with traditional RL methods and extending our technique to incor-

porate user models in the document representation and document

distances. For instance, for a user that posts multiple reviews or a

single lengthy review, reducing the relative importance of a word

that occurs multiple times therein.

8 ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers for their

comments. This work was supported in part by the NSF grants

1546480 and 1527364.

REFERENCES
[1] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient exact set-

similarity joins. In VLDB. 918–929.
[2] Javed A. Aslam and Meredith Frost. 2003. An Information-theoretic Measure for

Document Similarity. In SIGIR. 449–450.
[3] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up all

pairs similarity search. In WWW. 131–140.

[4] Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in

relational data. TKDD 1, Article 5 (March 2007). Issue 1.

[5] Mikhail Bilenko and Raymond J. Mooney. 2003. Adaptive Duplicate Detection

Using Learnable String Similarity Measures. In KDD. 39–48.
[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet

Allocation. JMLR 3 (2003), 993–1022.

[7] Sung-Hyuk Cha. 2007. Comprehensive Survey on Distance/Similarity Measures

between Probability Density Functions. Inter. J. of Math. Models and Methods in
Applied Sciences 1, 4 (2007), 300–307.

[8] Peter Christen. 2008. Febrl -: An Open Source Data Cleaning, Deduplication and

Record Linkage System with a Graphical User Interface. In KDD. 1065–1068.
[9] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,

Entity Resolution, and Duplicate Detection. Springer.
[10] Pedro Domingos. 2004. Multi-relational record linkage. In In Proceedings of the

KDD-2004 Workshop on Multi-Relational Data Mining. 31–48.
[11] Eduard C. Dragut, Bhaskar Dasgupta, Brian P. Beirne, Ali Neyestani, Badr Atassi,

Clement Yu, and Weiyi Meng. 2014. Merging query results from local search

engines for georeferenced objects. ACM Transactions on the Web (TWEB) 8, 4
(2014).

[12] Elena Ferrari and Bhavani M. Thuraisingham. 2006. Guest editorial: special issue

on privacy preserving data management. VLDB J. 15, 4 (2006), 291–292.
[13] D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage.

Am. Math. Monthly 69, 1 (1962), 9–15.

[14] Dan Gusfield and Robert W. Irving. 1989. The Stable Marriage Problem: Structure
and Algorithms. MIT Press.

[15] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J Miller. 2009. Frame-

work for evaluating clustering algorithms in duplicate detection. Proceedings of
the VLDB Endowment 2, 1 (2009), 1282–1293.

[16] Paul Jaccard. 1912. The Distribution of the Flora in the Alpine Zone. New
Phytologist 11, 2 (Feb. 1912), 37–50.

[17] Dmitri V. Kalashnikov and Sharad Mehrotra. 2006. Domain-independent data

cleaning via analysis of entity-relationship graph. TODS 31 (2006), 716–767. Issue
2.

[18] Hung-sik Kim and Dongwon Lee. 2007. Parallel linkage. In CIKM. 283–292.

[19] Hung-sik Kim and Dongwon Lee. 2010. HARRA: fast iterative hashed record

linkage for large-scale data collections. In EDBT. 525–536.
[20] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From

Word Embeddings To Document Distances. In ICML. 957–966.
[21] Rémi Lebret and Ronan Collobert. 2014. Word Embeddings through Hellinger

PCA. In EACL. 482–490.
[22] Xin Li, Paul Morie, and Dan Roth. 2004. Identification and Tracing of Ambiguous

Names: Discriminative and Generative Approaches. In AAAI. 419–424.
[23] Yitan Li, Linli Xu, Fei Tian, Liang Jiang, Xiaowei Zhong, and Enhong Chen. 2015.

Word Embedding Revisited: A New Representation Learning and Explicit Matrix

Factorization Perspective. In IJCAI. 3650–3656.
[24] László Lovász and M. D. Plummer. 1986. Matching theory. North-Holland.
[25] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-

troduction to Information Retrieval. Cambridge University Press, New York, NY,

USA.

[26] Matthew Michelson and Craig A. Knoblock. 2006. Learning Blocking Schemes

for Record Linkage. In AAAI. 440–445.
[27] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In Workshop of ICLR.
[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality.

In NIPS. 3111–3119.
[29] Steven Minton, Claude Nanjo, Craig A. Knoblock, Martin Michalowski, and

Matthew Michelson. 2005. A Heterogeneous Field Matching Method for Record

Linkage. In ICDM. 314–321.

[30] Gaspard Monge. 1781. Mémoire sur la théorie des déblais et des remblais. Histoire
de l’Academie Royale des Sciences de Paris, avec les Mémoires de Mathématique et
de Physique pour la même année (1781), 666–704.

[31] Erwan Moreau, François Yvon, and Olivier Cappé. 2008. Robust Similarity Mea-

sures for Named Entities Matching. In COLING. 593–600.
[32] Giorgio Patrini, Richard Nock, Stephen Hardy, and Tiberio Caetano. 2016. Fast

Learning from Distributed Datasets without Entity Matching. In IJCAI. 1909–
1917.

[33] El Kindi Rezig, Eduard C. Dragut, Mourad Ouzzani, and Ahmed K. Elmagarmid.

2015. Query-time record linkage and fusion over web databases. In ICDE. 42–53.
[34] S. E. Robertson and S. Walker. 1994. Some Simple Effective Approximations to

the 2-Poisson Model for Probabilistic Weighted Retrieval. In SIGIR. 232–241.
[35] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 1998. A Metric for Distribu-

tions with Applications to Image Databases. In ICCV. 59–.
[36] Gerard Salton and Christopher Buckley. 1988. Term-weighting Approaches in

Automatic Text Retrieval. Inf. Process. Manage. 24, 5 (Aug. 1988), 513–523.
[37] Sunita Sarawagi and Anuradha Bhamidipaty. 2002. Interactive deduplication

using active learning. In KDD. 269–278.
[38] Parag Singla and Pedro Domingos. 2006. Entity Resolution with Markov Logic.

In ICDM. 572–582.

[39] Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013.

Parsing with Compositional Vector Grammars. In ACL. 455–465.
[40] Rebecca C. Steorts, Samuel L. Ventura, Mauricio Sadinle, Stephen. E. Fienberg,

and Josep Domingo-Ferrer. 2014. A Comparison of Blocking Methods for Record
Linkage. Springer, 253–268.

[41] Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word Representations:

A Simple and General Method for Semi-Supervised Learning. In ACL. 384–394.
[42] Rares Vernica, Michael J. Carey, and Chen Li. 2010. Efficient Parallel Set-similarity

Joins Using MapReduce. In SIGMOD. 495–506.
[43] Xiaojun Wan. 2007. A Novel Document Similarity Measure Based on Earth

Mover’s Distance. Inf. Sci. 177, 18 (Sept. 2007), 3718–3730.
[44] Steven Euijong Whang, David Menestrina, Georgia Koutrika, Martin Theobald,

and Hector Garcia-Molina. 2009. Entity resolution with iterative blocking. In

SIGMOD. 219–232.
[45] Derry Tanti Wijaya, Stéphane Bressan, J Joxan, and DTWijaya. 2009. Ricochet: A

Family of Unconstrained Algorithms for Graph Clustering.. In DASFAA. Springer,
153–167.

[46] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Efficient similarity

joins for near duplicate detection. In WWW. 15:1–15:41.

[47] Mohamed Yakout, Ahmed K. Elmagarmid, Hazem Elmeleegy, Mourad Ouzzani,

and Alan Qi. 2010. Behavior Based Record Linkage. PVLDB 3, 1 (2010), 439–448.

[48] Jing Yuan, Lihong He, Eduard Dragut, Weiyi Meng, and Clement Yu. 2017. Result

Merging for Structured Queries on the Deep Web with Active Relevance Weight

Estimation. Inf. Sys. 64 (2017), 93–103.
[49] Diego Zardetto, Monica Scannapieco, and Tiziana Catarci. 2010. Effective auto-

mated Object Matching. In ICDE. 757–768.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Technical Ingredients
	4.1 Word2Vec Embedding
	4.2 Document Representations
	4.3 Word Mover's Distance

	5 Record Linkage with Social Media
	5.1 User Review Document
	5.2 Domain Vocabulary
	5.3 Document Distances
	5.4 Identify Matching Entity Records
	5.5 Matching Entity Records with Structured and Unstructured Data

	6 Experimental Study
	6.1 Experiment Setting
	6.2 Top-n Words
	6.3 Evaluating Effectiveness
	6.4 Clustering and Deduplication
	6.5 Sensitivity to Volume of Reviews
	6.6 UGC with Structured Data
	6.7 URD – Entity Record Overlap
	6.8 Runtime

	7 Conclusion
	8 Acknowledgements
	References

