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Abstract—Data consolidation is a challenging issue in data integration. The usefulness of data increases when it is linked and fused
with other data from numerous (Web) sources. The promise of Big Data hinges upon addressing several big data integration
challenges, such as record linkage at scale, real-time data fusion, and integrating Deep Web. Although much work has been conducted
on these problems, there is limited work on creating a uniform, standard record from a group of records corresponding to the same
real-world entity. We refer to this task as record normalization. Such a record representation, coined normalized record, is important for
both front-end and back-end applications. In this paper, we formalize the record normalization problem, present in-depth analysis of
normalization granularity levels (e.g., record, field, and value-component) and of normalization forms (e.g., typical versus complete).
We propose a comprehensive framework for computing the normalized record. The proposed framework includes a suit of record
normalization methods, from naive ones, which use only the information gathered from records themselves, to complex strategies,
which globally mine a group of duplicate records before selecting a value for an attribute of a normalized record. We conducted
extensive empirical studies with all the proposed methods. We indicate the weaknesses and strengths of each of them and recommend
the ones to be used in practice.

Index Terms—Record normalization, data quality, data fusion, web data integration, deep web

F

1 INTRODUCTION

THE Web has evolved into a data-rich repository contain-
ing a large amount of structured content spread across

millions of sources. The usefulness of Web data increases
exponentially (e.g., building knowledge bases, Web-scale
data analytics) when it is linked across numerous sources.
Structured data on the Web resides in Web databases [1]
and Web tables [2]. Web data integration is an important
component of many applications collecting data from Web
databases, such as Web data warehousing (e.g., Google
and Bing Shopping; Google Scholar), data aggregation (e.g.,
product and service reviews), and metasearching [3].

Integration systems at Web scale need to automatically
match records from different sources that refer to the same
real-world entity [4], [5], [6], find the true matching records
among them and turn this set of records into a standard
record for the consumption of users or other applications.
There is a large body of work on the record matching problem
[7] and the truth discovery problem [8]. The record matching
problem is also referred to as duplicate record detection
[9], record linkage [10], object identification [11], entity
resolution [12], or deduplication [13] and the truth discovery
problem is also called as truth finding [14] or fact finding
[15] - a key problem in data fusion [16], [17]. In this paper,
we assume that the tasks of record matching and truth
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discovery have been performed and that the groups of true
matching records have thus been identified. Our goal is to
generate a uniform, standard record for each group of true
matching records for end-user consumption. We call the
generated record the normalized record. We call the problem
of computing the normalized record for a group of matching
records the record normalization problem (RNP), and it is
the focus of this work. RNP is another specific interesting
problem in data fusion.

Record normalization is important in many application
domains. For example, in the research publication domain,
although the integrator website, such as Citeseer or Google
Scholar, contains records gathered from a variety of sources
using automated extraction techniques, it must display a
normalized record to users. Otherwise, it is unclear what
can be presented to users: (i) present the entire group of
matching records or (ii) simply present some random record
from the group, to just name a couple of ad-hoc approaches.
Either of these choices can lead to a frustrating experience
for a user, because in (i) the user needs to sort/browse
through a potentially large number of duplicate records, and
in (ii) we run the risk of presenting a record with missing or
incorrect pieces of data.

Record normalization is a challenging problem because
different Web sources may represent the attribute values
of an entity in different ways or even provide conflicting
data. Conflicting data may occur because of incomplete
data, different data representations, missing attribute val-
ues, and even erroneous data. For example, Table 1 contains
four records corresponding to the same entity (publication).
They are extracted from different websites. Record Rnorm is
constructed by hand for illustration purposes. One notices
that the same publication has different representations in
different websites. For instance, the field author uses the
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TABLE 1
Four records for the same publication: Ra, Rb, Rc, and Rd are extracted from different websites and Rnorm is constructed manually.

Fields author title venue date pages
Ra Halevy, A.; Rajaraman A.;

Ordille, J.
Data integration: the
teenage years

in proc 32nd int conf on Very large data
bases

2006

Rb A. Halevy, A. Rajaraman, J.
Ordille

Data integration: the
teenage years

in VLDB 2006 9-16

Rc A. Halevy, A. Rajaraman, J.
Ordille

Data integration: the
teenage years

in proc 32nd conf on Very large data
bases

2006 pp.9-16

Rd A. Halevy, A. Rajaraman, J.
Ordille

Data integration: the
teenage years

2006 9-16

Rnorm Alon Halevy, Anand Rajara-
man, Joann Ordille

Data integration: the
teenage years

in proceedings of the 32nd international
conference on Very large data bases

2006 9-16

Rfield A. Halevy, A. Rajaraman, J.
Ordille

Data integration: the
teenage years

in proc 32nd int conf on Very large data
bases

2006 pp.9-16

format ”last-name, first-name-initial” in the record Ra, but
the values of the same field in the records Rb, Rc, and Rd

use the format ”first-name-initial. last-name”. One can also
observe that the value of the field pages is absent in Ra.
The field venue has incomplete values in three of the four
records and has no value in Rd; it contains the abbreviations
“proc”, “int”, “conf” to represent “proceedings”, “interna-
tional” and “conference”, respectively, in the records Ra

and Rc; it contains the acronym “VLDB” to represent “Very
Large Data Bases” while missing “proceedings of the 32nd
international conference on” in Rb. Some values of the
attributes of Rnorm cannot be acquired directly from the
given set of matching records, such as the first names of the
authors. They could be obtained by mining external sources,
such as a search engine. In this paper, we focus on the best-
effort record normalization: we compute Rnorm from the set
of matching records and do not explore external sources.
Furthermore, this paper only focuses on the normalization
of text data, and we will leave the normalization of data
involving numeric and more complex values as future work.

Brief Overview of the Proposed Solution

We identify three levels of normalization granularity: record,
field, and value-component.

Record level assumes that the values of the fields within
a record are governed by some hidden criterion and that
together create a cohesive unit that is user-friendly. As a
consequence, this normalization favors building the normal-
ized record from entire records among the set of matching
records rather than piecing it together from field values of
different records. Thus, any of the matching records (ideally,
that has no missing values) can be the normalized record.
Using our running example in Table 1, the record Rc is a
possible choice for the normalized record with this level of
normalization granularity.

Field level assumes that record level is often inadequate
in practice because records contain fields with incomplete
values. Recall that these records are the products of auto-
matic data extraction tools, which are not perfect and thus
may produce errors [18]. This normalization level ignores
the cohesion factor in the record normalization level and
assumes that a user is better served when each field of
the normalized record has as easy to understand a value
as possible, selected from among the values in the set of
matching records. It treats each field of the normalized
record independently, finds a normalized value (according

to some criterion) per field, and creates the normalized
record by stitching together the normalized values of the
fields. The normalized record may not resemble any of the
matching records, but it will convey the same information
as any of them, in a user-friendlier form than any of the
individual records. For example, consider the field venue of
Rfield. We may take (according to a number of criteria that
we will describe in later sections) the value “in proc 32nd
int conf on Very large data bases” from record Ra (Table 1)
as its normalized value.

Value-component level takes the field level normaliza-
tion a step ”deeper.” It assumes that in general the value
of a field may comprise of multiple pieces some of which
may not be easy to grasp by an ordinary user. For exam-
ple, a field (such as venue) may contain arcane acronyms
illegible to an ordinary user. A normalization solution in
accordance with this level will yield a value for a field with
the property that the individual components of the value
are themselves normalized. The resulted (normalized) value
may not physically exist in any of the matching records. For
example, the values of Ra, Rb, and Rc for the field venue
contain acronyms, incomplete, and unexpanded terms. We
can synthesize a normalized value for this field by mining
the set of records and make the following inferences:

• “proc”, “int”, “conf” are the abbreviations of “pro-
ceedings”, “international” and “conference”, respec-
tively, and

• the collocation “in proceedings of the” appears fre-
quently as a whole unit.

Thus, we can create a normalized value for venue, at the
value-component level, as follows.

1) We take the value suggested previously by the field-
level for venue and replace the abbreviations in
it with the complete words and change it into ”in
proceedings 32nd international conference on Very
large data bases”.

2) We find that “in proceedings” is the part of the
collocation “in proceedings of the”.

3) We use the collocation to replace “in proceedings”.
4) Finally, we get the normalized value of venue, “in

proceedings of the 32nd international conference on
Very large data bases”.

A quick visual inspection of the records Ra − Rd shows
that this value, although desirable, is not present in any
of these records. After each field gets its normalized value
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according to the value-component level, we piece them
together to create the normalized record.

Naive solutions to RNP are often inadequate. For ex-
ample, one simple solution for the field-level normalization
is to return the most common string of each field as its
normalized field value. However, this strategy is inadequate
in the presence of records with missing values. In our run-
ning example, this approach will produce the value “in proc
32nd int conf on Very large data bases” for the field venue,
but the value “in proceedings of the 32nd international
conference on Very large data bases” is clearly much better
when complete citation information is desirable. Providing
non-naive strategies to the three normalization levels is a
challenging task. For example, a key challenge in providing
a solution according to value-component level is that a
value-component may comprise multiple adjacent pieces
and the value of a field may contain components with
uneven lengths (e.g., “in proceedings of the” and ”conf” are
value components in venue). They need to be discovered
and normalized, computationally.

Contributions
In this paper we aim to develop a framework for construct-
ing normalized records systematically. This paper has the
following contributions:

• We propose three levels of granularities for record
normalization along with methods to construct nor-
malized records according to them.

• We propose a comprehensive framework for system-
atic construction of normalized records. Our frame-
work is flexible and allows new strategies to be
added with ease. To our knowledge, this is the first
piece of work to propose such a detailed framework.

• We propose and compare a range of normaliza-
tion strategies, from frequency, length, centroid and
feature-based to more complex ones that utilize re-
sult merging models from information retrieval, such
as (weighted) Borda.

• We introduce a number of heuristic rules to mine
desirable value components from a field. We use
them to construct the normalized value for the field.

• We perform empirical studies on publication records.
The experimental results show that the proposed
weighted-Borda-based approach significantly out-
performs the baseline approaches.

The rest of the paper is organized as follows. Section
2 defines the problem. Section 3 introduces the granularity
levels for record normalization. Section 4 presents the over-
all framework and the normalization techniques. Section
5 reports the experimental results. Section 6 gives a brief
overview of the related work. Section 7 concludes the paper
and discusses several open research issues.

2 PROBLEM DEFINITION

Let E be a set of real-word entities relevant for the appli-
cation domain at hand, say scientific publications. Denote
by Re = {r1, r2, . . . , rne} the set of matching records that
refer to an entity e ∈ E, where ne is the number of
the matching records for the entity e, |Re| = ne. The

records may be collected from Web databases (e.g., ACM
Digital Library) or from ad-hoc publication lists (e.g., author
home pages). The entity e has a set of fields (attributes),
FS =

{
f1, f2, . . . , f|FS|

}
, where |FS| is the number of the

fields of the entity e. We use the notation ri[fj ] to refer to the
value of the field fj in the record ri. We assume the NULL
value for each field without a value.

Record Normalization Problem (RNP): Create a nor-
malized record nre for each entity e ∈ E from the set of
matching records Re that summarizes the information about
e as accurately as possible.

Currently, there is not a widely accepted standard for
record normalization, but there are a few prerequisites of a
good normalized record:

(1) Error-free: A normalized record should avoid errors,
such as misspellings or incorrect field values, as much as
possible.

(2) Comprehensive: A normalized record should contain a
value for each field whenever possible.

(3) Representative: A normalized record should reflect the
commonality among the matched records.

3 NORMALIZATION GRANULARITIES AND FORMS

In this section, we first present three levels of record nor-
malization. Then we give two forms of normalization.

3.1 Levels of Record Normalization
We propose three levels of normalization: record, field, and
value-component. Note that regardless of the chosen level
of normalization, the goal is to provide users with some
form of normalized record that is the easiest to grasp by an
ordinary user.

3.1.1 Record-level Normalization
The record-level normalization assumes that each record
ri ∈ Re is a cohesive unit, in the sense that taken together
the values ri[fj ] of the fields fj in ri give a coherent
depiction of entity e. The assumption, while intuitively
appealing and allows to build the theoretical underpins for
constructing normalized records, needs to be taken with a
grain of salt in practice. Re contains a mixture of candidate
normalized records and records with incomplete or arcane
representations of e, which may be difficult to understand
by ordinary users. The challenge is to select a record ri ∈ Re

that is most likely to be a reasonable candidate. The selection
can be performed according to several criteria (described in
Section 4.1). One elementary criterion is to demand that the
selected record must have a value for each field. Note that
Rc in Table 1 meets the constraints of this strategy.

3.1.2 Field-level Normalization
Field-level normalization selects a normalized value for
each field fi independently and concatenates the selected
values of all fields into a normalized record. The normalized
value for the field fi is one of the values that appear among
the records in Re in the field fi and it is selected according to
some criteria (e.g., more descriptive). The normalized record
formed in this way may consist of field values from different
records. For example, Rfield in Table 1 is the normalized
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record constructed out of the field values of Ra - Rd. The
values of Rfield in the fields venue and pages are taken
from Ra and Rc, respectively, because they are the most
descriptive. The record obtained by concatenating these
field values does not exist among the matching records. In
general, the normalized record may not correspond to any
of the original set of matching records.

3.1.3 Value-component-level Normalization
Value-component level is at an even finer granularity than
the field-level. It seeks to create a normalized field value
vinorm for a field fi that is as expressive as possible (to
minimize ambiguity) but still semantically equivalent to any
of the (correct) values rj [fi], rj ∈ Re. It builds on the
assumption that ri[fj ] is a concatenation of components
ci,j1 ci,j2 ...ci,jk . For example, the components of venue in
Rc are: “in proc,” “32nd,” “int,” “conf,” “on,” and “Very
large data bases.” We note that some of the components
ci,jt are incomplete (e.g., “in proc”). Incompleteness can
take several forms. For instance, ci,jt may be a half-finished
collocation, such as “in proc,” or an abbreviation, such as
“conf.” Our goal here is two-fold: (1) Detect the incomplete
components ci,jt of a field value and (2) for each incomplete
ci,jt find an (equivalent) replacement di,jt that addresses its
incompleteness. In our running example, if ci,jt = “conf”
then di,jt = “conference.” In this work, we assume that
di,jt is present among the records in Re. We leave the task
of extracting di,jt from external sources for future work.
Under this (finer level) normalization goal, not only we may
generate a normalized record that does not appear in Re, but
the field values of the normalized record themselves may
not appear in Re.

3.2 Normalization Forms

We present two forms of normalization for a normalized
record: typical and complete.

3.2.1 Typical Normalization
The purpose of typical normalization is to produce a nor-
malized record that resemblances many of the matching
records without modifying any of the field values. One
way to define it is by frequency of occurrence. With this
definition, the record-level normalization will yield a record
representation that appears most often among the set of
matching records for an entity. The field-level normalization
will select the most frequent value for each field in the
normalized record. Other strategies are clearly conceivable
to perform typical normalization and we present additional
alternatives in Section 4. The value-component level nor-
malization inherently does not produce typical normalized
records because it may create new values for some of the
fields of the normalized records.

3.2.2 Complete Normalization
Complete normalization seeks to produce the normalized
record with the property that the value of each of its
fields is both complete (not missing component) and self-
explanatory. For example, there are several different repre-
sentations of an author’s name, such as full name versus

Fig. 1. The typical normalization framework.

first name initial and last name. One would consider the
former to be a better, less ambiguous representation of an
author’s name than the latter. Likewise, a fully spelled out
conference name or journal name is better than its abbre-
viated counterpart. A record in this form of normalization
is unique modulo certain set of transformations, such as
permutation (e.g., “the 32nd international conference on
Very large data bases, in proceedings of”) or replacement
with equally unambiguous (e.g., “in proceedings of the
thirty second international conference on Very large data
bases”) of value components. This form of normalization
is difficult to achieve in practice. Instead, we strive to
produce a version of the normalized record as complete and
self-explanatory as possible given the data at hand. Only
the value-component-level strategy can achieve this form
of normalization. The reason is that normalization at the
record-level and field-level are inherently confined to work
with monolithic field values (not value components) from
the matching records, which are often incomplete.

4 OUR APPROACH

In this section, we first present our overall framework. Then,
we give the details of our solutions.

4.1 Solution Framework
We follow different steps for the two normalization forms.
Fig. 1 shows the steps of the typical normalization frame-
work and Fig. 2 shows those of the complete normalization
framework.

In both frameworks, the input is the set of matching
records Re for an entity e. Different normalization strate-
gies may be employed at each step in the normalization
framework. Different choices will yield different normal-
ized records for the same set of matching records. The
normalized records are represented by parallelograms in
Fig.1 and Fig.2. At every granularity level, we perform two
categories of approaches: single-strategy and multi-strategy
approaches. In Fig. 1 and Fig. 2, the string suffix “-S” on



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

the arrows denotes a single-strategy approach and “-M”
denotes a multi-strategy approach; “RL” stands for “record-
level”, “FL” stands for “field-level” and ”VCL” stands for
“value-component-level”.

4.1.1 Typical Normalization Framework
The typical normalization framework has two paths (Fig.
1): record-level and field-level. The former works with
whole records from Re. It includes a number of record-level
rankers (RL rankers) to rank the records in Re according to
their fitness to represent the normalized record for entity e.
In the single-strategy approach, each ranker recommends
the top-1 candidate in its ranked list as the normalized
record. In Fig. 1, RL TSNRi denotes the normalized record
recommended by the ith ranker. If we instead use the multi-
strategy approach, then we employ rank merging method-
ologies [3] to select the final normalized record. In the multi-
strategy approach each ranker acts as a voter and the records
in Re are the candidates (for the normalized record). Each
ranker ranks the records in descending order of preference.
After pruning out the records which have small probabilities
to become the normalized record, only the top-k records
are kept at each ranker as possible candidates for the
normalized record. The ranked lists of records produced
independently by rankers are merged into a global ranked
list. The top-1 candidate record of the global list becomes
the normalized record.

The typical normalization with field-level granularity
works with whole field values. It includes a range of field-
level rankers (FL rankers) to rank the field values of a
field based on their fitness to serve as the normalized
value for that field. The single-strategy approach uses one
value ranker per field. The top candidates for each field
are concatenated to construct the normalized record. The
multi-strategy approach employs multiple value rankers per
field fj ; it merges the top-k ranked lists of values produced
by the various rankers for fj and selects the top value as
the normalized value for fj . The final normalized record is
constructed by taking the normalized value of each field fj .

4.1.2 Complete Normalization Framework
The complete normalization form works at the value-
component granularity level. It first performs a pre-
processing step to consolidate each field format into a single
format across all records in Re. For example, the field
(author) name is consolidated into “last-name first-name”.
Then it uses field-level rankers to rank the values of every
field. Next, it prunes out some of the values that are unlikely
to become the normalized value for that field. The pruning
is discussed in Section 5.3.3. It divides the values of a
field into components and mines them to determine a more
consistent and legible (by ordinary users) value for the field.
The single- and multi-strategy approaches are applied here
similarly as described in Section 4.1.1.

In the following sections, we give the details of our key
techniques: (1) ranking-based strategies, (2) value compo-
nent mining, and (3) ranked list merging.

4.2 Ranking-based Strategies
We utilize four ranking strategies: frequency, length, centroid,
and feature-based. We use them to construct several rankers

Fig. 2. The complete normalization framework.

at record and field levels. To give a uniform presentation, we
refer to records and their fields as units in this section. Let
U be a bag of units for the same entity e. (It is a bag because
the same value or the same record may appear multiple
times.) U has p distinct units denoted by U = {u1, . . . , up}.
If a ranker γ ranks a unit u higher than another unit v then
we interpret this as saying that u is more appropriate as a
normalized unit than v, according to γ.

4.2.1 Frequency Ranker
This ranker is defined as the ordered list of distinct units

FR(U) = [u1, . . . , up], (1)

where ui appears more frequently than uj in U , for i < j.

4.2.2 Length Ranker
Length ranker is defined as the ordered list of distinct units

LR(U) = [u1, . . . , up], (2)

where the character length of ui is larger than that of uj ,
1 ≤ i < j ≤ p.

4.2.3 Centroid Ranker
Let SM be a similarity measure between units. We define the
unit centroid score of u ∈ U to be

UCS(u) =
1

|U |2
∑
v∈U

αuαvSM(u, v) (3)

where αu , αv denote the occurrence frequencies of u and v
in U , respectively. The centroid ranker gives the ordered list
of distinct units

CR(U) = [u1, . . . , up], (4)

where UCS(ui) ≥ UCS(uj), 1 ≤ i < j ≤ p.
We use three similarity measures for SM: edit-distance,

bigram, and Winkler similarity.
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(1) Edit-distance is the number of edit operations nec-
essary to transform one string into another [19]. The edit-
distance between strings a and b is computed as follows:

Simed(a, b) =
ed(a, b)

max(|a|, |b|)
(5)

where |a| and |b| denote the lengths of a and b, respectively.
and ed(a, b) is the edit distance between these two strings.

(2) The bigram similarity measure is based on 2-character
sub-strings contained in a string. The bigram similarity
measure between strings a and b is computed as follows:

Simbigram(a, b) =
2× |bigram(a) ∩ bigram(b)|
|bigram(a)|+ |bigram(b)|

(6)

where bigram(a) and bigram(b) denote the bags of 2-grams
of the strings a and b, respectively.

(3) The Winkler similarity measure is based on Jaro
metric which is given by the number and order of the
common characters in them [20]. The Winkler similarity
measure between strings a and b is computed as follows:

SimW (a, b) = Jaro(a, b) +
max(P, 4)

10
(1− Jaro(a, b)) (7)

where Jaro(a, b) is the Jaro similarity between a and b. P is
the length of the longest common prefix of a and b.

4.2.4 Feature-based Ranker
For u ∈ U , let Φ(u) = {ϕ1(u), . . . , ϕk(u)} be a vector of
binary feature functions ϕ : U → {0, 1} that compute evidence
indicating whether u should be selected as the normalized
unit, where k denotes the number of features. For example,
the value of the jth feature function ϕj(u) may be 1 if unit
u is ranked as the first one by the length ranker. Let Θ =
{θ1, . . . , θk} be a vector of real-valued weights associated
with the features.

We can compute a score for the event that u is chosen as
the normalized unit by taking the dot product of the feature
vector and weight vector:

τ(u,Θ) = Φ(u) ·Θ (8)

Let the binary random variable Cu be 1 if unit u is the
normalized unit of U. Given Θ and u, we can compute the
probability of Cu (denoted by pn(u)) as:

pn(u) = p(Cu = 1|u,Θ) =
g(τ(u,Θ))∑

u∈U g(τ(u,Θ))
(9)

g(z) =
1

1 + e−z
(10)

where the score for the unit u is normalized by the scores
for every other matching unit. g is the standard logistic
function.

Feature-based ranker is defined as the ordered list of
distinct units

FBR(U) = [u1, . . . , up], (11)

where pn(ui) ≥ pn(uj), 1 ≤ i < j ≤ p.
Let TS = {< v1, l1 > . . . < v|TS|, l|TS| >} be a training

set, where vi is the ith record in the training set. and

li =

{
1 if vi is the normalized unit of an entity
0 otherwise.

We estimate Θ from the training set by minimizing the cost
function L(Θ, TS) of the data:

L(Θ, TS) = − 1

|TS|
∑

vi∈TS

[li log(g(τ(vi,Θ)))

+(1− li)log(1− g(τ(vi,Θ))]

(12)

We use L2 regularization to penalize the overall cost of L to
mitigate over-fitting. We find the setting of Θ that minimizes
Equation (12) using the limited-memory BFGS, a gradient
ascent method with a second-order approximation [21].

The features for the feature-based rankers are as follows:
Strategy features. These features are all binary, indicat-

ing if a unit is the first, second, or third highest ranked unit
according to some strategy ranker.

Text features. We compute two features that examine
the properties of the strings themselves. One is the acronym
feature which is true if the matching unit contains a token
in a list of known acronyms (e.g., “VLDB” in our running
example). Another is the abbreviation feature which is true,
if the matching unit contains a token in a list of known ab-
breviations (e.g., “conf” for “conference”). The acronym list
is obtained from the Web (e.g., www.acronymfinder.com)
and the abbreviation list is mined from the existing dataset
which will be given in Section 4.3.1.

4.3 Value Component Mining
We begin this section with a number of definitions to
make the following description clear and consistent. Let
V al(fj) = {ri[fj ]|ri ∈ Re} be the collection of all values
of the field fj among the records in Re.

Definition 4.1. The inverse document frequency(idf) of a
term or a consecutive sequence of terms c is defined as

idf(c,Re) =
|Re|

|{ri|ri ∈ Re, c ∈ ri[fj ]}|
(13)

where | · | denotes set cardinality (the number of records in
our case). Note that when c’s frequency increases, c’s idf
decreases.

Definition 4.2. A collocation is a sequence of consecutive
terms in ri[fj ] with the property that its idf is less than
a given threshold ηidf . The length of a collocation is the
number of words (terms) it contains. n-collocation denotes
a collocation of length n (terms).

For example, in the field venue, “proceedings of” is a
2-collocation, “in proceedings of” is a 3-collocation and “in
proceedings of the ” is a 4-collocation.

Definition 4.3. A k-collocation kc is a subcollocation of an
n-collocation nc if kc is a substring of nc (implicitly, k < n).

For example, “proceedings of” is a subcollocation of “in
proceedings of” which in turn is a subcollocation of “in
proceedings of the”.

Definition 4.4. An n-collocation c is a template collocation
if it is not a subcollocation of any other collocation.

Note that whether or not an n-collocation is a template
collocation depends on the value of the threshold ηidf .
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For example, “in proceedings of the” becomes a template
collocation if it is not contained in another collocation and it
appears sufficiently frequently (so its idf is below ηidf ).

Since we pursue a template collocation co-occurrence
mining in this work, we require additional definitions to
quantify the joint occurrence of template collocations. We
denote by TCj the set of template collocations in V al(fj).
For two template collocations tc1, tc2 ∈ TCj , let ρ(tc1) be
the frequency of tc1 in V al(fj) and ρ(tc1, tc2) be the pair
frequency in V al(fj). They are defined as:

ρ(tc1) = |{v|v ∈ V al(fj), tc1 is a substring of v}|

ρ(tc1, tc2) = |{v|v ∈ V al(fj), tc1 and tc2 are substrings of v}|

Definition 4.5. A template collocation tc1 is an asymmetric
twin (a-twin) of a template collocation tc2 if it satisfies the
following two conditions:

1) ρ(tc1, tc2) > ρ(tc1, tc), ∀tc ∈ TCj ∧ tc ̸= tc2, and

2)
ρ(tc1, tc2)

ρ(tc2)
> ηtccr .

where ηtccr is the threshold.

For example, the template collocation “conference on”
is an a-twin of template collocation “in proceedings of the”
because it co-occurs most frequently with “in proceedings of
the” and the ratio of ρ(“conference on”, “in proceedings of
the”) and ρ(“in proceedings of the”) is larger than threshold
ηtccr in our dataset.

With the help of these definitions we are able to uncover
“hidden” knowledge from the collection of values of a
field V al(fj), which can then be used to perform value-
component-level normalization for the field fj . We base our
inference on three main empirical observations. (1)Many
common value components of a field are abbreviations,
which need to be expanded to improve the readability of the
normalized record. For example, in the field venue, “proc”
is often used to represent “proceedings.” (2)The subcolloca-
tion relation is a useful tool to organize the components of
the values of a field in a partial order and then identify
a template collocation from them. For example, “in pro-
ceedings of the” is a template collocation, but it oftentimes
takes the form of subcollocations such as “proceedings of”,
“proceedings of the” and “in proceedings”, which should be
replaced with the template collocation. (3)Template colloca-
tions tend to co-occur frequently. For example, “conference
on” frequently co-occurs with “in proceedings of the”.

In this section, we present a method to mine relation-
ships between collocations from the field values. The pro-
posed method has three steps: (1) find pairs of the form
“abbreviation and its definition” (Section 4.3.1), (2) find tem-
plate collocations with their subcollocations (Section 4.3.2),
and (3) find a-twin template collocations (Section 4.3.3).

4.3.1 Mining Abbreviation-Definition Pairs

We use a number of heuristics to determine whether given
two value components s and t, s is an abbreviation of t. In
this section, a value component is a word (or term). As we

Algorithm 1 Mining Abbreviation-Definition Pairs
Input: V al(fj) = {ri[fj ]|ri ∈ Re} : the collection of all

values of the field fj
Output: AWP : a set of abbreviation-word pairs

1: cwords = ∅; AWP = ∅;
2: pwords = tokenize(V al(fj))
3: uwords = unique(pwords);
4: for each uword ∈ uwords do
5: if len(uword) ≥ ηlen and idf(uword,Re) ≤ ηidf then
6: insert uword into cwords;
7: end if
8: end for
9: for each cword ∈ cwords do

10: pa words = getWordsBySameContext(
cword, uwords, ηpos);

11: if pa words ̸= ∅ then
12: abbreviations = getAbbreviations(

cword, pa words);
13: end if
14: if abbreviations ̸= ∅ then
15: for each abbreviation ∈ abbreviations do
16: insert (abbreviation, cword) into AWP ;
17: end for
18: end if
19: end for
20: return AWP

mentioned previously, in this paper we consider only fields
with the string data type. We define the neighboring context
of a word w within the set of values of a field fj as the
set of pairs (left neighbor word, right neighbor word)
with the property that the substring left neighbor word
w right neighbor word is a substring of a value of fj
in some record in Re. If w is the beginning word of a
field value, we use a special start-symbol “⟨s⟩” to mark
left neighbor word. If it is the last word in the field
value, we use the special end-symbol “⟨/s⟩” to mark
right neighbor word. For example, the words “proceed-
ings” and “proc” occur many times in the field venue, and
they share a good fraction of their neighboring contexts,
such as (in, of), (⟨s⟩, of), (in, acm). “proc” is also the prefix
of “proceedings”, so we become increasingly confident that
“proc” is a possible abbreviation of “proceedings”. The
algorithm for finding pairs of the form (s, t), where s is an
abbreviation of t, is given in Algorithm 1.

Algorithm 1 starts with initializing two sets: cwords
and AWP ,where cwords stores the words that are likely to
have abbreviations and AWP stores the final abbreviation-
word pairs. In line 2, the function tokenize segments all
field values in V al(fj) into individual words and stores
them into pwords. In line 3, the function unique looks for
unique words and stores them into uwords. In lines 4-8, the
words in uwords whose lengths are larger than a threshold
ηlen and their idfs are less than a threshold ηidf become
candidate words with abbreviations. They are stored into
cwords. ηlen and ηidf are empirically set. For each cword
in cwords, lines 9 to 19 find its possible abbreviations. The
function getWordsBySameContext looks for the possible
abbreviated words for each uword in uwords. It accom-
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plishes this task by measuring the size of the intersection of
the neighboring contexts of uword and cword. Then it sorts
the words in descending order of the size of the intersection
with the neighboring context of uword, retains only the
top ηpos of them and returns them in the set pa words.
In line 12, the function getAbbreviations finds the words
in pa words that are prefixes of cword. It returns them in
abbreviations. For each abbreviation in abbreviations, the
pair (abbreviation, cword) is inserted into AWP . Finally,
the algorithm returns AWP .

4.3.2 Mining Template Collocations and Subcollocations

Let an n-collocation tc be a template collocation and a k-
collocation kc be its subcollocation (k < n). We observe that
a number of rules govern the expansion process of kc to tc.

Rule 1. If kc is a subcollocation of a (k+1)-collocation k1c,
and the extra word in k1c is a preposition (e.g., “in” and
“on”) or an article (e.g., “the”, “a”, and “an”), we can expand
kc to k1c.

Consider kc = “proceedings of” and k1c = “proceedings
of the”, k = 2. kc is a subcollocation of k1c and “the” is
a preposition. Thus, “proceedings of” can be expanded to
“proceedings of the.” In another example, “conference on”
is the subcollocation of “international conference on” and
the distinct word “international” is neither a preposition
nor an article, so we cannot expand “conference on” to
“international conference on”. Not every venue has the
word “international,” which suggests that this expansion is
infeasible in practice.

Rule 2 (Transitivity). If a k-collocation kc can be expanded
to a (k+1)-collocation k1c and k1c can be expanded to a
(k+2)-collocation k2c, then kc can be expanded to k2c.

For example, “proceedings of” can be expanded to “in
proceedings of the” via “proceedings of the”. The transitive
property is an immediate consequence of Rule 1. Thus, we
can use it to expand kc to tc.

Rule 3 (Start). All one word collocations (i.e., k = 1) are
nouns.

We use POS tagger in NLTK [22] to get the part of
speeches of the words in the experimental studies.

Using the above analysis, we aim to find all template
collocations and their subcollocations. The template collo-
cations become the candidates with which we can expand
(replace) the subcollocations. They will be used to generate
the normalized component values for a field. The algorithm
of finding template collocations and its subcollocations is
given in Algorithm 2.

The input of the algorithm CV al(fj) is the updated
version of V al(fj), the collection of all values of the field
fj , where the abbreviations are extended by Algorithm 1.
The output is a set of pairs TCSP . A pair (tc, Stc) in TCSP
denotes a template collocation tc and its set of subcolloca-
tions Stc. We will use the output to replace the occurrence
of an element in Stc in some value of the field fj with tc
when we build the normalized record. We now describe the

Algorithm 2 Mining TemplateCollocation-SubCollocation
Pairs (MTS)
Input: CV al(fj) – the updated version of V al(fj) with

abbreviations extended by Algorithm 1.
Input: ηidf .
Output: TCSP : a set of pairs{(tc, Stc)}, where tc is a

template collocation and Stc its subcollocations.
1: TCSP = ∅; m=getMaxWordCount(CV al(fj));
2: 1-collocs = getOneWordCollocations(CV al(fj)); //Rule 3
3: if 1-collocs == ∅ then
4: return ∅
5: end if
6: for each 1-colloc ∈ 1-collocs do
7: add (1-colloc, ∅) to TCSP ;
8: end for
9: ews = getCandidateExpandWords(CV al(fj))); //Rule 1

10: for n = 2 to m do
11: n-collocs = getNCollocations(CV al(fj), n, ηidf );
12: if n-collocs == ∅ then
13: break;
14: end if
15: Y = ∅; //pairs to be ignored
16: for each n-colloc ∈ n-collocs do
17: cspairs = getExpandedSubcollocationPairs(

n-colloc, ews, TCSP );
18: if cspairs ̸= ∅ then
19: for each cspair ∈ cspairs do
20: {cspair is of the form (c, Sc), c is a collocation

and Sc its set of subcollocations; c is a subcol-
location of n-colloc}

21: X = {c} ∪ Sc;
22: insert (n-colloc, X) into TCSP ;
23: add cspair to Y ; //not a template collocation
24: end for
25: end if
26: end for
27: TCSP = TCSP − Y ;
28: end for
29: remove the pairs of the form (c, ∅) from TCSP ;
30: return TCSP

main steps of our mining algorithm(Algorithm 2). We set
TCSP to empty set and set m to the largest word (term)
count encountered in any of the values in CV al(fj). m is
the upper bound for the length of a template collocation;
any tc in the output set TCSP has at most m words. (A
collocation is a substring of some value of the field fj in
some record r ∈ Re, hence a collocation cannot exceed the
largest value length –measured in the number of words–
for the field fj .) The algorithm builds the set of one-word
collocations, according to Rule 3. If this set is empty, the
algorithm stops because there are no nouns and we cannot
construct any meaningful collocations. Otherwise, the set
of one-word collocations are used to seed TCSP . We also
extract the set of words (prepositions and articles) which
help construct collocations of larger lengths (according to
Rule 1). The main body of the algorithm is in the for loop
(Lines 10- 28). In iteration n, 2 ≤ n ≤ m, the algorithm
performs the following main computational steps:



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

• it constructs all collocations of n words, i.e., n-
collocations, according to Definitions 4.2 and 4.3,
using Rule 1 (Line 11).

• for each n − collocation n − colloc, it identifies all
the entries (c, Sc) ∈ TCSP with the property that c
is a subcollocation of n − colloc. They are denoted
cspairs in the algorithm. The set union X of their
Sc’s (subcollocations) along with all c’s is attached
to n−colloc and inserted in TCSP , according to the
transitivity property in Rule 2 (Lines 20 - 23). The
intuition is that n − colloc is a candidate template
collocation that can replace all the collocations in X .

• it removes the entries (c, Sc) from TCSP from the
previous step because they cannot be template collo-
cations, based on Definition 4.4 (Lines 23 and 29).

• it may exit the for loop earlier if it cannot construct
collocations of length n, n < m (Lines 12 - 14).

Before termination, the algorithm removes all the pairs
(c, ∅) form TCSP . These are the pairs introduced in the
intialization step, but never expanded by the main body of
the algorithm.

4.3.3 Frequent Template Collocation Mining

In Section 4.3.2, we discussed how to obtain the template
collocations and their corresponding subcollocations. We
notice that some of the template collocations co-occur fre-
quently. For example, among the values of the field venue,
the template collocation “conference on” co-occurs most
frequently with “in proceedings of the.” We also observe
that template collocation co-occurrence is not always bidi-
rectional. For example, the template collocation “sympo-
sium on” co-occurs most often with “in proceedings of the”,
but “in proceedings of the” co-occurs most frequently with
“conference on.” This justifies our choice of an asymmetric
co-occurrence measure in Definition 4.5. We give here an
algorithm (Algorithm 3) for finding most frequently co-
occurring template collocations (the a-twins).

The input of the algorithm is the collection of all values
of the field fj and the output is a set of pairs Tatwin

in which each pair is in the form (tc1, tc2), where tc1
is an a-twin of tc2 (Definition 4.5). We start by updating
V al(fj) with the findings about abbreviations: the function
updateValWithAWP calls Algorithm 1. We then compute all
template collocations TCj for field fj (Lines 3 - 4); the
function MTS invokes Algorithm 2 to gather the template
collocation. Next, we compute the frequencies of occurrence
of each template based on TCj and CV al(fj) (Line 5).
The set TCj contains pairs of the form (tc1, ρ1), where
ρ1 is the frequency of tc1 in CV al(fj). The main body
of the algorithm is in the for loop (Lines 6 - 13), which
computes the a-twin of each template collocation in TCj .
For a template collocation tc1 ∈ TCj , it first finds its most
frequent co-occurring template tc2 (Definition 4.5, 1)). Then,
it checks the second condition in Definition 4.5 (Lines 8 - 12).
If tc2 meets both conditions, the pair is appended to Tatwin.

4.3.4 Complexity Analysis of Algorithms

In this section, we provide complexity analysis of the above
three algorithms. Let n denote the number of entities of a

Algorithm 3 Mining Most Frequently Co-occurring Tem-
plate Collocation
Input: CV al(fj) = {ri[fj ]|ri ∈ Re}: the collection of all

values of field fj
Input: ηtccr
Output: Tatwin: the set of most frequently co-occurring

pairs of template collocations
1: Tatwin = ∅;
2: CV al(fj) = updateValWithAWP(V al(fj));
3: Z=MTS(V al(fj)); //Z has pairs of the form (tc, Stc)
4: TCj=getTemplateCollocations(Z); //TCj is the set of tc’s
5: TCj=getTCPCounts(TCj , CV al(fj));
6: for each tc1 ∈ TCj do
7: (tc2, ρ)=getMostFrequentTwinTC(tc1, TCj , CV al(fj));
8: ρ2 = getCount(tc2, TCj);
9: ratio= ρ

ρ2
;

10: if ratio > ηtccr then
11: insert (tc1, tc2) into Tatwin; //Definition 4.5 2)
12: end if
13: end for
14: return Tatwin

dataset, ne denote the average number of matching records
per entity, nf denote the average number of fields per
record, and mw denote the largest number of words in a
field.

Algorithms 1-3 are for processing one field (fj) of all
records. In reality a record has multiple fields, so the com-
putational complexities of Algorithms 1-3 all need to be
multiplied by nf .

In Algorithm 1, functions tokenize in line 2 and unique
in line 3 both need to go through all values of the field
fj , so their time complexity is O(n × ne × mw). In lines
4 to 8, for each uword in uwords, we judge if it is a
candidate word with abbreviations. In the worst case, line
6 is within time O(n × ne ×mw). In lines 9 to 19, for each
cword in cwords, we find its possible abbreviation. As func-
tion getWordsBySameContext needs to go through every
uword in uwords and function getAbbreviation needs to
scan every words in pa words, the worst case of line 10 and
line 12 are both within time O(n2×ne2×mw2). The running
time of line 16 depends on the size of abbreviations, so the
worst case of line 16 is also within time O(n2×ne2×mw2).
Thus the time complexity of Algorithm 1 is at most O(n2 ×
ne2 ×mw2).

The time complexity of Algorithm 2 depends on that of
line 19 which is the innermost loop. The running time of
line 19 is mw × |n-collocs| × |cspairs| where |n-collocs|
and |cspairs| denote the size of n-collocs and cspairs,
respectively. In the worst case, |n-collocs| and |cspairs| are
both close to n × ne × mw. Thus the time complexity of
Algorithm 2 is at most O(n2 × ne2 ×mw3).

In Algorithm 3, as it invokes Algorithm 2 in line 3, so its
time complexity is at least as large as that of Algorithm 2.
Functions getTemplateCollocations and getTCPCounts
both need to go through CV al(fj), the time of each line
is O(n × ne × mw). In lines 6 to 13, for each tc1 in TCj ,
we find a-twin of each template collocation in TCj . As
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functions getMostFrequentTwinTC and getCount both
need to scan CV al(fj), the worst case of lines 7 and 8
are both within O(n2 × ne2 × mw2) which is smaller than
the running time of line 3. Thus the time complexity of
Algorithm 3 is at most O(n2 × ne2 ×mw3).

4.4 Ranked List Merging

In Section 4.2, we introduced a set of single-strategy rankers
each of which ranks the units (records or field values) with
a different strategy. In general, a single-strategy approach
does not produce satisfactory results and may even cause
bias. We utilize a multi-strategy approach to combine the
outcomes of several single-strategy rankers to overcome
the limitations of the individual rankers. A multi-strategy
approach requires an effective rank merging algorithm [3].

Suppose that we have M single-strategy rankers. Denote
by Li the ranked list of units produced by the ith ranker on
a set of units U . The problem is that of creating a single
ranked list L of U using the ranking information supplied
by the individual rankers. This task is called result merging
[3], [23], [24] and merging based on local ranks is the class of
merging algorithms most frequently employed for this task.
We employ two merge algorithms from this class based on
the Borda-fuse method [25]. We describe them below.

4.4.1 Borda-based Approach

Let |U | be the number of units U . In the classic Borda-fuse
approach, the first ranked unit in each Li gets the score |U |,
the second ranked unit gets the score (|U | − 1 the second
ranked unit gets score (|U | − 1), and so on. The units in
the merged list are ranked in descending order of the sum
of their scores across all Li’s. The unit with the largest
combined score becomes the normalized unit (record or field
value). This approach utilizes the position information in
every ranked list, but one of its weaknesses is that it treats
uniformly the individual rankers. In general, some rankers
are better than others in suggesting normalized units.

4.4.2 Weighted-Borda-based Approach

This approach attempts to differentiate the impact of each
ranker by assigning a weight to each ranker. The weight rep-
resents our belief in the quality of the suggested normalized
unit by the ranker. We propose two methods to compute
the weights of the individual rankers. The first method
applies k-fold cross-validation on the training dataset for
each ranker, and takes the average precision of a ranker as its
weight. The second method uses a genetic algorithm to train
a weight vector with the number of rankers over the training
dataset to obtain the optimal weights. We tested both meth-
ods and the second method yielded better performance. In
the rest of this paper, we use the weights obtained with
the second method. After we compute the weight of each
ranker, we compute the aggregated weighted score of each
unit over all lists Li. The unit with the largest aggregated
weighted score is selected as the normalized one.

TABLE 2
Instances of previously used gold standard venue values [26] and of

gold standard venue values according to our manual annotation

id Old gold standard New gold standard
1 in international confer-

ence on database theory
in proceedings of the 3rd inter-
national conference on database
theory

2 in proceedings sixth in-
ternational conference
on network protocols

in proceedings of the 6th inter-
national conference on network
protocols

3 in proceedings of 1st int
conf on audio and video
based biometric person
authentication

in proceedings of the 1st inter-
national conference on audio
and video based biometric per-
son authentication

5 EXPERIMENTS

5.1 Dataset

We use the dataset PVCD [26]. The dataset contains data
about publication venue canonicalization [27]. PVCD has
3,683 publication venue values for 100 distinct real-world
publication records. It is only concerned with the field
venue, which is arguably the most difficult field to normal-
ize, because of the presence of acronyms, abbreviations, and
misspellings. We use this dataset to compare our approaches
with those in [26]. The work in [26] is an instance of typical
normalization, because it selects one of the duplicate records
or one of the field values as the normalized record or field
value, respectively. It does not attempt to create new field
values or new records as normalized records. Our analysis
of the dataset reveals that many normalized field values are
labelled unreasonably. We point out some of the problems
in Table 2. The column “old gold standard” shows the
normalized venue values as used in the experimental study
of Culotta et al. [26] and the column “new gold standard”
shows them after we curated the dataset.

As Table 2 illustrates, many of the “old” gold standard
field values are incomplete, missing key value components,
such as “proceedings of the [ordinal number]”. The second
row of the table shows that many other old gold standard
values miss the value component “of the”. The third row
in the table points out instances that miss the value com-
ponent “the” and that acronyms are not expanded, e.g.,
“int” and “conf” are not expanded to “international” and
“conference”, respectively. In this paper, we will perform
value-component-level normalization and compare against
the new, corrected gold standard. For ease of reference, we
refer to the dataset used in [26] as O-PVCD and to the
one that we manually adjusted as N-PVCD in this sec-
tion. The data is available at https:/github.com/tomdyq/
RecordNormalization/tree/master/data.

We perform 5-fold cross validation on the data; each split
contains 80 training samples and 20 testing examples. We
implement eight different normalization techniques corre-
sponding to the methods described in Section 4.

5.2 Performance Metrics

We measure accuracy by taking the proportion of correct
normalized units (records or field values) out of all pre-
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TABLE 3
The accuracy of our normalization methods on the dataset N-PVCD

Category Approach FL Typi-
cal

VCL
Complete

single-strategy

Frequency
Ranker(FR)

0.18 0.68

Length Ranker(LR) 0.12 0.34
Centroid Bigram
Ranker(C BR)

0.25 0.75

Centroid Winkler
Ranker(C WR)

0.24 0.76

Centroid
Edit-distance
Ranker(C EDR)

0.28 0.81

Feature-based
Ranker(FBR)

0.31 0.72

multi-strategy Borda 0.28 0.79
Weighted
Borda(WBorda)

0.33 0.83

dicted normalized units. We have three accuracy measures:
record-level, field-level and value-component-level. As the
dataset only has one field, the accuracies of the first and
second levels are the same. Hence, we only report the field-
level (FL) and value-component-level (VCL) accuracies.

5.3 Experimental Results

We perform five experiments to evaluate the effectiveness of
our approach.

5.3.1 Main Experimental Results

Table 3 summarizes the outcome of our eight approaches for
the N-PVCD dataset. The first six rows in the table belong to
the category of single-strategy approaches and the last two
rows belong to the multi-strategy approaches. We will use
the acronyms in parenthesis to refer to these approaches for
the rest of this section.

The main conclusion of this experimental study is that
WBorda consistently outperforms the other approaches on
both FL typical normalization and VCL complete normaliza-
tion. For single-strategy, FBR (Feature-based Ranker) has the
best accuracy on these two forms of normalization. WBorda
outperforms FBR by 6.5% on FL typical normalization and
by 15.3% on VCL complete normalization. We find that
the accuracy of Borda is lower than that of FBR on FL
typical normalization, but higher than that of FBR on VCL
complete normalization. Our explanation is that Borda treats
uniformly the rankers and some rankers may have poor
performance, which affects the final result. When rankers
are assigned weights according to their contributions to
the normalized record, WBorda significantly improves the
normalization accuracy.

We notice that FL typical normalization appears to give
very low accuracy. The reason is that many publication
entities in N-PVCD have no record in their group of match-
ing records that contains the normalized field value. We
have computed the ratio of the publication entities without
normalized field values in our annotation in each fold of
the cross validation. The results are shown in Table 4. As
shown in the table, in each fold of the cross validation,
more than half of the publication entities lack a normalized

TABLE 4
The ratio without normalized field value on N-PVCD

round of 5-fold cross validation 1 2 3 4 5
ratio of the entities without normal-
ized field value

0.6 0.75 0.65 0.55 0.6

average ratio of the entities without
normalized field value

0.63

TABLE 5
Comparison with the baseline approach on typical normalization

Dataset Baseline Accuracy Our Accuracy
O-PVCD 0.6 0.65
N-PVCD 0.28 0.33

field value. The average ratio of entities without normalized
field values reaches 0.63. So the maximum possible average
accuracy that can be achieved is 0.37. Thus the accuracy of
0.33 achieved by WBorda is quite close to the theoretical
maximum average accuracy (close to 90%).

5.3.2 Comparison with the Baseline

We compare our results with the approach in [26], which
serves as the baseline, on the datasets O-PVCD and N-
PVCD. The work in [26] performed only typical normaliza-
tion, while we perform both typical and complete normal-
izations. In this experimental study, we use our best per-
forming method, which is WBorda. The source code of the
approach in [26] is not publicly available. We implemented
the best method reported by Callota et al. [26] to the best of
our understanding. The outcome of this experimental study
is given in Table 5.

Our approach outperforms the baseline by a significant
margin: by 8.3% on O-PVCD and by 17.9% on N-PVCD.
The reason for the seemingly low accuracy on N-PVCD of
the two techniques was given in Section 5.3.1.

We additionally compare the baseline and our method
on the new gold standard N-PVCD, for the complete nor-
malization. Since the baseline cannot carry out a complete
normalization, we use our implementation of the baseline
approach to perform the FL typical normalization and use
the same mined knowledge to complete the field value. The
result is shown in Table 6. Our approach outperforms the
baseline again by a significant margin, 12.2%.

TABLE 6
Comparison with the baseline approach on complete normalization

Dataset Baseline Accuracy Our Accuracy
N-PVCD 0.74 0.83

5.3.3 Impact of the Percent of Units in Ranked List of Each
Ranker in the Multi-strategy Approach

In the multi-strategy approach, each strategy ranker re-
spectively generates a ranked list. As there are still some
units (records/field values) in each ranked list that have
very small probabilities of becoming a normalized unit, we
perform pruning operation before rank merging. In this
experiment, we evaluate the impact of the percent of units
in ranked list of each ranker.
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Fig. 3. Performance comparison by different approaches on different
percent of ranked results on N-PVCD

We use the percent of ranked list of candidate units to
judge which units must be kept to compute the normalized
unit. We use p percent to keep the top p% and prune the
remaining (100 − p)% of the ranked matched units. The
percent of the ranked result is varied from 10% to 100%
in increments of 10% in each step. The result is shown in
Fig.3. We observe that WBorda, FBR and C EDR all reach
the highest values respectively in FL typical normalization
and VCL normalization at 50% of the ranked results. FR
reaches the highest accuracy at about 40%. We also observe
that the accuracy of LR does not change, because in this case
in every percent of the ranked results, the longest field value
always lies in the first position. In all our experiments, our
approach is based on 50% of ranked result.

5.3.4 Impact of Individual Rankers

Our two rank merging methods use all the rankers in all the
experiments reported above. We know that the rankers have
varied accuracies. In this experiment we study the impact
of the individual rankers on the overall accuracy. We use
only the WBorda method because it is our best performing
method. We order the rankers by their performance: FBR,
C EDR, C BR, C WR, FR, and LR. We analyze WBorda with
the first k (k=2,3,. . . ,6) of them and report the accuracy for
each k. For example, WBorda uses FBR, C EDR and C BR
for k = 3. We use the dataset N-PVCD. Fig.4 shows the
outcome of this experimental study.

We observe that WBorda with FBR and C EDR achieves
an accuracy of 0.29 on field typical normalization. C BR and
C WR only slightly increase their performance. However,
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Fig. 4. Performance Change of partially merging strategy rankers on N-
PVCD

WBorda’s performance increases by 0.05 if FR and LR are
used. A similar pattern is observed for value component
normalization. WBorda with the first three rankers achieves
an accuracy of 0.78. Its accuracy increases by 0.05 with the
addition of the rest of the rankers. Hence, the top-2 per-
forming individual rankers, if combined, give the highest
accuracy increase over the individual rankers. Therefore, at
least for the domain of scientific publications, the rankers
C BR, C WR and LR bring limited accuracy increase and
may be dropped. They should not be discarded in general
without a thorough empirical study on the domain at hand.

5.3.5 Impact of Features on FBR and WBorda

Feature-based Ranker (FBR) employs two types of features,
strategy features and text features (described in Section
4.2.4), in this section we report their effect on FBR. At
the same time, WBorda has the best performance in our
experiment, which fuses FBR, so we also test the effect of
these two types of features on WBorda. Fig.5 shows the
performance of the two approaches with and without the
strategy features. We observe that using only text features in
FL typical normalization, FBR and WBorda reach accuracies
of .18 and .19, respectively, while in VCL normalization, they
reach accuracies of .58 and .66, respectively. Adding strategy
features improves the accuracies of FBR and WBorda by
.13 (or 72%) and .14 (or 74%), respectively, in FL typical
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Fig. 5. Performance Comparison of FBR and WBorda with and without
strategy features on N-PVCD

normalization and by .14 (or 24%) and .17 (or 26%) in VCL
normalization, respectively.

6 RELATED WORK

In this section, we review the literature on record normal-
ization. We give a few pointers on the related problems of
schema integration and ontology merging.

The problem of normalization of database records was
first described by Culotta et al. [26]. They provided the first
attempt to formalize the record normalization problem and
proposed three solutions. The first solution uses string edit
distance to determine the most central record. The second
solution optimizes the edit distance parameters, and the
third one describes a feature-based solution to improve
performance by means of a knowledge base. Their approach
is an instance of typical field value normalization. They
did not consider value-component-level normalization. In
addition, their gold standard dataset has many instances of
unreasonable normalized records.

Swoosh [28] describes a record Merge operator, however,
the purpose of the operator is not for producing normalized
records, but rather for improving the ability to establish
difficult record matchings.

Wick et al. [29] propose a discriminatively-trained model
to implement schema matching, reference, and normaliza-

tion jointly. But the complexity of the model is greatly in-
creased. This paper also contains no discussion on complete
normalization at the value-component level.

Besides the above works that explicitly address record
normalization, a few others include (or refer to) the gen-
eral idea of record normalization in some form. Tejada
et al. [11] devise a system to automatically extract and
consolidate information from multiple sources into a uni-
fied database. Although object deduplication is the primary
goal of their research, record normalization arises when the
system presents results to the user. They propose ranking
the strings for each attribute based on the user’s confidence
in the data source from which the string was extracted.
Wang et al. [30] propose a hybrid framework for product
normalization in online shopping by schema integration
and data cleaning. Although their work mainly focuses
on record matching, they consider the problem of filling
missing data and repairing incorrect data, which is relevant
to record normalization. Chaturvedi et al. [31] propose an
automatic pattern discovery method for rule-based data
standardization systems. Their goal is to help domain ex-
perts find the important and prevalent patterns for rule
writing. Although they do not directly explore the problem
of record normalization, their pattern discovery approach
could be used for complete normalization.

Label normalization in schema integration is related to
record normalization. Dragut et al. [32] propose a naming
framework to assign meaningful labels to the elements of an
integrated query interface. Their approach can capture the
consistency among the labels assigned to various attributes
within a global interface.

Ontology merging is another area related to record nor-
malization [33]. A domain expert is usually deeply involved
during the merging process, whereas our approach strives
to reduce human involvement as much as possible.

7 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of record normal-
ization over a set of matching records that refer to the
same real-world entity. We presented three levels of nor-
malization granularities (record-level, field-level and value-
component level) and two forms of normalization (typi-
cal normalization and complete normalization). For each
form of normalization, we proposed a computational frame-
work that includes both single-strategy and multi-strategy
approaches. We proposed four single-strategy approaches:
frequency, length, centroid, and feature-based to select the
normalized record or the normalized field value. For multi-
strategy approach, we used result merging models inspired
from metasearching to combine the results from a number
of single strategies. We analyzed the record and field level
normalization in the typical normalization. In the complete
normalization, we focused on field values and proposed
algorithms for acronym expansion and value component
mining to produce much improved normalized field values.
We implemented a prototype and tested it on a real-world
dataset. The experimental results demonstrate the feasibility
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and effectiveness of our approach. Our method outperforms
the state-of-the-art by a significant margin.

In the future, we plan to extend our research as follows.
First, conduct additional experiments using more diverse
and larger datasets. The lack of appropriate datasets cur-
rently has made this difficult. Second, investigate how to
add an effective human-in-the-loop component into the
current solution as automated solutions alone will not be
able to achieve perfect accuracy. Third, develop solutions
that handle numeric or more complex values.
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