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Abstract— Approximate string matching is essential because 

data entry errors are unavoidable.  Approximately 80% of 

data entry errors are a single edit distance from the correct 

entry.  We introduce Probabilistic Signature Hashing (PSH), a 

hash-based filter and verify method to enhance the 

performance of edit distance comparison of relatively short 

strings with proven no loss to accuracy.  Our experiments show 

that the proposed method is almost 6800 orders of magnitude 

faster than Damerau-Levenshtein (DL) edit distance and 

produces the same exact results.  This method combines prefix 

pruning, string bit signatures and hashing to provide very fast 

edit-distance comparison with no loss of true positive matches.  

PSH will provide substantial performance gains as a string 

comparison metric when used in place of DL. 

Keywords- Approximate String Comparison, Edit Distance, 

Deduplication, Record Linkage 

I.  INTRODUCTION 

Combining data from different sources and/or 
deduplication are important first steps in the knowledge 
discovery process [1], whether data mining or statistical 
analysis of data is to be performed.  The primary motivation 
for this research is to develop a faster method to compare 
relatively short strings as are typically found in demographic 
data.  Our current project is to develop a specialized Record 
Linkage (RL) method for an urban health department.  RL is 
a process that compares pairs of records from heterogeneous 
databases to find records that refer to the same entities [2].  
Whether an RL system uses a deterministic or probabilistic 
[3] methodology, it is necessary to compare all the data 
values within each candidate pair of records.   

The department needs to match client records across 11 
independent health and social sciences databases without a 
reliable unique identifier.  There are 1.5 million clients and 
50 million records.  Some of the clients have been in the 
system since birth.  The system has to link records that span 
the clients’ lives.  The department currently uses a 
proprietary deterministic RL method but has experienced 
high false positive and false negative rates.  We added the 
Damerau-Levenshtein (DL) edit distance algorithm to their 
method, which increased true positive matches but also 
increased the runtime by 500%.  The data has to be updated 
daily, which currently requires approximately 8 hours per 
night, when it is not being queried for client matches.  It 
would take approximately 40 hours to run the algorithm with 
DL.  Each daily update would take more than a day.  We 

could not use blocking methods to increase matching 
performance due to their dependence on blocking keys [4, 5, 
6, 7, 8, 9, 10] selected from fields that have significant 
missing, erroneous or inconsistent data. 

This paper’s primary contribution is the development of 
an improved composite method, called the Probabilistic 
Signature Hash (PSH), which substantially decreases the 
computation required to compare short alphabetic, numeric 
and alphanumeric strings prior to evaluation with an edit 
distance metric. 

II. BACKGROUND 

Some of the methods used to optimize edit-distance are 
filtering, neighborhood generation [12], pruning [13], 
hashing [14] and tries [15].  We include descriptions of the 
Damerau-Levenshtein edit distance, Prefix Pruning—a 
performance enhancement for DL (PDL) and a description of 
the length filter.  We also discuss Trie-Join [15], which is 
one of the fastest optimizations for edit-distance. 

A. Damerau-Levenshtein Edit Distance 

For effective string difference measurement, edit distance 
has an advantage over other metrics because it considers the 
ordering of characters and allows nontrivial alignment [16]. 
The Levenshtein edit distance algorithm is a dynamic 
programming solution for calculating the minimum number 
of character substitutions, insertions and deletions to convert 
one word into another [17].  Damerau extended Levenshtein 
distance to also detect transposition errors and treat them as 
one edit operation.  Approximately 80% of data entry errors 
can be corrected using a one character substitution, one 
character deletion, one character insertion or a transposition 
of two characters [18]. The main problem with the DL 
algorithm is its complexity: 𝑂(𝑚𝑛), where 𝑚 and 𝑛 are the 
lengths of the compared strings.  This can require significant 
computation for comparisons of very large datasets—even if 
the compared strings are relatively short. 

B. Prefix Pruning 

Once a pair of strings has been determined to be 
sufficiently different for an edit distance measurement, the 
calculation should be terminated.  A user-defined threshold 
can be added to decrease the computation required for DL.  
For a threshold 𝑘 , it is only necessary to compute the 
elements from 𝑗 = 𝑖 − 𝑘  to 𝑗 = 𝑖 + 𝑘 (see algorithm below), 
which reduces the search space to a 2𝑘 + 1 wide strip on the 



diagonal [19].  The threshold can be used to force an early 
termination if 𝑑𝑖,∗ > 𝑘  [20].  The implementation, called 

Pruning-Damerau-Levenshtein (PDL), below is similar to an 
edit distance Prefix Pruning method for Trie-based string 
similarity joins [21].  There is a counter variable 𝑥 added to 
count the 𝑑𝑖,𝑗 ≤ 𝑘 .  If 𝑥 ≤ 0,  for row i, the function 

terminates and returns a Boolean value FALSE.  This 
decreases the complexity of DL from 𝑂(𝑚𝑛)  to 𝑂(𝑘𝑙) , 
where 𝑙 is the length of the shortest string.  If PDL completes 
and 𝑑(𝑚, 𝑛) ≤ 𝑘 , the function returns 𝑇𝑅𝑈𝐸 , otherwise it 
returns 𝐹𝐴𝐿𝑆𝐸.  There are two lines that assign elements in 
the distance matrix 𝑑  to 1000.  This imposes a border of 
arbitrarily large integers just outside the 2𝑘 + 1  strip, 
ensuring the selection of a correct minimum value in the line 
𝑑𝑖,𝑗 = 𝑚𝑖𝑛(𝑑𝑖−1,𝑗 , 𝑑𝑖,𝑗−1, 𝑑𝑖−1,𝑗−1)  + 1 because 𝑑 is initially 

zeros.  The algorithm for PDL is: 
 

Algorithm 1: PDL(𝑠, 𝑡, 𝑘) 

Input: 𝑠, 𝑡: strings of characters 
            𝑘: integer threshold 
Output: Boolean 
𝑑 = |𝑠| + 1×|𝑡| + 1: array of integer zeros 
𝑚, 𝑛, 𝑥: integers 
Begin 
    Step 1: Check for empty strings 
    𝑚 = |𝑠| 
    𝑛 = |𝑡| 
    if 𝑚 = 0: return 𝐹𝐴𝐿𝑆𝐸 end-if 
    if 𝑛 = 0: return 𝐹𝐴𝐿𝑆𝐸 end-if 
    Step 2:  Create distance matrix d 
    for 𝑖 = 0 𝑡𝑜 𝑚: 𝑑𝑖,0 = 𝑖 end-for 

    for 𝑗 = 1 𝑡𝑜 𝑛: 𝑑0,𝑗 = 𝑗 end-for 

    Step 3: Calculate distance matrix 
    for 𝑖 = 1 𝑡𝑜 𝑚 
        𝑥 = 0 
        if 𝑖 < 𝑘 + 1: 𝑑𝑖,𝑖−𝑘−1 = 1000 

        for 𝑗 = 𝑚𝑎𝑥(𝑖– 𝑘, 1) 𝑡𝑜 𝑚𝑖𝑛(𝑖 + 𝑘, 𝑛) 
            if 𝑠𝑖−1 = 𝑡𝑗−1 

                𝑑𝑖,𝑗 = 𝑑𝑖−1,𝑗−1 

            else 
                𝑑𝑖,𝑗 = 𝑚𝑖𝑛(𝑑𝑖−1,𝑗 , 𝑑𝑖,𝑗−1, 𝑑𝑖−1,𝑗−1)  + 1 

                if 𝑖 > 1 𝑎𝑛𝑑 𝑗 > 1 
                    if 𝑠𝑖−1 = 𝑡𝑗−2 𝑎𝑛𝑑 𝑠𝑖−2 = 𝑡𝑗−1 

                        𝑑𝑖,𝑗 = 𝑚𝑖𝑛(𝑑𝑖,𝑗 , 𝑑𝑖−2,𝑗−2 + 1) 

                    end-if 
                end-if 
            end-if 
            if 𝑑𝑖,𝑗 ≤ 𝑘: 𝑥+= 1 end-if 

        end-for 
        if 𝑗 < 𝑛: 𝑑𝑖,𝑗 = 1000 

        if 𝑥 <= 0: return 𝐹𝐴𝐿𝑆𝐸 end-if 

    end-for 
    if 𝑑𝑚,𝑛 <= 𝑘 : return 𝑇𝑅𝑈𝐸 

    else: return 𝐹𝐴𝐿𝑆𝐸 
    end-if 
end 

C. Filter and Verify Methods 

In the ‘90s, methods to decrease data comparison using 
edit distance called “filter and verify” methods were 
introduced.  Research on these methods is still active as 

filters can potentially discard many expensive comparisons 
[22].  One of the most current methods, length filtering [23], 
is based on the fact that if two strings s and t differ by within 
k or less edits, the difference in their lengths cannot be 
greater than k.  Consider that “Joe” and “Jose”; and “Jose” 
and “Josef” are approximate matches for k = 1 but “Joe” and 
“Josef” are not.  It should be noted that length filtering will 
typically not work on fixed-length strings, such as phone 
numbers and Social Security Numbers. 

D. Trie-Join 

Special purpose approximate string matching tree 
structures, referred to as “tries”, have been used to facilitate 
DL type searching.  In [13], the authors use trie structures 
with edit distance constraints to compress data and compute 
string similarity more efficiently.  Their experimentation 
shows that their algorithm is much more efficient for shorter 
strings with low edit distances of 1 or 2 edits.  The 
experiments included Ed-Join and some of the previous 
methods upon which Ed-Join [16] is based.  The Trie-Join 
method combined the concept of the prefix pruning and a 
tree structure to index strings that approximately match from 
a dictionary, list or data store. 

III. METHODOLOGY 

PSH is a composite optimization that combines the PDL 
and length filter with signature filtering and signature 
hashing. We describe our method in this section. 

A. Signature Filtering 

Bitwise signature filtering has two parts: generating 
bitwise signature and filtering the signatures.  The method 
takes advantage of CPU's ability to perform logical and 
arithmetic operations on unsigned integers very quickly.  The 
main idea is that the signature is compressed into 32-bit 
unsigned integers, which have sufficient capacity to contain 
a checklist of numeric, alphabetic and alphanumeric 
characters in bits.  The signature 𝑚 for string 𝑠 is a checklist 
of a subset of characters in 𝑠, where bit 𝑚0 = 1  iff ′A′ ∈  𝑠 
and bit 𝑚1 = 1 iff  ′B′ ∈  𝑠, etc.  32 bits is large enough to 
store all characters in the alphabet (A to Z) once that occur in 
a string and all numbers (0 to 9) that occur from 1 to 3 times.  
These do require some storage for the signatures for each 
string but these signatures can be created very fast and only 
require 4 bytes of memory.  The unused bits are used to store 
additional information about the frequency of characters in a 
string.  We describe the process for alphanumeric street 
addresses below.  We omit the methods for numeric only and 
alphabetic character strings due to space constraints. 

B. Generating FBF Signatures 

Address strings contain both characters and numbers and 
present a problem because integers are limited to 32-bits and 
the Σ = {0,1,2,3,4,5,6,7,8,9, A, B, C, … , X, Y, Z}  contains 36 
characters.  Our statistical analysis of addresses found that 
the characters ‘S’ and ‘T’ occurred in over 90% of addresses 
and the characters ‘J’, ‘Q’, ‘X’, and ‘Z’ occurred very 
infrequently.  The ‘S’ and ‘T’ were removed because they 
were not a good measure of variance, ‘J’ and ‘Q’ were 



combined to one bit position and likewise with ‘X’, and ‘Z’.  
The figure below shows the address signature for “1801 N 
BROAD ST”. 

 

 
Figure 1: Address signature for “1801 N BROAD ST” 

Algorithm 2: SetAddrBits(𝑠) 

Input: 𝑠: string of characters 
Output: 𝑥: 32-bit unsigned integer 

Σ = {
A, B, C, D, E, F, G, H, I, JQ, K, L, M, N, O,
P, R, U, V, W, XZ, Y, 0,1,2,3,4,5,6,7,8,9

} 

(Note that JQ and XZ are treated as same  
character and ST are ignored) 
c: integer to set signature bit 
x: integer to contain signature 
begin 
    for each 𝑠𝑖 ∈ 𝑠 
        if 𝑠𝑖 ∈  Σ 
            𝑐 = 𝑐|Σ𝑐 = 𝑠𝑖 
            𝑥 = 𝑥 ∨  (1 ≪ 𝑐) 
        end-if 
    end-for 
    return x 

end 

 

C. Filtering FBF Signatures 

The different characters between strings 𝑠 and 𝑡 can be 
found by using the exclusive disjunction on their signatures 
𝑚 and 𝑛, respectively.  Algorithm FindDiffBits(𝑚, 𝑛) uses a 
fast bit counting method to count the ones in the exclusive 
disjunction result of 𝑚 and 𝑛.  The loop only executes as 
many times as there are ones in the string [24]. The address 
strings are alphanumeric and the maximum length in our 
large list of real standardized local addresses is 25 characters.  
Because of the relatively short length of these strings, the 
FindDiffBits(𝑚, 𝑛) algorithm produces sparse bit vectors for 
real word addresses.  The loop will only execute 𝑥 times for 
each of the 𝑥  ones in the integers’ exclusive disjunction’s 
bits, which represents 𝑥 members in a set, and is denoted as 
𝑥 = |𝑚⨁𝑛|.  The algorithm for FindDiffBits(𝑚, 𝑛) is: 

 

Algorithm 3: FindDiffBits(𝑚, 𝑛) 

Input: 𝑚: 32-bit vector signature for string 𝑠 
           𝑛: 32-bit vector signature for string 𝑡 
Output: 𝑥: 32-bit integer count of different bits 
𝑑: 32-bit unsigned integer 
begin 
    𝑖 = 0 

    𝑑 = 𝑚𝑖⨁𝑛𝑖 
    𝑥 = 0 
    while 𝑑 > 0 
        𝑥+= 1 
        𝑑 = 𝑑 ∧ (𝑑 − 1) 
    end-while 
end 

 

This method has two significant performance properties: 
it compresses the signatures into compact primitive data 

types, which means faster loading to CPU registers and 
storing from registers, and allows machine-level operations 
to be used to process the primitive data very quickly, which 
means much faster processing. 

D. Naïve Signature Hashing 

We could hash on the bitwise signatures but that would 
require the storage of 4G buckets, which is a waste of RAM.  
To save memory, we mapped the 32-bit signatures to 16-bits 
using the naïve mapping shown in the example below by 
combining two signature bits to one hash code bit.  This was 
fast but many buckets were empty and some buckets had too 
many entries, which had a negative effect on performance. 

 

 
Figure 2: Naïve hash mapping for “1801 N BROAD ST” 

E. Probabilistic Signature Hashing 

To smooth the buckets in the hash table, we take a 
probabilistic approach to the hash mapping of signatures.  A 
comprehensive description of the steps of the algorithm is 
not possible due to space constraints.  We applied our 
algorithm to a list of 547,771 addresses in the City of 
Philadelphia, USA.  The first step is to count the co-
occurrence of character pairs for all strings in the data set.  
The figure below shows that the characters ‘A’ and ‘B’ occur 
together in 338,213 addresses. 

 

 
Figure 3: Counts of co-occurrence of characters in data 

The second step is to sort the count by frequency.  Notice 
that two identified infrequent characters, ‘J’ and ‘X’ are the 
minimum value. 

 

 
Figure 4: Sorted counts of co-occurrence of characters in data 

Next, we iteratively select values closest to the mean 
without duplicating any characters until all characters in Σ 
are included.  The figure below shows the selections.  The 
count for “59” was closest to the mean.  The count for “W4” 
was next, etc.  These character groupings are used as the 
mapping for the hash function. 

 

 
Figure 5: Co-occurrence mapping for hash function 

The mapping for addresses is shown below.  This 
probabilistic hash method is approximately twice as fast as 
the naïve method.  Note that the algorithm actually uses bit 
positions in signatures.  We substituted characters because it 

98765432 10YXWVUR PONMLKJI HGFEDCBA 

            Z           Q           

01000000 11000001 01100000 00001011 

8642 0XVR OMKI GECA 

9753 1YWU PNLJ HFDB 

______Z______Q_____ 

1000 1001 1100 0011 

AB AC AD 78 79 89

338213 350587 380903 241567 232658 225143…

JX FX FJ E1 NR EN

24759 54709 56896 476181 480206 485825…

59 W4 LV MO B3 67 G0 DI

278361 279420 276807 276235 275005 272173 270427 286442

H8 J2 RX AF Y1 KN EP CU

260221 299857 303564 326097 338785 351388 352392 170173



is easier to explain the process.  The hash buckets contain the 
index of strings from the data set. 

 

 
Figure 6: Probabilistic hash mapping for “1801 N BROAD ST” 

F. Hash Neighborhood Generation for Candidate Buckets 

It is not necessary to scan all 64K buckets to find hash 
candidates.  A function using bitwise operators can be used 
to calculate the bucket codes that may contain approximate 
matches for a query exemplar.  The algorithm below shows 
the calculation of hash candidates for codes that differ for up 
to two bits from the hash code exemplar ℎ. 

 

Algorithm 3: GetHashCodes(ℎ) 

Input: ℎ: A hash code to neighborhood match 
Output: 𝐻: The hash neighborhood for ℎ 
𝑏1: Bit field for differs by 1 bit 
𝑏2: Bit field for differs by 2 bits 
𝑏: Number of bits in hash code (16 bits) 
𝑖, 𝑗: Iterators 
𝑘: Counter 
Begin 
    𝑖 = 0 
    𝑘 = 0 
    𝐻𝑘++ = ℎ 
    𝑏1 = 0000000000000001 
    𝑏2 = 0000000000000010 
    while 𝑖 < 𝑏 
        𝐻𝑘++ = ℎ ⊕ 𝑏1 
        𝑗 = 𝑖 + 1 
        while 𝑗 < 𝑏 
            𝐻𝑘++ = ℎ ⊕ (𝑏1 ∨ 𝑏2) 
            𝑏2 = 𝑏2 ≪ 1 
            𝑗 = 𝑗 + 1 
        end-while 
        𝑏1 = 𝑏1 ≪ 1 
        𝑏2 = 𝑏1 ≪ 1 
        𝑖 = 𝑖 + 1 
    end-while 
    return 𝐻 
end 

IV. SKETCH OF PROOF OF CORRECTNESS 

We show that the bitwise signature filter, hash filter and 
length filter do not discard any true positive matches from 
their respective candidate sets.  Because none of these 
methods remove any true positives, their composite does not 
produce any false negative results. 

A. Signature Filter 

We define an approximate match as “strings 𝑠  and 𝑡 
differ by 𝑘 or less edits” where 𝑘 is a user-defined threshold.  
Implementing this in PDL forces termination once a 
magnitude of distance less than or equal to 𝑘 is no longer 
possible.  To process two strings 𝑠 and 𝑡, we create bitwise 
signatures 𝑚 , 𝑛  as:   𝑚 = SetAddrBits(𝑠)  and  𝑛 =
SetAddrBits(𝑡) .  There is a relation between PDL and 

bitwise signature comparison, FindDiffBits(𝑚, 𝑛) , that the 
set of all string pairs 〈𝑠, 𝑡〉 ∈ 𝑆×𝑇, where 𝑆 and 𝑇 are lists of 
strings, with a FindDiffBits(𝑚, 𝑛) ≤ 2𝑘, contains all string 
pairs that will pass PDL for a maximum of 𝑘 edits, where 
PDL(𝑠, 𝑡, 𝑘) = 𝑇𝑅𝑈𝐸.  In other words, if we select a set of 
pairs 𝐺≤2𝑘 = ∀(𝑠, 𝑡) ∈ 𝑆×𝑇,  FindDiffBits(𝑚, 𝑛) ≤ 2𝑘 , 
where 𝑚 is the signature of 𝑠 and 𝑛 is a signature of 𝑡, and 
set 𝐻≤𝑘 = ∀(𝑠, 𝑡) ∈ 𝑆×𝑇, PDL(𝑠, 𝑡, 𝑘) = 𝑇𝑅𝑈𝐸 , then we 
claim 𝐺≤2𝑘 ⊇ 𝐻≤𝑘. 

Consider that PDL returns a Boolean value that is TRUE 
if the number substitutions, deletions, insertions and 
transpositions to convert string 𝑠 into 𝑡 is less than or equal 
to 𝑘 edits and that  FindDiffBits(𝑚, 𝑛) = |𝑚⨁𝑛|. 

If a single edit operation found for a pair (𝑠, 𝑡) ∈ 𝑆×𝑇 is 
a transposition, the filter will show a difference of zero 
because |𝑚⨁𝑛| =  0, ∀𝑠𝑖 ∈ 𝑠, ∃𝑠𝑖  ∈ 𝑡 and ∀𝑡𝑗 ∈ 𝑡, ∃𝑡𝑗  ∈ 𝑠 .  

Let 𝑠 = “13245” and 𝑡  = “12345”.  Since 𝑠 and 𝑡 have the 
same characters, |𝑚⨁𝑛| =  0. 

If a single edit operation is a delete, the worst case is 
|𝑚⨁𝑛| =  1  if the member to be deleted 𝑠𝑖 ∈ 𝑠  such that 
 𝑠𝑖 ∉ 𝑡.  Let 𝑠 = “123456” and 𝑡 = “12345”.  Since 𝑠 and 𝑡 
differ by one delete operation, they differ by one character 6, 
|𝑚⨁𝑛| =  1. 

If the single edit is an insertion, the worst case is 
|𝑚⨁𝑛| =  1 if the character to be inserted 𝑡𝑗 ∈ 𝑡 into 𝑠 such 

that 𝑡𝑗 ∉ 𝑠.  Let 𝑠 = “1234” and 𝑡 = “12345”.  Since 𝑠 and 𝑡 

differ by one insert operation, they differ by one character 5, 
|𝑚⨁𝑛| =  1. 

If the single edit is a substitution, the worst case is 
|𝑚⨁𝑛| =  2 if the member substituted 𝑠𝑖  is changed to 𝑡𝑗 

such that 𝑠𝑖 ∈ 𝑠 , but 𝑠𝑖 ∉ 𝑡  and 𝑡𝑗 ∈ 𝑡  but 𝑡𝑗 ∉ 𝑠 .  Let 𝑠  = 

“12346” and 𝑡  = “12345”.  Since 𝑠  and 𝑡  differ by one 
substitution operation, each differs from the other by one 
character.  Notice that 5 is in 𝑡 but not in 𝑠 and 6 is in 𝑠 but 
not in 𝑡, and we have |𝑚⨁𝑛| =  2. 

The worst case for a PDL of 𝑘 is |𝑚⨁𝑛| = 2𝑘 if all 𝑘 
edits are substitutions and result in the worst-case condition 
above for each of the substitutions then ∀ℎ ∈ 𝐻≤𝑘, ∃𝑔 ∈
𝐺≤2𝑘 , ℎ = 𝑔  and PDL(𝑠, 𝑡, 𝑘) = 𝑇𝑅𝑈𝐸 ⟹
FindDiffBits(𝑚, 𝑛) ≤ 2𝑘 .  If 𝑘  is increased, this same 
property holds because, by inductive reasoning, in the worst 
case for 𝑘 edits, the signature will differ by at most 2𝑘 bits 
due to a substitution error. 

B. Hash Filter 

We claim that for ∀𝑠 ∈ 𝑆  with signature 𝑚 =
𝑆𝑒𝑡𝐴𝑑𝑑𝑟𝐵𝑖𝑡𝑠(𝑠) , 𝑔𝑒𝑡_ℎ𝑎𝑠ℎ_𝑐𝑜𝑑𝑒𝑠(ℎ)  produces a set of 
candidate buckets 𝐻  that contain the entries in 𝑆  that are 
within 𝑘 edit operations from 𝑠.  This is evident because the 
hash codes are generated by a disjunction of two bits in the 
signature, which creates a dilation that cover all related 
signatures that is guaranteed to contain the correct 
candidates. 

C. Length Filter 

The length filter will not remove true matches from its 
candidate list because for 𝑘 or less edits, the test 𝑎𝑏𝑠(|𝑠| −
|𝑡|) ≤ 𝑘  will pass all string pairs that differ by ≤ 𝑘  edits.  

CEKY ARJH DG6B MLW5 

UPN1 FX28 I073 OV49 

______ZQ___________ 

0011 1101 1101 1000 



Substitution and transposition errors do not change the length 
of a string.  If there are ≤ 𝑘  insertions or deletions, the 
difference in string length will be ≤ 𝑘. 

D. PSH Composite 

PSH combines signature hashing, length filtering, 
signature filtering and prefix pruning to increase the speed of 
DL edit-distance comparison.  The algorithm below shows 
the application of filters.  When a failing condition is found, 
the if statement terminates and continues to the next 
candidate in the hash bucket list. 

 

Algorithm 4: PSH(𝑆, 𝑀, 𝑇, 𝑞) 

Input: 𝑆: A list of strings to search 
            𝑀: A list of bit signatures for 𝑆 
            𝑇: A hash table containing references to 𝑆 and 𝑀 
            𝑞: A query string 
Output: 𝑀𝑎𝑡𝑐ℎ: A list of matches 
𝑚 ∈ 𝑀, 𝑛: Bit signatures 
𝐻: Hash neighborhood 
ℎ ∈ 𝐻, 𝑦: Hash codes 
𝑇ℎ ∈ 𝑇: Hash buckets with chaining for 𝑆 and 𝑀 
𝑠 ∈ 𝑆: A string 
Begin 
    𝑛 = 𝑆𝑒𝑡𝐴𝑑𝑑𝑟𝐵𝑖𝑡𝑠(𝑞) 
    𝑦 = ℎ𝑎𝑠ℎ(𝑛) 
    𝐻 = 𝐺𝑒𝑡𝐻𝑎𝑠ℎ𝐶𝑜𝑑𝑒𝑠(𝑦) 
    for each ℎ ∈ 𝐻 
        for each 𝑠 ∈ 𝑇ℎ 
            if (𝐿(𝑠, 𝑞) ≤ 𝑘 ∧ 𝐹(𝑚, 𝑛) ≤ 2𝑘 ∧ 𝑃𝐷𝐿(𝑠, 𝑞, 𝑘)) 
                𝑀𝑎𝑡𝑐ℎ ← (𝑠, 𝑞) 
            end-if 
        end-for 
    end-for 
    return x 

end 

 
where 𝑇 is a hash table that contains buckets containing 
references to strings in 𝑆 and signatures in 𝑀.  𝑇ℎ Are the 
candidate buckets that have 2𝑘 or less bits differing from 
hash code ℎ. 

V. EXPERIMENTS 

The data for the experiments was the 547,771 
Philadelphia address data mentioned above.  There were two 
datasets used in experiments.  One dataset was clean address 
data and the other file had random single edit errors injected 
into the data from the clean file.  The experiment matched all 
strings in the clean set with the error set.  Since the strings in 
the files are known to match by index, this establishes a 
lower limit for a ground truth to detect false negative 
matches.  There will be matches in the data that have 
different indices too.  The hash candidate experiments are 
run 5 times and their average is recorded as the result.  The 
other methods are only run once.  These methods do not use 
hash candidate generation.  Without the benefit of hashing 
each of these methods would have to compare over 300 
billion string pairs.  The string comparators used in the 
experiments include: 

 Damerau-Levenshtein edit-distance (DL) 

 Bitwise Signature Filtered PDL (FPDL) 

 Length then Bitwise Signature Filtered PDL 
(LFPDL) 

 Hybrid Signature Neighborhood Hashed Length 
and Fast Filtered PDL (GLFPDL) 

 Probabilistic Signature Hash (PGLFPDL) 

VI. RESULTS 

The experiments in the table below contains all 547,771 
Philadelphia address strings per input file.  DL requires more 
than 26.8 days to complete.  Each pairwise comparison takes 
approximately 7.72 microseconds.  The method using the 
bitwise filter and PDL (FPDL) takes approximately 48.7 
thousand seconds (13.5 hours).  The method with the length 
filter added (LFPDL) takes 23 thousand seconds (6.4 hours).  
The naïve hashing method (GLFPDL) takes 606 seconds (10 
minutes).  PSH (PGLFPDL) only takes 342 seconds (less 
than 6 minutes) to complete with each pairwise comparison 
taking 1.14 nanoseconds (given the search space), which is 
almost 6,800 times faster than DL.  Notice that there are no 
false negative (Type 2) errors and that the Type 1 column are 
not actually false positives.  They match by comparison but 
not by index.  All optimizations produce the same results as 
DL. 

 
Table 1: Experiments on all 547,771 addresses with PGLFPDL 

probabilistic hashing 

 

A. Analysis of Hash Buckets 

An analysis of the first naïve hash method found most 
hash buckets empty. The effects of this method are shown in 
the table below.  The AdCle column is the hash table 
analysis for the naïve method and that there are 46,129 
empty buckets and a max bucket size of 6,513.  The PSH 
method decreases the empty buckets in the AdCleP column 
by 18,457 to 27,672 and the max bucket size by 5,429 to 
1,084 entries.  The last 2 columns are for the error injected 
street addresses, which have more variance in their data due 
to the random errors, resulting in less variance in individual 
hash buckets.  Smaller bucket sizes mean less local string 
comparison and better performance. 

 
Table 2: Bucket statistics for addresses 

 

B. Comparison to Trie-Join 

The experiments in Table 3 below compare the new 
method to a more recently published novel string comparison 
optimization called Trie Join and a variant Bi Trie Join [21].  

Ad Type1 Type2 Time ms Speedup Pair Time

DL 995,992 0 2,317,457,638.00 1 7.72E-03

FPDL 995,992 0 48,742,836.00 47.54 1.62E-04

LFPDL 995,992 0 23,027,915.00 100.64 7.67E-05

GLFPDL 995,992 0 606,182.00 3,823.04 2.02E-06

PGLFPDL 995,992 0 341,693.00 6,782.28 1.14E-06

AdCle AdCleP AdErr AdErrP

Zero 46129 27672 27403 14658

Max 6513 1084 4725 853

Mean 8.358322 8.358322 8.358322 8.358322

StDev 56.08403 23.3084 43.01646 19.11679



The software for the Trie Join methods was obtained from 
the authors project Website.  The experiments were run five 
times for each method and their average runtime in 
milliseconds is shown below.  The Type1 and Type2 error 
columns are calculated differently for these experiments.  
The ground truth is the DL edit distance algorithm’s string 
matching results for a single edit.  Notice that the Trie 
methods have Type2 errors.  The Trie Join method was able 
to find 87.5% and Bi Trie Join found 90.9% of the strings 
that DL found.  There are no false positives for any of the 
three methods.  Trie Join is approximately 3.28 times faster 
and Bi Trie Join is approximately 2.62 times faster than 
PGLFPDL.  The peak working set memory for each method 
is shown in the last column in kilobytes.  Trie Join required 
3.57 times the RAM and Bi Trie Join required 6.26 times the 
RAM that was required by PGLFPDL.  The amount of 
memory used for an optimization is an important 
consideration for big data problems. 

 
Table 3: Comparison of PGLFPDL and Trie Join with all 547,771 

addresses

 

VII. CONCLUSION 

Our goal was to reduce unnecessary computation by 
identifying and filtering record pairs that are guaranteed not 
to match.  Our computational results clearly show that there 
are superior performance gains while using the PSH over 
DL. The results also show that there is no loss to accuracy—
PSH produces the same results as DL.  PSH takes advantage 
of a computer’s ability to quickly compare differences in 
primitive data types using a single instruction, exclusive 
disjunction, and an enhanced while loop to count ones.  The 
computational cost of creating the hash table and signatures 
is very low (all experiments included the time to generate 
signatures and hash tables) and only 4 bytes are needed for 
each signature.  Considering that addresses can be at least 25 
characters (or 50 for 16-bit Unicode) bytes and a phone 
number is 10 characters (or 20 bytes), the space complexity 
is very efficient given the performance benefits.  The record 
pair search space for the PSH is as exhaustive as DL but it 
completes each comparison, on average, much quicker by 
eliminating unnecessary work when comparing string pairs 
by filtering out pairs with no chance of matching.  PSH 
delivers the same matches as DL, in significantly less time.  
Our results provide evidence that PSH can perform the same 
work in less than 6 minutes that would take DL nearly 27 
days to complete.  The 40 hour-a-day update for the RL 
project mentioned in the Introduction may now be completed 
in less than an hour.  If this method maintains this level of 
performance, it should be able to compare two lists 
containing 10M addresses or 1 trillion pairs in 1.6 days and 
produce the same exact results as DL. Addresses are the 
longest string typically found in demographic data and 
require the most time to match using DL. 
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Ad Type1 Type2 Time ms Speedup Pair Time Memory K Memory R

PGLFPDL 0 0 216889.4 1.00 7.23E-07 76,900 1.00

TJ 0 188029 82660.4 2.62 2.75E-07 274,600 3.57

BTJ 0 136610 66162.8 3.28 2.21E-07 481,604 6.26


