
PSH: A Probabilistic Signature Hash Method with Hash Neighborhood Candidate

Generation for Fast Edit-Distance String Comparison on Big Data

Joseph Jupin

CIS Dept.

Temple University

Philadelphia, PA, USA

joejupin@temple.edu

Justin Y. Shi

CIS Dept.

Temple University

Philadelphia, PA, USA

shi@temple.edu

Eduard C. Dragut

CIS Dept.

Temple University

Philadelphia, PA, USA

edragut@temple.edu

Abstract— Approximate string matching is essential because

data entry errors are unavoidable. Approximately 80% of

data entry errors are a single edit distance from the correct

entry. We introduce Probabilistic Signature Hashing (PSH), a

hash-based filter and verify method to enhance the

performance of edit distance comparison of relatively short

strings with proven no loss to accuracy. Our experiments show

that the proposed method is almost 6800 orders of magnitude

faster than Damerau-Levenshtein (DL) edit distance and

produces the same exact results. This method combines prefix

pruning, string bit signatures and hashing to provide very fast

edit-distance comparison with no loss of true positive matches.

PSH will provide substantial performance gains as a string

comparison metric when used in place of DL.

Keywords- Approximate String Comparison, Edit Distance,

Deduplication, Record Linkage

I. INTRODUCTION

Combining data from different sources and/or
deduplication are important first steps in the knowledge
discovery process [1], whether data mining or statistical
analysis of data is to be performed. The primary motivation
for this research is to develop a faster method to compare
relatively short strings as are typically found in demographic
data. Our current project is to develop a specialized Record
Linkage (RL) method for an urban health department. RL is
a process that compares pairs of records from heterogeneous
databases to find records that refer to the same entities [2].
Whether an RL system uses a deterministic or probabilistic
[3] methodology, it is necessary to compare all the data
values within each candidate pair of records.

The department needs to match client records across 11
independent health and social sciences databases without a
reliable unique identifier. There are 1.5 million clients and
50 million records. Some of the clients have been in the
system since birth. The system has to link records that span
the clients’ lives. The department currently uses a
proprietary deterministic RL method but has experienced
high false positive and false negative rates. We added the
Damerau-Levenshtein (DL) edit distance algorithm to their
method, which increased true positive matches but also
increased the runtime by 500%. The data has to be updated
daily, which currently requires approximately 8 hours per
night, when it is not being queried for client matches. It
would take approximately 40 hours to run the algorithm with
DL. Each daily update would take more than a day. We

could not use blocking methods to increase matching
performance due to their dependence on blocking keys [4, 5,
6, 7, 8, 9, 10] selected from fields that have significant
missing, erroneous or inconsistent data.

This paper’s primary contribution is the development of
an improved composite method, called the Probabilistic
Signature Hash (PSH), which substantially decreases the
computation required to compare short alphabetic, numeric
and alphanumeric strings prior to evaluation with an edit
distance metric.

II. BACKGROUND

Some of the methods used to optimize edit-distance are
filtering, neighborhood generation [12], pruning [13],
hashing [14] and tries [15]. We include descriptions of the
Damerau-Levenshtein edit distance, Prefix Pruning—a
performance enhancement for DL (PDL) and a description of
the length filter. We also discuss Trie-Join [15], which is
one of the fastest optimizations for edit-distance.

A. Damerau-Levenshtein Edit Distance

For effective string difference measurement, edit distance
has an advantage over other metrics because it considers the
ordering of characters and allows nontrivial alignment [16].
The Levenshtein edit distance algorithm is a dynamic
programming solution for calculating the minimum number
of character substitutions, insertions and deletions to convert
one word into another [17]. Damerau extended Levenshtein
distance to also detect transposition errors and treat them as
one edit operation. Approximately 80% of data entry errors
can be corrected using a one character substitution, one
character deletion, one character insertion or a transposition
of two characters [18]. The main problem with the DL
algorithm is its complexity: 𝑂(𝑚𝑛), where 𝑚 and 𝑛 are the
lengths of the compared strings. This can require significant
computation for comparisons of very large datasets—even if
the compared strings are relatively short.

B. Prefix Pruning

Once a pair of strings has been determined to be
sufficiently different for an edit distance measurement, the
calculation should be terminated. A user-defined threshold
can be added to decrease the computation required for DL.
For a threshold 𝑘 , it is only necessary to compute the
elements from 𝑗 = 𝑖 − 𝑘 to 𝑗 = 𝑖 + 𝑘 (see algorithm below),
which reduces the search space to a 2𝑘 + 1 wide strip on the

diagonal [19]. The threshold can be used to force an early
termination if 𝑑𝑖,∗ > 𝑘 [20]. The implementation, called

Pruning-Damerau-Levenshtein (PDL), below is similar to an
edit distance Prefix Pruning method for Trie-based string
similarity joins [21]. There is a counter variable 𝑥 added to
count the 𝑑𝑖,𝑗 ≤ 𝑘 . If 𝑥 ≤ 0, for row i, the function

terminates and returns a Boolean value FALSE. This
decreases the complexity of DL from 𝑂(𝑚𝑛) to 𝑂(𝑘𝑙) ,
where 𝑙 is the length of the shortest string. If PDL completes
and 𝑑(𝑚, 𝑛) ≤ 𝑘 , the function returns 𝑇𝑅𝑈𝐸 , otherwise it
returns 𝐹𝐴𝐿𝑆𝐸. There are two lines that assign elements in
the distance matrix 𝑑 to 1000. This imposes a border of
arbitrarily large integers just outside the 2𝑘 + 1 strip,
ensuring the selection of a correct minimum value in the line
𝑑𝑖,𝑗 = 𝑚𝑖𝑛(𝑑𝑖−1,𝑗 , 𝑑𝑖,𝑗−1, 𝑑𝑖−1,𝑗−1) + 1 because 𝑑 is initially

zeros. The algorithm for PDL is:

Algorithm 1: PDL(𝑠, 𝑡, 𝑘)

Input: 𝑠, 𝑡: strings of characters
 𝑘: integer threshold
Output: Boolean
𝑑 = |𝑠| + 1×|𝑡| + 1: array of integer zeros
𝑚, 𝑛, 𝑥: integers
Begin
 Step 1: Check for empty strings
 𝑚 = |𝑠|
 𝑛 = |𝑡|
 if 𝑚 = 0: return 𝐹𝐴𝐿𝑆𝐸 end-if
 if 𝑛 = 0: return 𝐹𝐴𝐿𝑆𝐸 end-if
 Step 2: Create distance matrix d
 for 𝑖 = 0 𝑡𝑜 𝑚: 𝑑𝑖,0 = 𝑖 end-for

 for 𝑗 = 1 𝑡𝑜 𝑛: 𝑑0,𝑗 = 𝑗 end-for

 Step 3: Calculate distance matrix
 for 𝑖 = 1 𝑡𝑜 𝑚
 𝑥 = 0
 if 𝑖 < 𝑘 + 1: 𝑑𝑖,𝑖−𝑘−1 = 1000

 for 𝑗 = 𝑚𝑎𝑥(𝑖– 𝑘, 1) 𝑡𝑜 𝑚𝑖𝑛(𝑖 + 𝑘, 𝑛)
 if 𝑠𝑖−1 = 𝑡𝑗−1

 𝑑𝑖,𝑗 = 𝑑𝑖−1,𝑗−1

 else
 𝑑𝑖,𝑗 = 𝑚𝑖𝑛(𝑑𝑖−1,𝑗 , 𝑑𝑖,𝑗−1, 𝑑𝑖−1,𝑗−1) + 1

 if 𝑖 > 1 𝑎𝑛𝑑 𝑗 > 1
 if 𝑠𝑖−1 = 𝑡𝑗−2 𝑎𝑛𝑑 𝑠𝑖−2 = 𝑡𝑗−1

 𝑑𝑖,𝑗 = 𝑚𝑖𝑛(𝑑𝑖,𝑗 , 𝑑𝑖−2,𝑗−2 + 1)

 end-if
 end-if
 end-if
 if 𝑑𝑖,𝑗 ≤ 𝑘: 𝑥+= 1 end-if

 end-for
 if 𝑗 < 𝑛: 𝑑𝑖,𝑗 = 1000

 if 𝑥 <= 0: return 𝐹𝐴𝐿𝑆𝐸 end-if

 end-for
 if 𝑑𝑚,𝑛 <= 𝑘 : return 𝑇𝑅𝑈𝐸

 else: return 𝐹𝐴𝐿𝑆𝐸
 end-if
end

C. Filter and Verify Methods

In the ‘90s, methods to decrease data comparison using
edit distance called “filter and verify” methods were
introduced. Research on these methods is still active as

filters can potentially discard many expensive comparisons
[22]. One of the most current methods, length filtering [23],
is based on the fact that if two strings s and t differ by within
k or less edits, the difference in their lengths cannot be
greater than k. Consider that “Joe” and “Jose”; and “Jose”
and “Josef” are approximate matches for k = 1 but “Joe” and
“Josef” are not. It should be noted that length filtering will
typically not work on fixed-length strings, such as phone
numbers and Social Security Numbers.

D. Trie-Join

Special purpose approximate string matching tree
structures, referred to as “tries”, have been used to facilitate
DL type searching. In [13], the authors use trie structures
with edit distance constraints to compress data and compute
string similarity more efficiently. Their experimentation
shows that their algorithm is much more efficient for shorter
strings with low edit distances of 1 or 2 edits. The
experiments included Ed-Join and some of the previous
methods upon which Ed-Join [16] is based. The Trie-Join
method combined the concept of the prefix pruning and a
tree structure to index strings that approximately match from
a dictionary, list or data store.

III. METHODOLOGY

PSH is a composite optimization that combines the PDL
and length filter with signature filtering and signature
hashing. We describe our method in this section.

A. Signature Filtering

Bitwise signature filtering has two parts: generating
bitwise signature and filtering the signatures. The method
takes advantage of CPU's ability to perform logical and
arithmetic operations on unsigned integers very quickly. The
main idea is that the signature is compressed into 32-bit
unsigned integers, which have sufficient capacity to contain
a checklist of numeric, alphabetic and alphanumeric
characters in bits. The signature 𝑚 for string 𝑠 is a checklist
of a subset of characters in 𝑠, where bit 𝑚0 = 1 iff ′A′ ∈ 𝑠
and bit 𝑚1 = 1 iff ′B′ ∈ 𝑠, etc. 32 bits is large enough to
store all characters in the alphabet (A to Z) once that occur in
a string and all numbers (0 to 9) that occur from 1 to 3 times.
These do require some storage for the signatures for each
string but these signatures can be created very fast and only
require 4 bytes of memory. The unused bits are used to store
additional information about the frequency of characters in a
string. We describe the process for alphanumeric street
addresses below. We omit the methods for numeric only and
alphabetic character strings due to space constraints.

B. Generating FBF Signatures

Address strings contain both characters and numbers and
present a problem because integers are limited to 32-bits and
the Σ = {0,1,2,3,4,5,6,7,8,9, A, B, C, … , X, Y, Z} contains 36
characters. Our statistical analysis of addresses found that
the characters ‘S’ and ‘T’ occurred in over 90% of addresses
and the characters ‘J’, ‘Q’, ‘X’, and ‘Z’ occurred very
infrequently. The ‘S’ and ‘T’ were removed because they
were not a good measure of variance, ‘J’ and ‘Q’ were

combined to one bit position and likewise with ‘X’, and ‘Z’.
The figure below shows the address signature for “1801 N
BROAD ST”.

Figure 1: Address signature for “1801 N BROAD ST”

Algorithm 2: SetAddrBits(𝑠)

Input: 𝑠: string of characters
Output: 𝑥: 32-bit unsigned integer

Σ = {
A, B, C, D, E, F, G, H, I, JQ, K, L, M, N, O,
P, R, U, V, W, XZ, Y, 0,1,2,3,4,5,6,7,8,9

}

(Note that JQ and XZ are treated as same
character and ST are ignored)
c: integer to set signature bit
x: integer to contain signature
begin
 for each 𝑠𝑖 ∈ 𝑠
 if 𝑠𝑖 ∈ Σ
 𝑐 = 𝑐|Σ𝑐 = 𝑠𝑖
 𝑥 = 𝑥 ∨ (1 ≪ 𝑐)
 end-if
 end-for
 return x

end

C. Filtering FBF Signatures

The different characters between strings 𝑠 and 𝑡 can be
found by using the exclusive disjunction on their signatures
𝑚 and 𝑛, respectively. Algorithm FindDiffBits(𝑚, 𝑛) uses a
fast bit counting method to count the ones in the exclusive
disjunction result of 𝑚 and 𝑛. The loop only executes as
many times as there are ones in the string [24]. The address
strings are alphanumeric and the maximum length in our
large list of real standardized local addresses is 25 characters.
Because of the relatively short length of these strings, the
FindDiffBits(𝑚, 𝑛) algorithm produces sparse bit vectors for
real word addresses. The loop will only execute 𝑥 times for
each of the 𝑥 ones in the integers’ exclusive disjunction’s
bits, which represents 𝑥 members in a set, and is denoted as
𝑥 = |𝑚⨁𝑛|. The algorithm for FindDiffBits(𝑚, 𝑛) is:

Algorithm 3: FindDiffBits(𝑚, 𝑛)

Input: 𝑚: 32-bit vector signature for string 𝑠
 𝑛: 32-bit vector signature for string 𝑡
Output: 𝑥: 32-bit integer count of different bits
𝑑: 32-bit unsigned integer
begin
 𝑖 = 0

 𝑑 = 𝑚𝑖⨁𝑛𝑖
 𝑥 = 0
 while 𝑑 > 0
 𝑥+= 1
 𝑑 = 𝑑 ∧ (𝑑 − 1)
 end-while
end

This method has two significant performance properties:
it compresses the signatures into compact primitive data

types, which means faster loading to CPU registers and
storing from registers, and allows machine-level operations
to be used to process the primitive data very quickly, which
means much faster processing.

D. Naïve Signature Hashing

We could hash on the bitwise signatures but that would
require the storage of 4G buckets, which is a waste of RAM.
To save memory, we mapped the 32-bit signatures to 16-bits
using the naïve mapping shown in the example below by
combining two signature bits to one hash code bit. This was
fast but many buckets were empty and some buckets had too
many entries, which had a negative effect on performance.

Figure 2: Naïve hash mapping for “1801 N BROAD ST”

E. Probabilistic Signature Hashing

To smooth the buckets in the hash table, we take a
probabilistic approach to the hash mapping of signatures. A
comprehensive description of the steps of the algorithm is
not possible due to space constraints. We applied our
algorithm to a list of 547,771 addresses in the City of
Philadelphia, USA. The first step is to count the co-
occurrence of character pairs for all strings in the data set.
The figure below shows that the characters ‘A’ and ‘B’ occur
together in 338,213 addresses.

Figure 3: Counts of co-occurrence of characters in data

The second step is to sort the count by frequency. Notice
that two identified infrequent characters, ‘J’ and ‘X’ are the
minimum value.

Figure 4: Sorted counts of co-occurrence of characters in data

Next, we iteratively select values closest to the mean
without duplicating any characters until all characters in Σ
are included. The figure below shows the selections. The
count for “59” was closest to the mean. The count for “W4”
was next, etc. These character groupings are used as the
mapping for the hash function.

Figure 5: Co-occurrence mapping for hash function

The mapping for addresses is shown below. This
probabilistic hash method is approximately twice as fast as
the naïve method. Note that the algorithm actually uses bit
positions in signatures. We substituted characters because it

98765432 10YXWVUR PONMLKJI HGFEDCBA

 Z Q

01000000 11000001 01100000 00001011

8642 0XVR OMKI GECA

9753 1YWU PNLJ HFDB

______Z______Q_____

1000 1001 1100 0011

AB AC AD 78 79 89

338213 350587 380903 241567 232658 225143…

JX FX FJ E1 NR EN

24759 54709 56896 476181 480206 485825…

59 W4 LV MO B3 67 G0 DI

278361 279420 276807 276235 275005 272173 270427 286442

H8 J2 RX AF Y1 KN EP CU

260221 299857 303564 326097 338785 351388 352392 170173

is easier to explain the process. The hash buckets contain the
index of strings from the data set.

Figure 6: Probabilistic hash mapping for “1801 N BROAD ST”

F. Hash Neighborhood Generation for Candidate Buckets

It is not necessary to scan all 64K buckets to find hash
candidates. A function using bitwise operators can be used
to calculate the bucket codes that may contain approximate
matches for a query exemplar. The algorithm below shows
the calculation of hash candidates for codes that differ for up
to two bits from the hash code exemplar ℎ.

Algorithm 3: GetHashCodes(ℎ)

Input: ℎ: A hash code to neighborhood match
Output: 𝐻: The hash neighborhood for ℎ
𝑏1: Bit field for differs by 1 bit
𝑏2: Bit field for differs by 2 bits
𝑏: Number of bits in hash code (16 bits)
𝑖, 𝑗: Iterators
𝑘: Counter
Begin
 𝑖 = 0
 𝑘 = 0
 𝐻𝑘++ = ℎ
 𝑏1 = 0000000000000001
 𝑏2 = 0000000000000010
 while 𝑖 < 𝑏
 𝐻𝑘++ = ℎ ⊕ 𝑏1
 𝑗 = 𝑖 + 1
 while 𝑗 < 𝑏
 𝐻𝑘++ = ℎ ⊕ (𝑏1 ∨ 𝑏2)
 𝑏2 = 𝑏2 ≪ 1
 𝑗 = 𝑗 + 1
 end-while
 𝑏1 = 𝑏1 ≪ 1
 𝑏2 = 𝑏1 ≪ 1
 𝑖 = 𝑖 + 1
 end-while
 return 𝐻
end

IV. SKETCH OF PROOF OF CORRECTNESS

We show that the bitwise signature filter, hash filter and
length filter do not discard any true positive matches from
their respective candidate sets. Because none of these
methods remove any true positives, their composite does not
produce any false negative results.

A. Signature Filter

We define an approximate match as “strings 𝑠 and 𝑡
differ by 𝑘 or less edits” where 𝑘 is a user-defined threshold.
Implementing this in PDL forces termination once a
magnitude of distance less than or equal to 𝑘 is no longer
possible. To process two strings 𝑠 and 𝑡, we create bitwise
signatures 𝑚 , 𝑛 as: 𝑚 = SetAddrBits(𝑠) and 𝑛 =
SetAddrBits(𝑡) . There is a relation between PDL and

bitwise signature comparison, FindDiffBits(𝑚, 𝑛) , that the
set of all string pairs 〈𝑠, 𝑡〉 ∈ 𝑆×𝑇, where 𝑆 and 𝑇 are lists of
strings, with a FindDiffBits(𝑚, 𝑛) ≤ 2𝑘, contains all string
pairs that will pass PDL for a maximum of 𝑘 edits, where
PDL(𝑠, 𝑡, 𝑘) = 𝑇𝑅𝑈𝐸. In other words, if we select a set of
pairs 𝐺≤2𝑘 = ∀(𝑠, 𝑡) ∈ 𝑆×𝑇, FindDiffBits(𝑚, 𝑛) ≤ 2𝑘 ,
where 𝑚 is the signature of 𝑠 and 𝑛 is a signature of 𝑡, and
set 𝐻≤𝑘 = ∀(𝑠, 𝑡) ∈ 𝑆×𝑇, PDL(𝑠, 𝑡, 𝑘) = 𝑇𝑅𝑈𝐸 , then we
claim 𝐺≤2𝑘 ⊇ 𝐻≤𝑘.

Consider that PDL returns a Boolean value that is TRUE
if the number substitutions, deletions, insertions and
transpositions to convert string 𝑠 into 𝑡 is less than or equal
to 𝑘 edits and that FindDiffBits(𝑚, 𝑛) = |𝑚⨁𝑛|.

If a single edit operation found for a pair (𝑠, 𝑡) ∈ 𝑆×𝑇 is
a transposition, the filter will show a difference of zero
because |𝑚⨁𝑛| = 0, ∀𝑠𝑖 ∈ 𝑠, ∃𝑠𝑖 ∈ 𝑡 and ∀𝑡𝑗 ∈ 𝑡, ∃𝑡𝑗 ∈ 𝑠 .

Let 𝑠 = “13245” and 𝑡 = “12345”. Since 𝑠 and 𝑡 have the
same characters, |𝑚⨁𝑛| = 0.

If a single edit operation is a delete, the worst case is
|𝑚⨁𝑛| = 1 if the member to be deleted 𝑠𝑖 ∈ 𝑠 such that
 𝑠𝑖 ∉ 𝑡. Let 𝑠 = “123456” and 𝑡 = “12345”. Since 𝑠 and 𝑡
differ by one delete operation, they differ by one character 6,
|𝑚⨁𝑛| = 1.

If the single edit is an insertion, the worst case is
|𝑚⨁𝑛| = 1 if the character to be inserted 𝑡𝑗 ∈ 𝑡 into 𝑠 such

that 𝑡𝑗 ∉ 𝑠. Let 𝑠 = “1234” and 𝑡 = “12345”. Since 𝑠 and 𝑡

differ by one insert operation, they differ by one character 5,
|𝑚⨁𝑛| = 1.

If the single edit is a substitution, the worst case is
|𝑚⨁𝑛| = 2 if the member substituted 𝑠𝑖 is changed to 𝑡𝑗

such that 𝑠𝑖 ∈ 𝑠 , but 𝑠𝑖 ∉ 𝑡 and 𝑡𝑗 ∈ 𝑡 but 𝑡𝑗 ∉ 𝑠 . Let 𝑠 =

“12346” and 𝑡 = “12345”. Since 𝑠 and 𝑡 differ by one
substitution operation, each differs from the other by one
character. Notice that 5 is in 𝑡 but not in 𝑠 and 6 is in 𝑠 but
not in 𝑡, and we have |𝑚⨁𝑛| = 2.

The worst case for a PDL of 𝑘 is |𝑚⨁𝑛| = 2𝑘 if all 𝑘
edits are substitutions and result in the worst-case condition
above for each of the substitutions then ∀ℎ ∈ 𝐻≤𝑘, ∃𝑔 ∈
𝐺≤2𝑘 , ℎ = 𝑔 and PDL(𝑠, 𝑡, 𝑘) = 𝑇𝑅𝑈𝐸 ⟹
FindDiffBits(𝑚, 𝑛) ≤ 2𝑘 . If 𝑘 is increased, this same
property holds because, by inductive reasoning, in the worst
case for 𝑘 edits, the signature will differ by at most 2𝑘 bits
due to a substitution error.

B. Hash Filter

We claim that for ∀𝑠 ∈ 𝑆 with signature 𝑚 =
𝑆𝑒𝑡𝐴𝑑𝑑𝑟𝐵𝑖𝑡𝑠(𝑠) , 𝑔𝑒𝑡_ℎ𝑎𝑠ℎ_𝑐𝑜𝑑𝑒𝑠(ℎ) produces a set of
candidate buckets 𝐻 that contain the entries in 𝑆 that are
within 𝑘 edit operations from 𝑠. This is evident because the
hash codes are generated by a disjunction of two bits in the
signature, which creates a dilation that cover all related
signatures that is guaranteed to contain the correct
candidates.

C. Length Filter

The length filter will not remove true matches from its
candidate list because for 𝑘 or less edits, the test 𝑎𝑏𝑠(|𝑠| −
|𝑡|) ≤ 𝑘 will pass all string pairs that differ by ≤ 𝑘 edits.

CEKY ARJH DG6B MLW5

UPN1 FX28 I073 OV49

______ZQ___________

0011 1101 1101 1000

Substitution and transposition errors do not change the length
of a string. If there are ≤ 𝑘 insertions or deletions, the
difference in string length will be ≤ 𝑘.

D. PSH Composite

PSH combines signature hashing, length filtering,
signature filtering and prefix pruning to increase the speed of
DL edit-distance comparison. The algorithm below shows
the application of filters. When a failing condition is found,
the if statement terminates and continues to the next
candidate in the hash bucket list.

Algorithm 4: PSH(𝑆, 𝑀, 𝑇, 𝑞)

Input: 𝑆: A list of strings to search
 𝑀: A list of bit signatures for 𝑆
 𝑇: A hash table containing references to 𝑆 and 𝑀
 𝑞: A query string
Output: 𝑀𝑎𝑡𝑐ℎ: A list of matches
𝑚 ∈ 𝑀, 𝑛: Bit signatures
𝐻: Hash neighborhood
ℎ ∈ 𝐻, 𝑦: Hash codes
𝑇ℎ ∈ 𝑇: Hash buckets with chaining for 𝑆 and 𝑀
𝑠 ∈ 𝑆: A string
Begin
 𝑛 = 𝑆𝑒𝑡𝐴𝑑𝑑𝑟𝐵𝑖𝑡𝑠(𝑞)
 𝑦 = ℎ𝑎𝑠ℎ(𝑛)
 𝐻 = 𝐺𝑒𝑡𝐻𝑎𝑠ℎ𝐶𝑜𝑑𝑒𝑠(𝑦)
 for each ℎ ∈ 𝐻
 for each 𝑠 ∈ 𝑇ℎ
 if (𝐿(𝑠, 𝑞) ≤ 𝑘 ∧ 𝐹(𝑚, 𝑛) ≤ 2𝑘 ∧ 𝑃𝐷𝐿(𝑠, 𝑞, 𝑘))
 𝑀𝑎𝑡𝑐ℎ ← (𝑠, 𝑞)
 end-if
 end-for
 end-for
 return x

end

where 𝑇 is a hash table that contains buckets containing
references to strings in 𝑆 and signatures in 𝑀. 𝑇ℎ Are the
candidate buckets that have 2𝑘 or less bits differing from
hash code ℎ.

V. EXPERIMENTS

The data for the experiments was the 547,771
Philadelphia address data mentioned above. There were two
datasets used in experiments. One dataset was clean address
data and the other file had random single edit errors injected
into the data from the clean file. The experiment matched all
strings in the clean set with the error set. Since the strings in
the files are known to match by index, this establishes a
lower limit for a ground truth to detect false negative
matches. There will be matches in the data that have
different indices too. The hash candidate experiments are
run 5 times and their average is recorded as the result. The
other methods are only run once. These methods do not use
hash candidate generation. Without the benefit of hashing
each of these methods would have to compare over 300
billion string pairs. The string comparators used in the
experiments include:

 Damerau-Levenshtein edit-distance (DL)

 Bitwise Signature Filtered PDL (FPDL)

 Length then Bitwise Signature Filtered PDL
(LFPDL)

 Hybrid Signature Neighborhood Hashed Length
and Fast Filtered PDL (GLFPDL)

 Probabilistic Signature Hash (PGLFPDL)

VI. RESULTS

The experiments in the table below contains all 547,771
Philadelphia address strings per input file. DL requires more
than 26.8 days to complete. Each pairwise comparison takes
approximately 7.72 microseconds. The method using the
bitwise filter and PDL (FPDL) takes approximately 48.7
thousand seconds (13.5 hours). The method with the length
filter added (LFPDL) takes 23 thousand seconds (6.4 hours).
The naïve hashing method (GLFPDL) takes 606 seconds (10
minutes). PSH (PGLFPDL) only takes 342 seconds (less
than 6 minutes) to complete with each pairwise comparison
taking 1.14 nanoseconds (given the search space), which is
almost 6,800 times faster than DL. Notice that there are no
false negative (Type 2) errors and that the Type 1 column are
not actually false positives. They match by comparison but
not by index. All optimizations produce the same results as
DL.

Table 1: Experiments on all 547,771 addresses with PGLFPDL

probabilistic hashing

A. Analysis of Hash Buckets

An analysis of the first naïve hash method found most
hash buckets empty. The effects of this method are shown in
the table below. The AdCle column is the hash table
analysis for the naïve method and that there are 46,129
empty buckets and a max bucket size of 6,513. The PSH
method decreases the empty buckets in the AdCleP column
by 18,457 to 27,672 and the max bucket size by 5,429 to
1,084 entries. The last 2 columns are for the error injected
street addresses, which have more variance in their data due
to the random errors, resulting in less variance in individual
hash buckets. Smaller bucket sizes mean less local string
comparison and better performance.

Table 2: Bucket statistics for addresses

B. Comparison to Trie-Join

The experiments in Table 3 below compare the new
method to a more recently published novel string comparison
optimization called Trie Join and a variant Bi Trie Join [21].

Ad Type1 Type2 Time ms Speedup Pair Time

DL 995,992 0 2,317,457,638.00 1 7.72E-03

FPDL 995,992 0 48,742,836.00 47.54 1.62E-04

LFPDL 995,992 0 23,027,915.00 100.64 7.67E-05

GLFPDL 995,992 0 606,182.00 3,823.04 2.02E-06

PGLFPDL 995,992 0 341,693.00 6,782.28 1.14E-06

AdCle AdCleP AdErr AdErrP

Zero 46129 27672 27403 14658

Max 6513 1084 4725 853

Mean 8.358322 8.358322 8.358322 8.358322

StDev 56.08403 23.3084 43.01646 19.11679

The software for the Trie Join methods was obtained from
the authors project Website. The experiments were run five
times for each method and their average runtime in
milliseconds is shown below. The Type1 and Type2 error
columns are calculated differently for these experiments.
The ground truth is the DL edit distance algorithm’s string
matching results for a single edit. Notice that the Trie
methods have Type2 errors. The Trie Join method was able
to find 87.5% and Bi Trie Join found 90.9% of the strings
that DL found. There are no false positives for any of the
three methods. Trie Join is approximately 3.28 times faster
and Bi Trie Join is approximately 2.62 times faster than
PGLFPDL. The peak working set memory for each method
is shown in the last column in kilobytes. Trie Join required
3.57 times the RAM and Bi Trie Join required 6.26 times the
RAM that was required by PGLFPDL. The amount of
memory used for an optimization is an important
consideration for big data problems.

Table 3: Comparison of PGLFPDL and Trie Join with all 547,771

addresses

VII. CONCLUSION

Our goal was to reduce unnecessary computation by
identifying and filtering record pairs that are guaranteed not
to match. Our computational results clearly show that there
are superior performance gains while using the PSH over
DL. The results also show that there is no loss to accuracy—
PSH produces the same results as DL. PSH takes advantage
of a computer’s ability to quickly compare differences in
primitive data types using a single instruction, exclusive
disjunction, and an enhanced while loop to count ones. The
computational cost of creating the hash table and signatures
is very low (all experiments included the time to generate
signatures and hash tables) and only 4 bytes are needed for
each signature. Considering that addresses can be at least 25
characters (or 50 for 16-bit Unicode) bytes and a phone
number is 10 characters (or 20 bytes), the space complexity
is very efficient given the performance benefits. The record
pair search space for the PSH is as exhaustive as DL but it
completes each comparison, on average, much quicker by
eliminating unnecessary work when comparing string pairs
by filtering out pairs with no chance of matching. PSH
delivers the same matches as DL, in significantly less time.
Our results provide evidence that PSH can perform the same
work in less than 6 minutes that would take DL nearly 27
days to complete. The 40 hour-a-day update for the RL
project mentioned in the Introduction may now be completed
in less than an hour. If this method maintains this level of
performance, it should be able to compare two lists
containing 10M addresses or 1 trillion pairs in 1.6 days and
produce the same exact results as DL. Addresses are the
longest string typically found in demographic data and
require the most time to match using DL.

ACKNOLEDGEMENTS

We thank the City of Philadelphia’s Office of Health and
Opportunity for grant support for this project and access to a
real-life record linkage problem. This work was supported in
part by the U.S. NSF grant BIGDATA 1546480.

REFERENCES

[1] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: Data Mining to
Knowledge Discovery in Databases, In: AI Magazine 17(3) (1996)

[2] Dunn, H. L.: Record Linkage, In: American Journal of Public Health
36 (12): pp. 1412–1416. (1946)

[3] Fellegi, I., Sunter, A.: A Theory for Record Linkage, In: Journal of the
American Statistical Association 64 (328): pp. 1183–1210. (1969)

[4] Jaro, M. A.: Advances in Record Linkage Methodology as Applied to
Matching the 1985 Census of Tampa, Florida. In: Journal of the
American Statistical Society, 84(406):414–420, (1989)

[5] Hernandez, M., Stolfo, S.: Real-world data is dirty: data cleansing and
the merge/purge problem, In: Journal of Data Mining and Knowledge
Discovery, 1(2), (1998)

[6] Christen, P., Churches T.: Febrl: Freely extensible biomedical record
linkage: Manual, release 0.2 edition (2003)

[7] McCallum, A., Nigam, K., Ungar, L.: Efficient clustering of high-
dimensional data sets, In: KDD , pp. 169–178 (2000)

[8] Cohen, W., Richman, J.: Learning to Match and Cluster Large High-
Dimensional Data Sets for Data Integration. In: SIGKDD’02, (2002)

[9] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis
Palpanas. 2016. Comparative analysis of approximate blocking
techniques for entity resolution. In PVLDB 9, 9 (May 2016), 684-695.

[10] Gu L., Baxter, R.: “Adaptive Filtering for Efficient Record Linkage”,
In SIAM 2004

[11] Campbell, K. M., Deck, D., Krupski, A.: Record Linkage Software in
the Public Domain: A Comparison of Link Plus, The Link King, and a
“Basic” Deterministic Algorithm, In: Health Informatics Journal, Vol.
14(1) (2008)

[12] Myers, E.: “A sublinear algorithm for approximate keyword
searching”, In Algorithmica, 12(4/5) pp. 345-374, 1994

[13] Wang, J; Feng, J; Li, G. “TrieJoin: Efficient Trie-based String
Similarity Joins with Edit-Distance Constraints”. In PVLDB, Vol. 3,
No. 1 (2010)

[14] Knuth, Donald E. (1997). The Art of Computer Programming:
Volume 3, Sorting and Searching, 2nd ed.. Addison-Wesley.

[15] Apostolico, A.; Galil, Z.: “Combinatorial Algorithms on Words”,
Springer-Vertag, 1985.

[16] Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. In PVLDB, 1(1):933–
944 (2008)

[17] Levenshtein, V. I.: Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet Physics Doklady, (1966)

[18] Damerau F. J.: A technique for computer detection and correction of
spelling errors, In: Communications of the ACM, (1964)

[19] Gusfield, D.: Algorithms on strings, trees, and sequences: computer
science and computational biology, Cambridge, UK: Cambridge
University Press, ISBN 0-521-58519-8 (1997)

[20] Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization
for spoken word recognition, pp. 159–165, (1990)

[21] Wang, J., Feng, J., Li, G.: Trie-Join: Efficient Trie-based String
Similarity Joins with Edit-Distance Constraints, In: PVLDB, 3, 1 2010

[22] Navarro, G.: A guided tour to approximate string matching”, In CSUR,
Volume 33 Issue 1, Pages 31 – 88, March 2001

[23] Gravano, L., Ipeirotis, H., “Approximate string joins in a database
(almost) for free”, In VLDB, pages 491 – 500, 2001

[24] Wegner, P.: A technique for counting ones in a binary computer, In:
Communications of the ACM 3 (5): 322 (1960)

Ad Type1 Type2 Time ms Speedup Pair Time Memory K Memory R

PGLFPDL 0 0 216889.4 1.00 7.23E-07 76,900 1.00

TJ 0 188029 82660.4 2.62 2.75E-07 274,600 3.57

BTJ 0 136610 66162.8 3.28 2.21E-07 481,604 6.26

