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ABSTRACT

Recognizing entities that follow or closely resemble a regular ex-
pression (regex) pattern is an important task in information extrac-
tion. Common approaches for extraction of such entities require
humans to either write a regex recognizing an entity or manually
label entity mentions in a document corpus. While human effort
is critical to build an entity recognition model, surprisingly little
is known about how to best invest that effort given a limited time
budget. To get an answer, we consider an iterative human-in-the-
loop (HIL) framework that allows users to write a regex or manually
label entity mentions, followed by training and refining a classi-
fier based on the provided information. We demonstrate on 5 entity
recognition tasks that classification accuracy improves over time
with either approach. When a user is allowed to choose between
regex construction and manual labeling, we discover that (1) if
the time budget is low, spending all time for regex construction
is often advantageous, (2) if the time budget is high, spending all
time for manual labeling seems to be superior, and (3) between
those two extremes, writing regexes followed by manual labeling
is typically the best approach. Our code and data is available at
https://github.com/nymph332088/HILRecognizer.
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1 INTRODUCTION

Entity extraction occupies a prominent place in information retrieval.
Named entity recognition, the most recognized entity extraction
subtask, seeks to automatically identify substrings that represent
specific people, locations, events, or organizations. Beside named
entities, there is a large class of entities that are not “named," such as
expressions of dates, times, email addresses, phone numbers, curren-
cies, credit card numbers, social security numbers, measurements,
and object properties. These types of entities can often be expressed
or approximated by a regular expression (regex) and are the focus
of this work. They have drawn interest from several communities,
including NLP [9, 17, 21], databases [17], data mining [1-4], and
life sciences [20, 27].

Two common approaches to recognize regex-like entities are to
(1) manually create a regex and (2) train a machine learning model,
both of which have their advantages and disadvantages. Most pro-
grammers are familiar with regex and can write reasonably accurate
entity recognizers with relatively little effort, without the need to use
machine learning software. However, once a regex goes beyond a
level of complexity, writing it requires a lot of time and experience
and results in brittle recognizers, leading to a saying "Now you have
two problems" [14]. Even a seemingly simple task of recognizing
an email address apparently requires 6,500 characters [19]!

Machine learning (ML) approaches attempt to either infer a
regex or create a regex-oblivious model. Regex learning approaches
[3,4, 17, 21, 26] require a set of substrings and focus on construct-
ing a short regex recognizing the substrings. Similarly to manual
construction of a regex, the existing approaches quickly end up in
very long and brittle formulas and are not commonly used in practice
[3]. In regex-oblivious approaches, the objective is to train a model
such as a neural network (NN) from labeled substrings [28]. An
advantage is that labeling does not need programming expertise. A
disadvantage is that this approach requires a large set of labeled
examples. In the rest of the paper, when we refer to ML methods we
refer to the regex-oblivious approach.

In our recent work we proposed a human-in-the-loop (HIL) frame-
work [28] that uses human effort to both write a regex and to manu-
ally label the documents. As will be elaborated in the methodology, a
regex is used to scan a document corpus and produce weak labels to
pretrain an NN. Then, manually labeled substrings are used to fine-
tune the network. The results showed that fine tuning a pretrained
NN is superior to training it from scratch. Thus, the results indicate
that writing a regex before manual labeling is highly desirable. How-
ever, this conclusion does not take into account the time needed to
create a regex and regex writing expertise. In this study, we consider
the problem from a practical perspective, where a human is given
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a fixed amount of time to interact with the ML system for entity
recognition.

Time and expertise are critical factors in a HIL ML system such
as the one we consider. Let us look at a potential real-life scenario.
Let us imagine a data scientist Amy, faced with a challenge of ex-
tracting publication dates from a corpus of hundreds of thousands of
news articles crawled from the Web given a one hour deadline. Just
finding a single mention of date would include a lengthy scanning of
articles and would make the task infeasible. Alternatively, Amy may
remember that all articles are published in 2019 and write simple
regex 2019 to identify date mentions with a high recall but low pre-
cision. Then, she glances over the extracted substrings surrounding
mentions of 2019 and does one of the two things: (1) starts labeling
the dates or (2) realizes that all dates seem to follow a particular
pattern and proceeds to write a regex. Even if Amy starts writing a
regex and proceeds with labeling, another question is whether she
should spend a lot of time trying to improve the regex or stop and
start with manual labeling. We are not aware of published results
that may inform Amy how to efficiently invest her time. We set to
gain insight into this problem in this work.

We make the following contributions in this paper:

e We propose a framework that recognizes an entity through
character-wise classification. This is in contrast to our pre-
vious work [28] where we developed a HIL framework that
detects if a text passage contains an entity through sequence-
wise classification.

e We propose an algorithm for active selection of substrings.

o We perform a thorough characterization of the proposed
framework on 5 entity recognition tasks.

e We perform a small-scale user study to obtain insight into the
trade-offs between spending time to write regular expressions
and spending time to manually label text fragments.

2 RELATED WORK

This section briefly reviews several lines of research we deem to be
the most relevant to our work.

Regex Refinement and Inference. This line of research aims
to (partially) automate regex construction. One research direction
focuses on improving the precision and recall of initial regexes by
identifying true or false matches [17, 21, 26]. They start from a
user defined regex with either high recall, but low precision, [17]
or high precision, but low recall [21], and search for an improved
regex. In either case users need to create true positive and negative
instances in the matching set of the initial regex. Some works seek
to reduce human labeling efforts in this process, e.g., new matches
of candidate regexes are automatically grouped into positives and
negatives by comparing their context similarities to those of the
generalized regex [26]. A different line of work attempts to induce
regexes from positive and negative sample strings [6, 10, 11]. They
do not require an input regex. The most recent approach uses genetic
programming [3, 4]. All these efforts require human input, such as
a set of examples, or an initial high precision regex, or manually
labeled negative and positive matches of regexes. Human effort had
not been explicitly quantified in this line of work.

Human Annotation Effort: An important area of research in
ML seeks to reduce the human annotation effort, both in scale (i.e.,

amount of labeled instances) and form (e.g., weak labels). This is a
broad area of research and we limit our coverage to the entity mining
literature. One line of work uses solely weak labels to train NER
models. Distant-LSTM-CRF [13], AutoNER [24], and SwellShark
[12,23] are examples of approaches in this category. String matching
and (expert) rules are common means to generate weak labels.

Active learning aims to smartly involve human judgment in the
training of a model. In NER, this follows a 2-iteration process. In
the first iteration, the system samples sentences according to some
heuristics, asks users to annotate them, and trains an initial NER
model. In the second iteration, the system iteratively recruits unla-
beled sentences by a scoring function for human annotations. The
work in [7] uses the longest sentence selection heuristic in the first
iteration and 12 scoring functions in the second iteration. In [25],
a bag of initial models is trained with a hand-labeled seed data set.
They use the disagreement among the bag of models measured by
KL-divergence and f-complement for scoring.

We are not aware of any work in this space that couples weak
supervision with active learning, as we propose in this work. In
addition, although weak labeling is cheaper than standard labeling it
still incurs human cost. This is largely ignored in the literature. We
consider these factors in our framework.

3 PROPOSED FRAMEWORK

Problem definition Given a corpus of documents D and an entity
type &, the objective is to create an accurate entity extractor for &
while limiting the total human effort within T minutes.

We give an overview of our solution in Figure 1 (left). The input
of our framework is a document corpus D and an entity type &
(e.g. phone number). It outputs an entity extractor. The proposed
framework has several modules. The first module selects candidate
substrings that are likely to contain an entity mention. Given the set
of candidate substrings, the second module is responsible for weak
labeling them. This is accomplished with a regex. The third module
trains an NN for entity extraction using a set of labeled substrings.
The fourth module selects a subset of substrings for human labeling.
After the selected substrings are manually labeled by a human, they
are fed back to module 3 for fine-tuning of the NN. We highlight

the places where human effort is needed with a clock . A human
expert invests time in three ways in the system. She (1) creates a
regex for module 1 that selects candidate substrings with high recall
and allowing for low precision, (2) creates a regex for module 2 that
weakly labels the candidate substrings with relatively high precision
and recall, and (3) manually labels an unlabeled substring in module
4 by highlighting substrings corresponding to an entity mention. We
provide technical details in the remainder of this section.

3.1 Selection of Candidate Substrings

The core objective of our framework is to minimize human effort
needed to build an entity extractor. As will be specified later in the
paper, the user is expected to scan the corpus and recognize entity
mentions. In a typical entity extraction scenario, the number of entity
mentions in a corpus is relatively small compared to the total size
of the corpus. Thus, it is very helpful to users if they automatically
exclude portions of the corpus that do not contain entity mentions.
Our main observation is that it is often possible to specify a simple
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Figure 1: Overview of the solution framework(left) and deep learning architecture (right) used to train entity recognizer.
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Figure 2: An example of course number recognition on a sample HTML document. Only 5 of the 9 Sy candidate substrings are shown

regex that recognizes entities with a high recall (i.e, including most
of the entities) and potentially a low precision (i.e., allowing a high
fraction of false positives). For example, if our objective is to extract
course numbers, a regex that recognizes two or more digits (e.g.,
\d{2,4}) is likely to capture most of the course mentions in the U.S
universities. It is evident that such regex also recognizes many strings
that are not related to course numbers, thus resulting in low precision.
We denote a regex used for recognition of candidate entities as REy
and call it the candidate regex.

For each match of the candidate regex in the text, we generate the
candidate substring by expanding it with 15 characters before and
after it. L is selected to guarantee that the string fragment includes the
entity mention and has sufficient context surrounding the mention.
This helps determine if a substring contains the entity. We denote the
set of candidate substrings obtained in this way from corpus O by
So = {s1,52, ...,Sn}, where n is the number of strings REy matches.

We need to emphasize that, in our framework, the role of REj is
to remove portions of the corpus that clearly do not contain entity

mentions. It is not critical that the precision of the candidate sub-
strings is high. Instead, the emphasis is on encouraging the user to
quickly come up with a simple REy that has a good recall.

3.2 Weak Labeling

Given the set of candidate substrings Sy, our objective is to label and
use them to train an NN model for entity extraction. The NN has
to predict each character in a candidate substring as either positive
(belonging to an entity) or negative (not belonging to an entity).
Given those character-wise predictions, the entity is identified as
a string of consecutive positively labeled characters. Thus, it is
possible that we may extract multiple entities from a single candidate
substring.

A straightforward approach for labeling Sy strings is to ask a user
to manually label some or all of its substrings. As will be shown
in the experimental results, this approach is inefficient when Sy is
very large. Instead, we propose a weak labeling approach aided by
regex. In particular, we allow the user to provide a regex with a
moderately high precision on Sp. If an entity is well studied (e.g.,



date, email address), it is possible that one may find a good regex
quickly by searching the web. Otherwise, it is assumed that the user
is experienced enough with regexes and able to come up with a
good regex in a reasonable amount of time. To aid the user, we can
load a random subset of Sy substrings into a freely available regex
testing and debugging tool such as https://regex101.com[17]. We
denote the resulting regex by RE,,;, where the subscript wl is an
abbreviation for weak labeling.

Given RE,,;, we can automatically weakly label all the substrings
in Sp. S,,; denotes the resulting weakly labeled data set. We use
S, to train an NN NN,,,;. We expect that the recall and precision
of NN,,; is comparable to RE,,;. The benefit of training NN,,;
compared to directly using RE,,;, which is the traditional approach
for entity extraction, is that NN,,; can be further fine-tuned and
improved once manually labeled substrings become available.

3.3 Entity Recognizer

Given the set of labeled candidate substrings in S,,;, the next objec-
tive is to train an NN that classifies each character within a candidate
substring. Suitable NN architectures include but are not limited to
BiLSTM + CNNs [8], BILSTM + CRF [16], and BiLSTM + CNNs
+ CRF [18]. In this study we use a BILSTM + CNNs architecture
illustrated in Figure 1 (on the right).

For a candidate substring with L characters, an embedding layer is
used to map the I character (I=1,2,...,L) into a real valued vector
el, where e/ € R? and p is the size of character embedding. Two
or more Bidirectional LSTM (BiLSTM) layers are used to generate
hidden vectors at each position I. One layer of BILSTM contains
two stacks of regular LSTM cells. The forward LSTM cells process
the input string from the beginning to the end, while the backward
LSTM cells go from the end to the beginning.

The loss function for the ih string at the I™ position is defined
as the cross entropy function. To train the deep learning model, we
average the losses from all characters in the training set. We add a
dropout layer after the embedding layer and each of the BILSTM
layers to avoid overfitting. To predict labels in a string during testing
we assign each character to the class with the larger probability. We
denote the vector of prediction of s; as 7;.

3.4 Fine-Tuning with Human Labels

The benefit of training an NN on weakly labeled data is that it can be
fine-tuned and improved using manually labeled data. Assume we
already trained NN,,;. The next questions are how many candidate
substrings to manually label and how to select them from Sy. In our
framework, we ask the user to label K candidate substrings and then
fine-tune the NN. We repeat the manual labeling and fine-tuning
process until reaching the desired accuracy or the time limit.

The baseline approach to selection of substrings to be labeled is
to select K substrings at random from Sy. We refer to this selection
algorithm as the Random Querying (RQ). A more sophisticated
approach is to use active learning, which attempts to select K sub-
strings that result in the fastest increase in accuracy. Among the
many active learning algorithms proposed in the ML literature [15],
the ones based on the uncertainty principle have been the most suc-
cessful over a large range of application. In particular, the examples
on which the current predictor is more uncertain are more likely to

be selected. If a sigmoid neuron is used as output of an NN, we can
interpret its output for the I character of string s as class probabil-
ity, p(y;|s;). The uncertainty of the prediction of the I character is
defined as entropy E(s;) = — Xg=0,1 —p(yr = kls;)logp(y; = klsp).
Higher entropy indicates high uncertainty.

To select the most uncertain subsequences, we need to aggregate
the entropy over each subsequence. We denote uncertainty of a
subsequence as E(s). We consider several options for aggregation,
e.g., averaged entropy, maximum entropy, and maximum entropy
over a window (it is reported superior in [7]). While the differences
are not large, we experimentally observed that maximum entropy
is slightly better than the alternatives. We refer to the selection
algorithm that picks the K most uncertain subsequences as the Max
Entropy (ME). When using the ME, it is possible that the most
uncertain K substrings are highly redundant. Inspired by the idea of
pre-clustering before active learning [22], we consider an alternative
that first selects M > K substrings from Sy at random and then
uses ME to select the most uncertain K substrings. We refer to this
selection algorithm as the Random then Max Entropy (RME).

3.5 Summary of the Framework

In Figure 2, we take course number as a running example and illus-
trate the intermediate data generated along the steps of our frame-
work. We give the details in the following subsections. One notices
that the user is involved in 3 steps of the algorithm: (1) creating
candidate regex REy, (2) creating weak labeling regex RE,,;, and (3)
labeling candidate substrings. The total human effort is a sum of the
efforts on those 3 steps. The effort for creation of REj is assumed to
be significantly smaller than for the other 2 steps. If we are given the
time budget for human effort and assuming that the time to create
RE) is negligible, an open question is how should the time be split
between steps (2) and (3). We design our experiments to gain insight
into the trade-offs between spending time to create a good regex and
to manually label the candidate substrings.

The proposed framework also allows skipping one or more of the
3 steps. For example, instead of step (1), we can create the candidate
substrings from all or from randomly selected substrings of length L.
We can also decide to skip step (2) and train the first NN on the first
K manually labeled candidate substrings selected from Sy at random.
‘We can refer to such an approach as the cold start. Finally, we can
decide to skip step (3). In this case, we can decide to directly use
RE,,; for entity extraction. We will evaluate all those scenarios in
the experimental studies.

4 EXPERIMENTAL DESIGN

In this section we describe the entity extraction tasks we created to
evaluate our framework and perform user studies.

4.1 Entity Recognition Tasks

We consider 5 entity recognition tasks in our experimental study:

e DATETIME recognition: we downloaded HTMLs of 6,000 English
news articles published from August 24 - 30, 2017. They are
randomly selected from 0.6 million articles in the Kaggle dataset!.
The task is to extract datetime in 2017 from the source HTML.

1 https://www.kaggle.com/therohk/global- news-week
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Table 1: Summary of documents in the 5 entity recognition tasks.

. Doc avg length | Number of | Annot time Rate Entity avg length
Domain D] (chirs) ¢ entities in O (hrs) (ms/ch) ?cha%’s) ¢
DATETIME 6,000 137,379 1,399 * 22 127 21.63
BILLDATE 600 27,518 3,085 - 100** 12.63

EMAILADDRESS | 602 1,284 2,206 16 74.5 21.92
COURSENUMBER | 600 4,586 4,588 60 78.5 6.46
PHONENUMBER | 3149 2674 2,018 150 65.9 13.64

* The number of entities in 6,000 strings in Sp, one string per document.

** A reasonable guess of the human annotation rate.

e BILLDATE recognition: we downloaded 600 OCR scanned U.S.
Congress bills2. The task is to extract dates from the bills.

e EMAILADDRESS recognition: the task is to extract email addresses
from 602 emails in the publicly available Enron email data set>.

o COURSENUMBER recognition: we downloaded 600 HTMLs from the
4 Universities Data Set at CMU (Web->KB) project4, The task
is to extract course numbers from faculty and department web
pages.

o PHONENUMBER recognition: we downloaded 3,149 documents, 2,000
of them from the 20 newsgroup dataset® and the remaining 1,149
from the 4 universities data set. The task is to extract phone
numbers from newsgroup messages and personal web pages.

We gathered various types of documents, ranging from HTML
pages to OCR scanned documents. In Table 1, we list the basic
statistics about documents in each of the 5 recognition tasks. The
average length of a document varies a lot across the tasks, ranging
from 1, 284 in EMAILADDRESS to 137k in DATETIME.

4.2 Labeled Data for Evaluation

In order to allow comprehensive evaluation, we used student volun-
teers to manually label all documents in EMAIL, COURSENUMBER and
PHONENUMBER corpuses. For documents in BILLDATE task, we knew
the ground truth based on [3], so we did not use volunteers. For
DATETIME task, we deemed too time consuming to label all the 6,000
documents; instead, we manually labeled one randomly selected
substring from each document that contained 2017 in the center.

We list the number of entities in each corpus in Table 1. We also
list the total time our volunteers took to annotate the corpus in each
task and report the labeling rate as (milliseconds /character), which
is calculated as the total time divided by the number of characters
in the corpus. We assert that the labeling rate for BILLDATE task,
is similar to that of DATETIME task. We observe that COURSENUMBER,
EMAILADDRESS, PHONENUMBER are easier to label than DATETIME, and
that the average entity length ranges from 6 to 20.

4.3 Accuracy Measures

We conduct all of our experiments using document-level 5-fold cross
validation. We first divide documents into 5 subsets at random. We
train the models on candidate substrings generated from documents
in 4 out of the 5 subsets and test them on the candidate strings in the

2http://machinelearning.inginf.units.it/data-and-tools
3https://www.cs.cmu.edu/~./enron/
4http://www.cs.cmu.edu/afs/cs/project/theo»20/www/data/
5www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/new520.html

remaining subset. The reported accuracies are averaged over the 5
repetitions within the cross-validation. We report position-level and
entity-level accuracy.

Suppose there are N characters in the test set and denote the true
labels for the i-th character as y; and its prediction as ;. We define
the positional precision (PosPrec), the positional recall (PosRecall)
and the positional F1 (PosF1) as:

N

PosPrec = i Ly == 1A g == 1)/ D 1Gi==1)

i=1 i=1

N v (1)
PosRecall = Z 1(y; == 1AY; == 1)/ Z I(y; == 1)
i=1 i=1

PosF1 = 2 - PosPrec - PosRecall / (PosPrec + PosRecall)

Entity level accuracies are calculated considering entities in the
test strings. Suppose there are P ground truth entities in the test
strings, denoted as E,,¢. After we get positional predictions for test
strings, we extract the predicted entities as substrings of consecu-
tively predicted positive characters. Assuming there are Q predicted
entities in Ep..q, we can calculate the size of their intersection
|Etrue N Epreql. We define the entity precision (EntPrec), the entity
recall (EntRecall) and the entity F1 (EntF1) as

EntPrec = |Etrue n Epred|/|Epred|
EntRecall = |Erye N Epyredl / |Etruel @

EntF1 = 2 - EntPrec - EntRecall / (EntPrec + EntRecall)

S FRAMEWORK CHARACTERIZATION

In this section, we study the proposed framework and its components,
without focusing on user time.

5.1 RE, for Candidate Substring Extraction

The first step in the framework is creating the candidate regex REy
with high recall. We instructed one of the coauthors to come up with
RE) for each of the 5 tasks in less than 5 minutes per task. Table 2
lists the resulting candidate regexes. For the DATETIME task, since the
6,000 documents are from August 24 - 30, 2017, the regex assumes
that string 2017 occurs in all datetime entities listing year 2017.
Using the labels we collected for all the tasks (Table 1), we

are able to evaluate the precision and recall of RE( defined as Prec
_ #True entities hit by RE, Recall = #True entities hit by RE,
~  #Total hitof RE; in D ° €Call = Z ot true entities in D’

respectively.
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Table 2: Summary of the RE,.

Domain ‘ RE, ‘ Prec ‘ Recall ‘ |So| ‘ %Cov
DATETIME 2017 0.194* 1.0* | 761,002 9.23
BILLDATE \d{2,4} | 0.105 | 0.980 | 72,258 | 43.8

EMAILADDRESS Q 0.392 1.0 5,488 71.0
COURSENUMBER | \d{2,4} | 0.112 0.969 | 43,623 79.2
PHONENUMBER | \d{3,4} | 0.198 | 0.990 | 25,087 | 29.8

* Assumes all datetimes have "2017".

As can be seen in Table 2, the recall is very high on all 5 tasks, while
the precision is quite low, as expected.

Each substring recognized by REy becomes an anchor for a can-
didate substring. Each candidate substring is formed by taking %
characters preceding the start of the match and % characters suc-
ceeding it. We set L = 100 in all experiments. As seen from Table 2,
for BILLDATE, the total length of Sy (= 72, 258 * 100) is 43% of the
original corpus (= 6,000 * 27, 518) while it still contains 98% of all
the true entity mentions. Thus, |Ry| more than doubles efficiency of
manual labeling.

5.2 RE,, for Weak Labeling

For experiments in this section, we assume that RE,,; is already
available and ask if pretraining an NN on weak labels obtained from
RE,,; is beneficial. We collect regexes to instantiate RE,,; from the
web and published papers. For BILLDATE, the regex is from [21].
We use the top five regexes from the Rege Library® website for
EMAILADDRESS. For PHONENUMBER, seven out of eight regexes are
from [21], and the remaining one is from [17]. We use four regexes,
one of which is borrowed from the results learned by ReLIE [17],
and the remaining three are from [21] for COURSENUMBER. We use
a disjunction of the collected regexes in each task as RE,,;. Those
RE,,; are used on the candidate substrings to generate weak labels.

5.3 Hyperparameter Tunning and Settings

Deep learning is very sensitive to hyperparameters. A common
approach to tune the hyperparameters is to explore several combi-
nations of hyperparameters on validation data. However, since our
framework relies on an iterative process that repeatedly fine-tunes
an NN on an increasingly large set of labeled substrings, this stan-
dard approach is not feasible. Instead, we tune the hyperparameters
on a subset of the weakly labeled data. We use the random search
algorithm proposed in [5] that was shown to be more effective than
the grid search. The best hyperparameters obtained in this way are
used in all the experiments.

We set the activation function in the first fully connected layer
to tanh and the batch to 512. We also add dropout layers after the
embedding layer, the max pooling layer, and the first fully-connected
layer to avoid overfitting, with the dropout rate set at 0.5. Our im-
plementation is in PyTorch. With pre-defined RE,,;, we can tune
the learning rate (1r), the dimension in the character embedding
layer (emsize), the hidden unit size (nhidden) in BiLSTM layers
and the number of BiLSTM layers (nlayers) by 5-fold cross valida-
tion using a random sample of weakly labeled data. We explore the

6http://www.regexlib.com/

following ranges for the hyperparameters: 1r = 2% k € [6,7..,12],
emsize € [20, 30, 40, 50, 60, 70, 80] nhidden € [50, 75, 100, 125,
150, 200] and nlayers € [1, 2, 5]. We select a set of the best hyper-
parameters for each task.

We use 5 epochs to train an NN on weakly labeled data S,,,;. For
each round of fine-tuning, we use all previously collected manually
labeled substrings Sy, and train for 10 epochs over Sy,. For selection
of candidate substrings for labeling, we select them from a pool of
10,000 randomly selected candidate strings. We set the number of
strings to be labeled in each iteration to K = 20. For RME selection
algorithm, we set M to 500.

5.4 Impact of Weak Supervision

We evaluate 5 different approaches: (1) Random, which randomly
predicts O or 1 for any character. (2) RE,, ;, which uses regexes from
Section 5.2 to recognize entity mentions. (3) NNgg, ,, which is
the NN pretrained on weak labels generated by RE,,;. (4) RQ w/o
(100), which is the NN trained directly with 100 randomly selected
manually labeled candidate substrings. (5) RQ w (100), which is
an NN pretrained on weak labels and fine-tuned with 100 randomly
selected labeled candidate substrings.

In the top half of Table 3, we see that weak supervision helps in
two aspects. First, if we compare NNgg, , and RE,,;, we notice that
the weakly supervised model NNgg, , preserves the precision and
recall of the original regexes. Second, comparing RQ w (100) and
RQ w/ (100), we notice that pretraining on weak labels is superior.
It is worth poiting out that, as expected, the positional accuracy is
consistently higher than the entity-level accuracy.

5.5 Impact of Active Sampling

In this section, we evaluate the performance of 4 different sampling
strategies described in Section 3.4. The first two are random sam-
pling baselines, one being a cold start version without pretraining
and another with pretraining on weak labels generated by regexes
from Section 5.2. The last two are uncertainty-based, both using
the pretraining. Table 3 reports EntF1 and PosF1 scores achieved
by the 4 approaches after 1,000 labeled candidate substrings. First,
we observe that pretraining an NN on weakly labeled data (RQ
w/ (1000)) is superior to the cold start training (RQ w/o (1000)).
Second, we observe that uncertainty-based sampling is superior to
random sampling on all 5 tasks. RME is slightly better than ME.

In Figure 3, we illustrate how the accuracy changes with fine-
tuning on the DATETIME task until one labels 1,000 candidate sub-
strings. We zoom in the tails of the learning curves in the small
embedded figures. The more time a user spends on annotation, the
better the performance of the NNs. The two uncertainty-based ap-
proaches are superior to random sampling. The behavior is consistent
on other 4 tasks (not shown due to space constraints).

From Table 3, we observe that we can achieve around 0.95 PosF1
in all 5 recognition tasks, however, the EntF1 is always worse
than PosF1. It indicates that the NN entity recognizer predicts par-
tially correct entities quite often. As an example, 75% of the partial
matches in EMAILADREESS task differ from the true entities by only
1-2 characters. This percentage is 35.3%, 30.9%, 36.1%, 30% on the
other 4 tasks, respectively.
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Table 3: Impact of weak supervision and active learning on the 5 tasks.

Model Human DATETIME BILLDATE EMAILADDRESS COURSENUMBER PHONENUMBER
Name Annots | EntF1 | PosFl1 EntF1 | PosF1 EntF1 | PosF1 EntF1 | PosF1 EntF1 | PosF1
Random 0 0 0.1004 0 0.0331 || 0.0002 | 0.2543 || 0.0002 | 0.0446 0 0.1335
RE,,; 0 0.4340 | 0.7104 || 0.2827 | 0.3519 || 0.8811 | 0.9695 || 0.3926 | 0.4299 || 0.3182 | 0.5196
NNgg,, 0 0.4411 | 0.7103 || 0.2825 | 0.3529 || 0.8819 | 0.9733 || 0.4078 | 0.4354 || 0.3138 | 0.5179
RQ w/o (100) 100 0.0449 | 0.8218 || 0.2853 | 0.6164 || 0.6914 | 0.9716 || 0.5311 | 0.6838 || 0.1418 | 0.5921
RQ w (100) 100 0.5061 | 0.8675 0.508 | 0.6196 0.962 | 0.9907 || 0.6876 | 0.7899 || 0.6007 | 0.7787
RQ w/o (1000) 1000 | 0.8376 | 0.9343 || 0.8226 | 0.9169 || 0.9903 | 0.9973 || 0.8408 | 0.9129 || 0.7972 | 0.8903
RQ w (1000) 1000 | 0.8644 | 0.9420 || 0.8452 | 0.9177 || 0.9898 | 0.9973 || 0.8451 | 0.9175 || 0.8253 | 0.8964
ME (1000) 1000 | 0.8696 | 0.9537 || 0.9534 | 0.9838 || 0.9940 | 0.9959 || 0.9234 | 0.9514 || 0.8943 | 0.9359
RME (1000) 1000 | 0.8879 | 0.9565 || 0.9537 | 0.9829 || 0.9951 | 0.9983 || 0.8765 | 0.9373 || 0.8964 | 0.9401
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Figure 3: 4 query algorithms for DATETIME recognition.

From these results, we conclude that, given a regex, it is beneficial
to pre-train an initial model with weak labels. We also conclude that
uncertainty-based sampling of candidate substrings for labeling is
superior to random sampling.

6 USER STUDIES

In our framework, a user can invest her effort in coming up with a
regex and/or in manual labeling of the candidate substrings. In this
section, we explore the tradeoffs between the two, assuming a user
is given a limited time budget of T minutes. We ignore the time to
come up with the candidate regex REy, because it is much easier to
come up with it than to come with a regex RE,,; that has both high
recall and high precision.

6.1 Experimental Design

To experimentally explore the trade-off between creating a regex
versus manual labeling of the candidate substrings, we collected
data from 4 computer science students with different expertise in
writing regexes. We use capital letters to represent the volunteers
as M, C, J, and A. We asked the volunteers to create a regex for
the DATETIME and COURSENUMBER tasks. For each task, we gave them
1,000 candidate substrings randomly selected from Sy. We instructed
the volunteers to use {https://regex101.com} environment to create
and debug regexes. We gave the volunteers 40 minutes to create a
regex for each task. We also asked them to submit their intermediate

regex after 5, 10, and 20 minutes of work. Eventually, we obtained
regexes from volunteers C, J, A for both tasks and regexes from
volunteer M only for the DATETIME task.

Unlike regex writing, labeling candidate substrings does not re-
quire much, if any expertise. We assume all of the volunteers are
average people and can create string annotations at the same speed
as listed in Table 1. Using those numbers, we are able to simulate a
range of strategies a volunteer may take to help with the DATETIME
and COURSENUMBER tasks within our framework. The first two strate-
gies are two extremes, while the next 4 strategies are the trade-offs:

o RegAll User spends all the time on constructing a regex. The
final entity recognizer is the regex created after 40 minutes.

e Label. User immediately starts to annotate candidate strings
selected from Sp. NN is trained and fine-tuned using the
labeled candidate substrings selected with Random Querying,
as described in Section 3.4.

o Reg5. User spends the first 5 minutes on constructing RE,,,;,
which is used to pretrain an NN on weakly labeled data. Then,
the user spends the remaining 55 minutes for annotating the
candidate substrings selected using Random Querying.

e Regl0. The same as Reg5, but the user spends 10 minutes to
construct RE,,; and 50 minutes for labeling.

o Reg20. The same as Reg$, but the user spends 20 minutes to
construct RE,,; and 40 minutes for labeling.

o Regd0. The same as Reg5, but the user spends 40 minutes to
construct RE,,; and 20 minutes for labeling.

Since there was no time for hyperparameter tuning in our real-
time scenario, we had to select the hyperparameters in advance.
Although it is not completely fair, in our experiments, we fixed all
hyperparameters to a combination that appeared robust on all tasks
in Section 5: 1r = 277, emsize = 70, nhidden = 125, nlayers = 5.

6.2 Experimental Results

Figure 4 shows the results for volunteer M, who had the most exten-
sive expertise in writing regexes among our volunteers, on DATETIME
recognition task. The figure shows EntF1 score as a function of time
for the 6 different strategies. The figure allows us to compare differ-
ent strategies for several different time budgets T = [5, 10, 20, 40, 60].

The figure reveals several interesting observations. If the time
budget is only 5 minutes, RE,,; generated by volunteer M is supe-
rior in accuracy to an NN trained on candidate substrings labeled



Table 4: The performance of the 6 strategies under different time budgets of volunteers C, J, and A for DATETIME and COUSENUMBER
recognition. X means not applicable.

Volunteer C on DATETIME Volunteer J on DATETIME Volunteer A on DATETIME
Time budget (min) Time budget (min) Time budget (min)
Strategy 5 10 20 40 60 5 10 20 40 60 5 10 20 40 60
RegAll | 0.002 | 0.412 | 0.456 | 0.593 | 0.593 0.0 0.0 | 0.001 | 0.061 | 0.061 || 0.002 | 0.003 | 0.005 | 0.011 | 0.011
Label | 0.001 | 0.006 | 0.036 | 0.377 | 0.648 || 0.001 | 0.006 | 0.036 | 0.377 | 0.648 || 0.001 | 0.006 | 0.036 | 0.377 | 0.648
Reg5 X 0.0 0.0 0.0 0.0 X 0.0 | 0.417 | 0.489 | 0.597 X 0.0 0.17 | 0.429 | 0.614
Reg10 X X 0.33 | 0429 | 0.55 X X 0.066 | 0.334 | 0.57 X X 0.038 | 0.297 | 0.389
Reg20 X X X 0.383 | 0.54 X X X 0.271 | 0.385 X X X 0.261 | 0.393
Reg40 X X X X 0.626 X X X X 0.232 X X X X 0.416
Strategy Volunteer C on COURSENUMBER Volunteer J on COURSENUMBER Volunteer A on COURSENUMBER
5 10 20 40 60 5 10 20 40 60 5 10 20 40 60
RegAll | 0.554 | 0.592 | 0.532 | 0.338 | 0.338 || 0.145 | 0.184 | 0.19 | 0.19 | 0.19 || 0.563 | 0.6 | 0.675 | 0.702 | 0.702
Label | 0.046 | 0.361 | 0.652 | 0.761 | 0.815 || 0.046 | 0.361 | 0.652 | 0.761 | 0.815 || 0.046 | 0.361 | 0.652 | 0.761 | 0.815
Reg5 X 0.591 | 0.682 | 0.75 | 0.796 X 0.433 | 0.654 | 0.751 | 0.795 X 0.571 | 0.66 | 0.72 | 0.777
Regl10 X X 0.679 | 0.734 | 0.771 X X 0.611 | 0.732 | 0.798 X X 0.651 | 0.698 | 0.769
Reg20 X X X 0.733 | 0.796 X X X 0.684 | 0.797 X X X 0.681 | 0.727
Reg40 X X X X 0.707 X X X X 0.681 X X X X 0.699
07 created by volunteer C after 5 minutes has properties that prevent
06 successful fine-tuning with labeled substrings.
Table 4 also shows results for volunteers J and A on task DATETIME.
05 One can observe that neither volunteer manages to come up with
g 04 a good regex in 40 minutes. Interestingly, the overall behavior of
) \/"/,_\.M’ these 2 volunteers is more similar to volunteer M than to volunteer
% 03 — RegAll: REs only C. Reg5 is the best overall in the first 40 minutes. Label becomes
] Label: label right away

0.2 Reg5: label after 5 min

Reg10: label after 10 min
Reg20: label after 20 min
Reg40: label after 40 min
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Figure 4: Time efficiency of volunteer M on DATETIME task.

within 5 minutes. After 10 minutes, NNs become superior to using
RE,,; only. The best trade-off between regex writing and labeling
is achieved by Reg5. It seems that placing an extensive effort in
improving RE,,; does not pay off: the regex created after 5 minutes
is comparable in accuracy to the one created after 40 minutes. Label
is not competitive initially, but after 60 minutes it catches up with
the overall best Reg5.

To examine the generalizability of the conclusions with volun-
teers and different recognition tasks, we repeated the analysis with
volunteer C, J, A on tasks DATETIME and COURSENUMBER in Table 4.

From Table 4 we see that volunteer C is different from volunteer
M. While C’s RE,,; produced after 5 minutes is not accurate, there
is a steady increase in C’s EntF1 accuracy after 10, 20, and 40
minutes. The observed accuracy after 40 minutes is higher than that
of volunteer M. RegAll is better than the rest until the 50 minute
mark is reached. After 50 minutes, the Label becomes more accurate
than any regex-based approach. Reg$ is extremely inaccurate. This
is a surprising finding because, unlike Label, we do not observe
any accuracy improvement with the increase in number of labeled
candidate substrings. It seems that the NN pretrained using RE,,;

competitive with Reg5 after around 40 minutes. Reg10, 20, 40 show
that it does not pay off to spend a large amount of time on writing
and refining RE,, ;.

Table 5 provides an insight into the differences between RE,,;
produced after 5 minutes by volunteers C, J, and A. None of the vol-
unteers is able to create an accurate RE,,;. This is expected knowing
that they were exposed to 1,000 strings with 100-character lengths
and asked to write a regex within only 5 minutes. Interestingly, vol-
unteer C created a very specific regex with precision 1 and very
low recall, while volunteers J and A created regexes with very low
precision and recall. Volunteer C’s RE,,; had only 34 matches in
So, which meant that the resulting weakly labeled data set S,,;; was
extremely imbalanced with virtually all negative labels. We hypothe-
size that the high imbalance resulted in a very poorly pretrained NN,
to the extent that it could not have been improved by fine-tuning.
Unlike volunteer C, although volunteers J and A were not more suc-
cessful with regexes, their RE,,; resulted in a more balanced weakly
labeled data set, that allowed successful fine-tuning.

Table 4 shows that we obtain comparable results on the
COURSENUMBER task with volunteers C, J, and A. An overall theme
emerges from the user study and can be summarized as:

o If the time budget is less than 40 minutes, it is useful to spend
a few minutes to construct RE,,; for weak labeling and the
remaining allotted time for labeling.

o If the time budget is over 40 minutes, the weak labeling step
could potentially be skipped and it might be sufficient to focus
all effort on labeling of candidate substrings.



Table 5: Regexes created by C, J and A after the first 5 minutes
for the DATETIME task.

Source | Regex and their properties
C \d{4}-\d{1,2}-\d{1, 2}T\d{1, 2}:\d{1,4}-\
d{1,4}
J ([0-9]1[0-9]1[6-9][0-9]|[0-9][0-9])\
/([0-91[0-9]\/[0-9][0-9])
A (Monday | Tuesday |Wednesday | Thursday |

Friday|Saturday|Sunday){0, 1}\sx[0-9]{1, 2}

No. O.f matches EntPrec | EntRecall | EntF1
m S()
C 34 1.0 0.001 0.001
J 161,299 0.0 0.0 0.0
A 3,795,149 0.001 0.027 0.002

Limitation of our study. Before concluding the section, we point
out that a limitation of our study is that we ignore the time needed to
train and fine-tune an NN. Our assumption is that the training is in-
stantaneous. We use a standard PC with a single GeForce GTX 1080
Graphics Card in our actual experiments. For all tasks, excluding
DATETIME, pretraining an NN on S,,; took in the range of 20 minutes
to an hour, and it took almost 2 hours for DATETIME. Each round
of fine-tuning on all data sets ranged from 2 to 20 minutes. Thus,
it appears that the user would waste time waiting for an NN to be
pretrained and fine-tuned. However, this limitation is not necessarily
a fatal flaw of our study due to several reasons: (1) a user could
proceed with manual labeling and regex construction while waiting
for NN training, (2) a user could switch to some other task while
waiting, (3) the training time could be significantly improved if it
were implemented on a more powerful computer system, (4) our
study did not focus on training speedups, and it is possible that with
some tuning the training time could be further reduced.

7 CONCLUSIONS

We investigated the problem of entity extraction, where entities fol-
low or closely resemble patterns described using regular expressions.
Industrial strength entity recognizers for this class of entities em-
ploy regex. Regex is either manually crafted or learned. The main
drawbacks of regexes are that they tend to be complex to achieve
high coverage, are difficult to maintain, and are not resilient to noise,
such as typos. In the wake of data deluge, deep learning algorithms
are an attractive alternative, but they require large amount of human
annotated data. We propose a framework that combines the advan-
tages of regexes and deep learning, coupled with weak supervision
and active learning.

We conducted extensive experiments with data from 5 applica-
tion domains: email, course number, phone number, datetime, and
bill date. We also conducted a user study with 4 volunteers. The
experiments showed that we can build ML models that are regex-
oblivious, achieve high accuracy, and are resilient to small noise. The
user study provided interesting insights about the trade-offs between
constructing regexes and manually labeling the unlabeled text.
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