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Abstract 

The challenges facing the scientific community are 
common and real: conduct relevant and verifiable 
research in a rapidly changing collaborative landscape 
with an ever increasing scale of data. It has come to a 
point where research activities cannot scale at the rate 
required without improved cyberinfrastructure (CI). In 
this paper we describe CRIS (The Computational 
Research Infrastructure for Science), with its primary 
tenets to provide an easy to use, scalable, and 
collaborative scientific data management and workflow 
cyberinfrastructure for scientists lacking extensive 
computational expertise. Some of the key features of CRIS 
are: 1) semantic definition of scientific data using domain 
vocabularies; 2) embedded provenance for all levels of 
research activity (data, workflows, tools etc.); 3) easy 
integration of existing heterogeneous data and 
computational tools on local or remote computers; 4) 
automatic data quality monitoring for syntactic and 
domain standards; and 5) shareable yet secure access to 
research data, computational tools and equipment. CRIS 
currently has a community of users in Agronomy, 
Biochemistry, Bioinformatics and Healthcare 
Engineering at Purdue University (cris.cyber.purdue.edu)

Keywords: Scientific activity management; 
cyberinfrastructure (CI); provenance; workflow; data 
dictionaries; data sharing.  

1. Introduction 

Despite many advances in data management and 
workflow technologies, scientific cyberinfrastructures 
(CIs) currently in use are typically composed of a diverse 
set of rather ad-hoc components. As a result, these CIs 

suffer from several major shortcomings: (1) ad hoc 
management of research data – data is placed on shared 
drives and personal laptops, resulting in  highly 
distributed and unmanaged collections of data; (2) limited 
data re-use as data is not adequately described;  (3) lack of  
documentation of computational stages (e.g., data 
conversion among different file formats), resulting in 
untraceable modifications and thus limiting the 
exploration of unexpected research results; and (4) limited 
community interaction – data and computational tools are 
operated on isolated servers, inaccessible to the broader 
community. These issues are more prevalent in the so 
called “long tail of small science”, because large numbers 
of small projects produces ever larger volumes of data.
Yet they lack data repositories, community standards for 
data structures and metadata, and data management 
expertise [12, 16]. The unfortunate consequence of 
inadequate CI solutions is compromised research 
efficiency and integrity. 

Significant work has already been done to assist in 
solving CI related problems. For example, workflow 
management systems such as Pegasus [19], Taverna [17]
and Kepler [2] as well as scripting languages help 
improve the repeatability and control of experiments. 
National data repositories such as DataONE [2] and 
dbGap [15] provide storage locations for long term 
collaborative access. Data descriptors such as OWL 1

facilitate universal access to data and metadata. 
Specialized database engines such as MonetDB [14] and 
SciDB [7, 6] provide the ability to accelerate research. 
Online information management communities such as 
HUBZero (http://hubzero.org/) and PBWorks.com 
provide a framework for exchanging curated information. 
While data curation methodologies such as DataONE and 

                                                
1 http://www.w3.org/TR/owl-features/
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Data Curation Profiles [21] provide expertise for long 
term storage. All of these provide pieces for solving the 
data and computational management puzzle. 

The reality is that a typical scientific researcher does 
not have the computational expertise, funding, or time 
necessary to find, assess, and combine these independent 
building blocks into a cohesive CI to aid his/her research, 
data curation, and collaborative efforts. Without a suitable 
CI, their research can be inefficient, unable to easily build 
upon prior work, and provides limited extensibility by the 
broader community.  

In this paper we describe CRIS (The Computational 
Research Infrastructure for Science), with its primary 
tenets to provide an easy to use, scalable, and 
collaborative scientific data management and workflow CI 
for scientists lacking extensive computational expertise. 
We have built and currently support CRIS for an initial 
user community at Purdue University in Agronomy, 
Biochemistry, Bioinformatics and Healthcare 
Engineering; however the infrastructure is designed to 
support applications from a much broader set of scientific 
domains. To support such varied communities, CRIS 
provides an extensible suite of tools to: 

� describe data using domain specific vocabularies; 
� support configurable and interactive workflows 

for seamless operations from the raw data 
through analysis and visualization; 

� automatically validate the quality of scientific 
data; 

� automatically capture, transform, and analyze 
data and metadata with associated provenance; 

� facilitate cross-domain scientific collaboration; 
� provide long term storage and access to 

organized and managed data, leading to efficient 
and verifiable research. 

Our philosophy is that any CI must: (1) have low 
barriers to entry (i.e. easy to use and configure); (2) be 
inexpensive; (3) provide added value (i.e. incorporate the 
relevant scientific tools); and (4) be interoperable with 
other systems (i.e., seamless integration with other 
systems). In CRIS we are not re-inventing the wheel, 
but developing an infrastructure in which existing and 
new techniques are integrated and customized, driven 
by the specific requirements of scientific research 
processes. To the best of our knowledge, there is no other 
CI that has the same capabilities of CRIS. We give the 
details of CRIS in the rest of the paper. 

The remainder of this paper is organized as follows. 
Section 2 illustrates the need for suitable CI with a 
concrete scenario of a scientific research process. Section 
3 provides an overview of the CRIS architecture. Section 
4 describes the tools used to implement CRIS. Section 5 

depicts the motivating scenario in Section 2 when CRIS is 
used. Section 6 concludes the paper. 

2. A Motivating Scenario: A Typical Small 
Science Research Process 

Small science CI is traditionally comprised of shared 
network folders for data storage; limited access lab 
servers or laptops; isolated computational tools; under-
documented file and data formats; FTP/email/sneakernet 
transmission of information; limited or non-existent 
system backups and revision control; and manual 
provenance collection. As a result, valuable information is 
often discarded or underutilized, and research efficiencies 
and integrity compromised. To explain the motivation 
behind CRIS, we will detail a typical small science 
research environment for a scientist Mark. This is a 
typical experimental setting for Mark, a biochemist, who 
is currently using CRIS. Mark is conducting an 
experiment to analyze the mineral uptake within the plant 
Arabidopsis, and correlating phenotypic variations with 
genetic information. Although his research is unique, his 
CI requirements and current processes are widely 
applicable to a broad range of scientific environments. 

Mark first needs to capture metadata about the 
experiment, including information such as the seed lines,
photoperiod, temperature, soil conditions, and growth 
chambers. Second, he runs physical samples of the plant 
through a mass spectrometer (an instrument which 
measures the masses and relative concentrations of atoms 
and molecules) in order to identify the chemical 
components in the sample. The equipment produces a data 
file in a proprietary format, which needs to be converted 
to a more universally acceptable format for his analysis 
software (e.g., from .raw format to .mzdata format). This 
requires a new program that Mark does not currently have,
and therefore searches the internet to find a shareware 
version of software that accomplishes the conversion.
However after finding, he still has to install on a Linux PC 
(he has limited experience with Linux), and get familiar 
with these formats to be able to carry out the 
implementation. As fourth step, the converted file needs to 
be processed by a protein search engine, to find specific 
proteins within the sample. Mark needs to implement an 
intricate piece of software that performs the following 
tasks: specifies the parameters, sends the parameters along 
with the file to a protein search engine, and remotely 
launches the protein search engine. Fifth, after the search 
is complete, Mark copies the results from the remote 
computer to a flash drive, transferring the results back and 
storing with the rest of the experimental data on an 
external hard drive in his lab. Finally, Mark has to input 
the file to a proprietary tool and analyze the results 
visually. Then this process is repeated hundreds of times, 
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with minor variations to the experiment setup. The data 
and experimental results must be kept private on his local 
computers until his findings can be analyzed, compiled 
and published. After which he needs some manner to 
make the original data available to the research 
community. 

All these computer and engineering challenges 
sidetrack Mark from his main research activity: 
biochemistry. Even if Mark is successful in implementing 
all these steps he will still not have a complete solution, or 
a solution that his collaborators can leverage. Mark still 
needs to worry about automatic provenance collection 
(e.g., for experiment repeatability) [8], quality control 
(e.g., to avoid scientific fraud) [3], data loss (when his 
external hard drive fails). Furthermore, Mark lacks the 
infrastructure to publish his dataset or even the workflow 
to the broader community, resulting in others possibly 
repeating his work. 

This scenario illustrates why it is critical to provide 
an easy to use and cost-effective CI which enables the 
seamless integration of data with existing computational 
tools, automates manual processes, provides broad yet 
secure access, and allows scientists to focus their efforts 
on understanding their research domain in new and 
innovative ways. We will revisit this scenario (Section 5) 
once we introduce CRIS. 

3. CRIS Architecture 

CRIS is a web-based application whose architecture is 
shown in Figure 1. We provide the details for its key 
components and implementation in this section. 

3.1. Workspace 

A workspace is the “face” of CRIS, and acts as a 
container for all activities and data to be managed for a 
single group of scientists. Each workspace includes a 
dashboard offering a simple view of the relevant 
information (Figure 2), and provides the tools and 
controls necessary to conduct research such as: project 
and experiment containers; configurable workflows; 
access controls; computational tools; visualization and 
reporting; and connectors to automatically exchange 
information with external systems. 

Figure 2: A fragment snapshot of CRIS's workspace 

Workspaces are seamlessly connectable to diverse 
external data sources and computational tools. CRIS will 
soon support interconnected workspaces. This will 
provide an efficient and distributed architecture that can 
operate in an isolated manner, if desired, and instantly 
leverage other workspace resources when required. This is 
particularly beneficial for research projects with multiple 
people: e.g., projects that involve several institutions, or 
span diverse scientific domains. In addition to support 
access to remote data sources, CRIS will allow one to 
remotely execute computational tools within other 

Figure 1: A high level overview of CRIS architecture.
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workspaces. Thus “owners” of computational tools can 
make their resources available to the broader community, 
without having to manage difficulties of cross platform 
compatibility. 

3.2. Scientific Workflows 

A key impediment for scientists is how to automate 
their manual scientific processes. To support these efforts, 
CRIS allows seamless definition of workflows. 
Workflows usually consist of several (independently 
developed) pieces of software, metadata capture, external 
resources, and datasets. However for a workflow to 
function properly, and to support broad reuse, the output 
produced in one step must be “compatible” with the input 
expected in the subsequent step. CRIS is built using a 
“common vocabulary” (Section 3.3.1) for the data 
interface. 

Additionally, in order to make it possible to easily 
incorporate existing computational tools into the CI, CRIS 
provides “wrapping" support for tools (Services, Fig. 1). 
This basically helps the user to construct a definition for 
the inputs and outputs of a tool in terms of the common 
vocabulary of the project, and provides a standard 
mechanism to convert the data into the specific format 
required by the tool. In this way, the wrapper seamlessly 
ensures that the tool is not only usable within a particular 
workflow, but it can be reused in any other workflow in 
the scope of the project. 

Notice that CRIS is not a dedicated workflow system, 
rather CRIS integrates workflows along with many other 
features (e.g., provenance, data versioning, secure access) 
required to ease the daily research activity of scientists 
and their groups. And in that light, external workflow 
engines (Pegasus, Kepler, etc.) can be added into CRIS as 
a workflow step, allowing complex data manipulation 
efforts to be seamlessly integrated in with other process 
and data management efforts. 

3.3. Data Management  

A basic premise of CRIS is to provide a CI with 
enough tangible benefits that scientists will want to use, 
with the net result being the efficient and organized 
management of their research data (for free). To 
accomplish this task, CRIS utilizes the following key 
concepts: (1) the definition of a Domain Vocabulary to 
support coordinated exchange and validation of 
information; (2) utilization of Key/Value Pairs for 
identification of information; (3) automatic Rendering of 
Web-Pages from template definitions; (4) integrated 
Storage, Retrieval and Provenance; and (5) Reusable 
Resources. 

Figure 3: A Snapshot view of the vocabulary interface. 

3.3.1. Domain Vocabulary. At the core of any effective 
exchange of information is a defined vocabulary. For 
example within the human perspective, the various 
languages throughout the world constitute defined 
vocabularies. They will change over time as a result of a 
variety of influences, but are the base reference for all 
interpretations. In a similar vein, CRIS provides a 
framework for the creation and evolution of domain 
vocabularies. They are best defined by a member of the 
research team who understands the scope of the project; 
Fig. 3 shows a fragment of the vocabulary from an 
agricultural project currently supported by CRIS. 

Each domain vocabulary contains the unique 
definitions of relevant data elements, along with the 
definition of how to validate the information. To insure 
uniqueness across domains and throughout the workflows,
we utilize a UUID as the primary reference identifier for 
each data element.  For example, a definition of “Human 
Age” is as an integer with the range of [0-150]. However 
this must be kept distinct from the similar “Human Age” 
within a social science domain, which is instead defined as 
a list of [“Infant”, “Child”, “Adolescent”, “Teenager”, 
“Adult”, “Senior”]. So understanding that these similar 
definitions will exist, we incorporate Translators. 

Within each vocabulary data element, validators are 
defined allowing CRIS to automatically evaluate any data 
entered or ingested into the system.  Validators define 
basic data types (integer, string, list, etc.) along with 
corresponding ranges.  Additionally, regular expressions 
can be constructed and used to validator more complex 
data values (i.e. zipcodes, phone numbers, IP address, 
etc.).  It is also possible to extend the internal validators to 
communicate with external data validation sources (e.g. 
verifying a term exists in a pre-defined dictionary at a web 
url).  Finally, complex data quality measurement and 
detection can be implemented as a scriptable solution 
within a workflow step.  For example, if it is necessary to 
detect when data values in an input stream start no longer 
change as expected (i.e. a rain gauge sensor freezes), then 
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a script can be written to check for this specific condition.  
When found, then the workflow step can notify the user to 
take corrective action. 

Analogous to their human language counterparts, 
translators support the exchange of information between 
domain vocabularies. So in the above example, an integer 
age of [0-1] can be converted to “Infant”, [13-19] can be 
converted to “Teenager”, etc. (and also in reverse 
although a lossy translation). Importantly, CRIS records 
that the translation has occurred for future inspection. As 
vocabularies and translators are developed, they are made 
available to a broader audience through the GRCR 
repository (Section 3.4.2).

Future efforts will include a Guided Vocabulary 
Service which checks definitions created by a user against 
the GRCR repository of existing definitions. Whenever a 
definition provided by a user “matches” an existing 
definition, the latter is suggested to the user as an 
alternative definition. This is useful to avoid bloating the 
number of synonymous terms in the system, and reduce 
the number of required translators. 

3.3.2. Key/Value Pairs. In the experiences with our initial 
user community, the set of information a researcher 
desires to capture is often completely different at the 
beginning of a project than at the end. So instead of 
fighting change and multiple updates to database schemas, 
we embraced change through simple definitions using 
key/value pairs. In this manner, the vocabulary element 
UUID is the key, and the value is the stored data.  Thus, it 
becomes a simple task to add or remove desired 
information from the scientific workflow.  We do however 
group information according to the project/ experiment/ 
job/ workflow step containers to support accurate retrieval 
of the desired information, and to provide some contextual 
information for individual workflow steps. The back end 
database is also designed to support such dynamic 
modifications to the captured data (see Section 3.3.6) 

3.3.3. Rendered Web-Pages. To support the tenet of “an 
easy to use CI for scientists lacking in-depth 
computational expertise”, CRIS automatically renders the 
HTML web-pages from underlying XML templates. So 
the researcher simply adds the desired vocabulary terms to 
a desired workflow step, CRIS then renders the necessary 
HTML, and the workflow engine validates the entered 
data using validation parameters specified in the 
vocabulary term.  The net result is a minimal effort by the 
scientists to modify their CI requirements. 

3.3.4. Storage, Retrieval, and Provenance. At each step 
in a workflow, in addition to the expected data files and 
metadata, as much provenance as possible is captured for 
long term storage and retrieval using the back-end storage 

services [20]: e.g., the specific version of a computational 
tool, the person entering the data, geographic location, etc. 
It additionally tracks revisions to the information, storing 
who updated specific data elements and why [9]. Then 
customary browse, search, and export functions are 
available to retrieve relevant information.  This is an area 
for future extensions to CRIS.

3.3.5. Reusable Resources. As discussed earlier, it is 
important to provide resources which can be re-used by a 
broad set of groups.  For example, Mass Spectrometry 
equipment is widely used by scientists. In CRIS, a basic 
equipment category resource is created that identifies the 
physical attributes (equipment owner, physical location, 
manufacturer, etc.) and data attributes (LAN network 
location, data format type and version, etc.). Once created, 
anyone can simply locate the resource within the CRIS 
GRCR (Figure 1), and pull it into his/her workflow.  
Hence when the Mass Spectrometry step is executed 
during a workflow, the data and metadata associated with 
the equipment are automatically retrieved and stored. This 
result is a fully abstracted view of the Mass Spectrometer, 
which allows the scientist to simply “use” the equipment 
while automatically gaining a rich set of experiment 
information. Currently, CRIS expects users to manually 
create proper data definitions. CRIS will incrementally be 
equipped with data definition assisting tools.

3.3.6. Back End. The back end services consist of a 
relational SQL database instance, a NoSQL database 
instance, a distributed file system infrastructure, and 
computational processing nodes. It should be noted that 
each described component can be deployed beyond a 
single server, therefore supporting isolation of data sets as 
required by an individual research (i.e., regulatory 
compliance issues), as well as scalability as the number of 
users increases. The SQL database is used to store data 
internal to CRIS (e.g., workspaces, tools, user accounts, 
etc.) [7]. The NoSQL database is used to store scientific 
datasets through the prior noted key/value pairs (Section 
3.3.2).  The distributed file system is used to store files of 
moderate size in their original form. And the 
computational nodes are used to run computational 
algorithms, translators, and any other specialized 
workflow steps to avoid significant loading on the web 
server. Future capabilities are expected to include a 
Hadoop cluster for storing large sized files in an efficient 
and scalable manner, and the appropriate hooks are 
already in place.

3.4. Services 

We describe some of the key services of CRIS here. 
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3.4.1. Templates. The vocabulary is the basis for defining 
an element of data within a specific scientific domain, and 
becomes the method to validate as well as search and 
exchange information between domains. In the hierarchy 
of the system, templates are then assembled from a set of 
vocabulary terms, and workflows combine multiple 
templates. Templates are used to form a defined collection 
of vocabulary terms which have combined relevance
within a workflow step. They inherit the definitions from 
each included vocabulary term, and provide a method to 
individually over-ride specific properties. HTML web 
pages can be auto-generated by CRIS from the template 
definition, thus providing a straightforward mechanism for 
a user to enter relevant information. Templates are 
typically designed for a specific user workflow, but can be 
shared with other users in a similar domain. 

3.4.2. Global Registry of Community Resources 
(GRCR). The GRCR is CRIS’s central repository for 
collecting and exchanging information about any first-
class citizen of a CRIS workspace: domain vocabularies, 
datasets, tools, workflows, equipment, and computational 
resources. It is the component that will make it possible to 
easily share and search these objects across scientists and 
projects. GRCR will be governed by a Resource Access 
Control mechanism (Section 3.5) that ensures that 
resources are shared according to the levels and 
permissions prescribed by their owners [8]. 

3.4.3. Search. To realize collaborative opportunities 
beyond a single researcher’s workspace, and to promote
exploratory investigation, search capabilities are very 
necessary. Based upon our design criteria of stability, 
scalability, integration with NoSQL databases, and ability 
to extract contents directly from ingested files (Word, 
PDF, etc.), we have integrated the ElasticSearch2 engine 
in CRIS prototype. Its schema free approach, built upon 
the Apache Lucene high performance search engine, is an 
ideal match to the data components within CRIS.  

CRIS currently provides the following search and 
browse capabilities: (1) browse access via a hierarchical 
structure which closely matches the research process; and 
(2) keyword search based upon all stored information and 
vocabulary definitions. Future versions of CRIS will be 
equipped with more sophisticated search features, such as,
search by datasets similarity, e.g., the user points out a 
dataset X and CRIS retrieves all the datsets similar to X. 

3.5. Access and Security 
The organization and sharing of large sets of 

heterogeneous scientific datasets pose non-trivial access 
control challenges. An inadequate or unreliable 

                                                
2 http://www.elasticsearch.org

authorization mechanism can significantly increase the 
risk of unauthorized use of scientific data. This section 
highlights the security management issues that impact the 
design of an authorization model in CRIS. 

3.5.1 Authorization Requirements and Model. We
assume a general notion of authorization, by which an 
authorization is defined in terms of a subject, a
permission, an object, an object owner and an object 
class. An inefficient way to implement an authorization 
mechanism is to explicitly store all authorizations for all 
system subjects and objects. In contrast, the concept of 
implicit authorizations makes it unnecessary to store all 
authorizations explicitly [18]. The main idea is that a 
permission of a certain type defined for a subject on a 
certain object implies other authorizations, which means 
that authorizations can be automatically propagated. 
Hence, the authorization mechanism can compute 
authorizations from a minimum set of explicitly stored 
authorizations in order to prevent unauthorized access.  

The domain of subjects is organized in groups and 
authorizations are associated to groups, thus reducing the 
number of explicit individual authorizations. The idea of 
groups is similar to user-role assignment in Role Based 
Access Control (RBAC) [11]. The groups form a  Group 
Hierarchy (GH) where a node in the hierarchy represents a 
group and a directed arc from group A to group B
indicates that an authorization for group A subsume that of 
B. A permission in our model is stored as a cumulative 
permission represented by an integer bit mask where each 
bit represents a permission. Since only one entry is needed 
to store an authorization for a particular object, this 
reduces the need for implicit authorization along the 
domain P and hence implication between two 
authorizations does not occur along the domain P. The 
domain O of objects is organized as a rooted acyclic 
graph, in which each node is a Project, Experiment, Job or 
Workflow. An arc from node A to node B in the graph 
indicates that authorizations for object A imply 
authorizations for object B. 

CRIS allows a user to develop a computational tool
and then grant the execute permission on this tool to other 
users. A user having the authorization to execute a tool 
does not automatically have any authorization to directly 
read or modify the datasets accessed by the tool [4]. The 
user needs to possess the appropriate authorization on the 
datasets to execute the tool on them. 

3.5.2 CRIS Access Control System Since CRIS is built 
using the Spring framework, we adopt the access control 
module of Spring Security3 and customize it to meet the 
requirements of CRIS. The access control module of 

                                                
3 http://www.springsource.org/ spring-security
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Spring Security provides comprehensive authorization 
services, is widely used in enterprise applications and is 
the de-facto standard for securing Spring-based 
applications. 

CRIS has a set of explicit authorizations, called 
authorization base (AB). This consists of four tables 
provided by the default implementation of Spring Security 
as discussed below: 

� acl_sid uniquely identifies any group in the 
system. Spring Security also provides support for 
group hierarchies and allows one to configure the 
containment relationship between groups. 

� acl_class uniquely identifies any domain object 
class in the system. 

� acl_object_identity stores information for each 
unique domain object along with its parent, 
owner and whether authorization entries inherit 
from any parent. 

� acl_entry stores the individual permissions 
assigned to each principal or authority. 

CRIS has an Authorization Module that gives users the 
ability to create and store authorizations in the 
authorization base for the various objects in the users’
workspace and consequently allows access to authorized 
objects. If the authorization specified by the user is not 
already stored in AB or implied by an existing 
authorization in AB, the authorization is inserted into AB. 
In the case of tools, an additional check is done in order to 
ensure that grant and revoke authorizations on the 
dataset(s) associated with the tool are done properly. 

3.6. User Interface 

CRIS is intended to be routinely used by scientists 
lacking in-depth computer and system administration 
expertise. Its current user interface offers all basic 
functionalities and strives as much as possible to hide all 
the complexities of data management and computation.
Our goal is to continually improve the user interface so 
that it will be very easy to use and consistent with the 
user’s own mental model of their data, their activities, and 
the workflow as a whole. 

3.7. Iterative development 

CRIS is an ongoing project with a growing community 
of users. It is currently operational (available at: 
cris.cyber.purdue.edu) with the initial user community 
mentioned in Section 1, and several other components 
with partially implemented functionalities (e.g., the 
Resource Access Control of the GRCR, Guided 
Vocabulary Service, Hadoop Cluster, and Search 
Recommendations). We believe that an iterative 
development methodology delivers a robust CI, provides 

for immediate basic support for the scientists, and allows 
for comprehensive user feedback and improvements of the 
base system as new requirements are encountered. 
Additionally, it provides a unique proving ground for 
future research opportunities.

4. System Implementation 

CRIS has been implemented using open source 
software and free Web APIs. The back end uses 
PostgreSQL database 4 , MongoDB database 5 , Hadoop 
HDFS6 and Activiti workflow engine7. Activiti is used 
within CRIS as the workflow engine due to its ease of use 
in defining, changing, and sharing user workflows. CRIS 
is written in JAVA, with Spring and Hibernate as main 
frameworks. 

The implementation of the front end of CRIS utilizes a 
number of open source APIs, mainly Spring MVC8 and 
dojo javascript 9 . Most of the communication with the 
server is through Ajax to make the application more 
responsive. 

5. CRIS in Action 

Let’s now revisit our scenario in Section 2 with Mark 
using CRIS for his research activity. With CRIS, Mark 
first defines the metadata about the experiment on a 
rendered Web page. Second, the mass spectrometer is 
“wrapped” in CRIS and Mark can run the physical sample 
from CRIS and CRIS will ensure that the outcome of the 
analysis is automatically imported in Mark’s workspace. 
To convert the data files from .raw format to .mzdata 
format Mark can now use GRCR. He searches for a 
suitable program to see if anyone has shared such a 
program. Suppose such a program exists in GRCR, but it 
has to be executed remotely on the processing node where 
it is currently installed. To require such a remote 
execution, Mark only needs to drag the program into his 
workflow and CRIS takes care of transferring the file to 
the remote processing node, launching the program to 
convert the file, and transferring the converted file back to 
CRIS storage. Recall that in the fourth step, the converted 
file needed to be processed by a protein search engine. 
Mark can now add this step to his workflow, specifies the 
parameters, and CRIS does the rest: transfers the file to 
another remote processing node, sends the parameters, 

                                                
4 http://www.postgresql.org
5 http://www.mongodb.org
6 http://hadoop.apache.org/hdfs/
7 http://activiti.org/
8 http://www.springsource.org
9 dojotoolkit.org/ framework

307



and launches the protein search engine. This part of the 
scenario shows how a computational node is abstracted 
and transparently invoked from within CRIS. Fifth, after 
the search is complete, CRIS automatically transfers the 
results back and stores them for long term archival. Mark 
can invoke a visualization tool in CRIS (assuming it was 
previously “wrapped”) to explore the results. Finally, 
Mark can publish his data set and the workflow in GRCR 
to be used by the community. 

If Mark is a user that belongs to the “Admin Group”, 
then Mark has complete authorization on all objects 
during the course of an experiment and is not subjected to 
permission checking. If Mark is a normal user, then prior 
to the utilization of an object for an experiment, a 
permission check is done in order to ensure that Mark has 
the appropriate authorization on the requested object.  

6. Conclusion 

In this paper, we describe CRIS. CRIS currently 
provides support for 1) automatic capture, definition and 
processing of research data, 2) easy integration of existing 
data and computational tools on local or remote 
computers, 3) automatic data quality monitoring for 
syntactic and domain standards, and 4) secure access to 
research data, computational tools and equipment. 

CRIS is an ongoing and long term project with a 
growing community of users at Purdue University. CRIS 
is continually being improved and extended with new 
components and functionalities such as Guided 
Vocabulary Service, Hadoop Cluster and Provenance at 
all levels. 

We believe that CRIS is a step forward in the ongoing 
endeavor of the scientific community to build tools that 
allow scientific discovery through data exploration and 
community collaboration [13].
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