
CIS 2168 Data Structures Fall 2014

Lecture 8: Oct. 2 & 4
Lecturer: Anwar Mamat

Disclaimer: These notes may be distributed outside this class only with the permission of the Instructor.

8.1 RECURSION

Recursion in computer science is a method where the solution to a problem depends on solutions to smaller
instances of the same problem.

Listing 1: General format of many recursive algorithms

1 i f (some cond i t i on for which the answer i s known){
2 return s o l u t i o n ; // base case
3 } else {
4 r e c u r s i v e func t i on c a l l // sma l l e r ve r s i on o f the same problem
5 }

8.2 Examples

8.2.1 Factorial

Listing 2: Factorial

1 public int f a c t (int n){
2 i f (n == 0) return 1 ;
3 return n ∗ f a c t (n−1);
4 }

8.2.2 GCD

gcd(a, b) =

{
a if b is 0
gcd(b, a%b)

8-1

8-2 Lecture 8: Oct. 2 & 4

Listing 3: Factorial

1 public int gcd (int a , int b){
2 i f (b == 0){ return a ;}
3 return gcd (b , a%b) ;
4 }

8.2.3 Print a linked list

Listing 4: Print linked list

1 public void pr in t (Node h){
2 i f (h == null){ return ;} // base case
3 System . out . p r i n t (h . data+” , ”) ;
4 p r i n t (h . next) ;
5 }

Listing 5: Print linked list in reverse order

1 public void pr in t (Node h){
2 i f (h == null){ return ;} // base case
3 p r i n t (h . next) ;
4 System . out . p r i n t (h . data+” , ”) ;
5 }

8.2.4 The Towers of Hanoi

Legend has it that there were three diamond needles set into the floor of the temple of Brahma in Hanoi.
Stacked upon the leftmost needle were 64 golden disks, each a different size, stacked in concentric order, as
shown in Figure 8.2. The monks were to transfer the disks from the first needle A to the second needle B,
using the third C as necessary. But they could only move one disk at a time, and could never put a larger
disk on top of a smaller one. When they completed this task, the world would end!

Figure 8.1: Towers of Hanoi

Lecture 8: Oct. 2 & 4 8-3

8.2.4.1 Base case: one disk only

Figure 8.2: One Disk

If there is only one disk, it is trivial. We just move the disk from A to B as shown in Figure 8.3.

Listing 6: One Disk

1 1 . Move from A to B.

Figure 8.3: One Disk

8.2.4.2 Two Disks

You know how to move one disk. Now we move two disks. We have two disks as shown in Figure 8.4.

8-4 Lecture 8: Oct. 2 & 4

Figure 8.4: Two Disks

Here are the steps:

Listing 7: Two Disks

1 1 . Move from A to C.
2 2 . Move from A to B.
3 3 . Move from C to B.

Figure 8.5: Two Disks: Move from A to C

Lecture 8: Oct. 2 & 4 8-5

Figure 8.6: Two Disks: Move from A to B

Figure 8.7: Two Disks: Move from C to B

8.2.4.3 Three Disks

You know how to move two disks, right? We just saw it. Now, we move three disks, as shown in Figure 8.11.
Here are the steps:

Figure 8.8: Three Disks

8-6 Lecture 8: Oct. 2 & 4

Listing 8: Three Disks

1 1 . Move 2 d i s k s from A to C.
2 2 . Move 1 d i sk from A to B.
3 3 . Move 2 d i sk from C to B.

How do you move two disks at once in step 1? Yes, we can move 2 disks using the method described in
section 8.2.4.2.

Figure 8.9: Three Disks

Figure 8.10: Three Disks

Lecture 8: Oct. 2 & 4 8-7

Figure 8.11: Three Disks

8.2.4.4 Four or more Disks

You know how to move three disks. Now, we move four disks, as shown in Figure 8.13.

Figure 8.12: Four Disks

Here are the steps:

Listing 9: Four Disks

1 1 . Move 3 d i s k s from A to C.
2 2 . Move 1 d i sk from A to B.
3 3 . Move 3 d i sk from C to B.

How do you move three disks from A to C? We can do that using the exact same method we described in
section 8.2.4.3.

8-8 Lecture 8: Oct. 2 & 4

Figure 8.13: Four Disks

If we generalize the method, in order to move n disks from A to B, the steps are:

Listing 10: n disks

1 1 . Move n−1 d i s k s from A to C.
2 2 . Move 1 d i sk from A to B.
3 3 . Move n−1 d i sk from C to B.

Here is the code for the Towers of Hanoi.

Listing 11: Towers of Hanoi

1 import java . u t i l . Scanner ;
2 public class TowersOfHanoi {
3 public void s o l v e (int n , S t r ing A, St r ing C, S t r ing B) {
4 i f (n == 1) {
5 System . out . p r i n t l n (A + ”−>” + B) ;
6 } else {
7 s o l v e (n − 1 , A, B, C) ;
8 System . out . p r i n t l n (A + ”−>” + B) ;
9 s o l v e (n − 1 , C, A, B) ;

10 }
11 }
12
13 public stat ic void main (St r ing [] a rgs) {
14 TowersOfHanoi towersOfHanoi = new TowersOfHanoi () ;
15 System . out . p r i n t (”Enter number o f d i s c s : ”) ;
16 Scanner scanner = new Scanner (System . in) ;
17 int d i s c s = scanner . next Int () ;
18 towersOfHanoi . s o l v e (d i s c s , ”A” , ”C” , ”B”) ;
19 }
20 }

Lecture 8: Oct. 2 & 4 8-9

8.2.4.5 How long it will take to move 64 disks?

Lets see how many moves it takes to solve this problem, as a function of n, the number of disks to be moved.

n Number of disk-moves required

1 1
2 3
3 7
4 15
5 31
· · · · · ·
i 2i − 1
64 264 − 1 (a big number)

8.2.5 Palindrome

Listing 12: Palindrome

1 public stat ic boolean palindrome (St r ing s){
2 i f (s . l ength () == 1 | | s . l ength () == 0){
3 return true ;
4 }
5 i f (s . charAt (0) != s . charAt (s . l ength ()−1)) return fa l se ;
6 return palindrome (s . sub s t r i ng (1 , s . l ength () −1)) ;
7 }

8.2.6 Fibonacci

Listing 13: Fibonacci

1 // r e cu r s i v e implementat ion o f Fibonacci . Extremely s low
2 public stat ic int f i b 1 (int n){
3 System . out . p r i n t l n (”working hard ” + count++ + ” times ”) ;
4 i f (n == 1) return 1 ;
5 i f (n == 2) return 1 ;
6 return f i b 1 (n−1)+ f i b 1 (n−2);
7 }
8 // i t e r a t i v e implementat ion o f Fibonacci . Linear time
9 public stat ic int f i b 2 (int n){

10 int a = 0 ;
11 int b = 1 ;
12 int t = 1 ;
13 for (int i =1; i < n ; i++){
14 t = a + b ;
15 a = b ;
16 b = t ;
17 }
18 return t ;
19

8-10 Lecture 8: Oct. 2 & 4

20 }
21 // Big In t eger example
22 public stat ic Big Intege r f i b 3 (int n){
23 Big Intege r a = new Big Intege r (”0”) ;
24 B ig Intege r b = new Big Intege r (”1”) ;
25 B ig Intege r t = new Big Intege r (”1”) ;
26 for (int i =1; i < n ; i++){
27 t = a . add (b) ;
28 a = b ;
29 b = t ;
30 }
31 return t ;
32 }
33 //Test
34 public stat ic void main (St r ing [] a rgs) {
35 int n = 10000;
36 Big Intege r f = f i b 3 (n) ;
37 System . out . p r i n t l n (f) ;
38 }

8.2.7 Recursive Tree

http://introcs.cs.princeton.edu/java/23recursion/Tree.java.html

8.2.8 Maze

http://algs4.cs.princeton.edu/41undirected/Maze.java.html

