
CIS 2168: Assignment #9
Due on Wednesday, November 12, 2014

11:59pm

Anwar Mamat

1



Anwar Mamat CIS 2168 (Anwar 11:59pm): Assignment #9

Problem 1

Priority Queue (100%) In class, we implemented the priority queue ADT using binary heap stored in an

array. In this assignment, you will implement the priority queue using a heap-ordered binary tree. We DO

NOT store the binary tree in the array. Instead we use special binary tree, a triply linked structure. Each

node has three links. “left” and “right” child to traverse down the tree and “parent” to traverse up the tree.

For example: if you want to make node n2 as the left child of node n1, you will do:

n1.left = n2;

n2.parent = n1;

You will have to implement “insert” and “remove” using the algorithms “swim” and “sink” by operating the

tree nodes, instead of manipulating the array. Your implementation should guarantee logarithmic

running time for “insert” and “remove”, and constant time for “top” even if the size of the

priority queue is not known ahead of the time. A simple linked list implementation runs in linear

time. If you do that, you will not get credit.

You will implement this priority queue interface:

public interface PriorityQueue<T extends Comparable<T> >

{

void insert(T t);

void remove() throws EmptyQueueException;

5 T top() throws EmptyQueueException;

boolean empty();

}

The Node class is:

class Node{

T key;

Node left,right; //left, right children

Node parent; //reference to the parent

5 }

For example: for 1,4,7,6,3,13,14,10,8, you will create the binary tree:

Figure 1: Binary Heap

Problem 1 continued on next page. . . Page 2 of 6



Anwar Mamat CIS 2168 (Anwar 11:59pm): Assignment #9 Problem 1 (continued)

If you remove an item, 14 should be removed. 6 replaces 14, and we call “sink” to fix the violation. Test

your code with different input data. Make sure “insert”, “top” and “remove” work as we learned in class.

Download the attached “assignment9.zip” file, extract it and open the “assignment9” project using NetBeans.

Implement the “insert”, “remove”, “top”, and ”empty” method in the “MaxPQTree” class. When you

execute the project, entering “i 10” will insert 10 into the priority queue, while the command “r” removes

the largest number from the queue. Entering “done” terminates the program.

Testing your program

Test 1

We insert 50 random numbers to the priority queue, and remove all numbers. “BinaryTreeView” class

displays the binary heap, so that you can see if your priority queue is correct.

MaxPQTree<Integer> pq = new MaxPQTree();

BinaryTreeView<Integer> btv = new BinaryTreeView<Integer>(pq, 600, 500);

for(int i = 1; i < 50; i++){

pq.insert((int)(Math.random()*1000));

5 btv.refresh();

Thread.sleep(100L);

}

while(!pq.empty()){

10 pq.remove();

btv.refresh();

Thread.sleep(100L);

}

btv.close();

This code will generate a tree as shown in Figure 2.

Figure 2: Binary Heap

Page 3 of 6



Anwar Mamat CIS 2168 (Anwar 11:59pm): Assignment #9 Problem 1

Test 2

In this test, we manually enter the data to build priority queue. Run the program, at the command line,

you will see “Enter next value:”. You can insert a number into the priority queue with the command “i

number”, remove a number by entering “r”, and display the top value by entering “t”. The binary tree will

be displayed, so that you can check if your priory queue is correct.

MaxPQTree<Integer> pq = new MaxPQTree();

BinaryTreeView<Integer> btv = new BinaryTreeView<Integer>(pq, 600, 500);

String inp;

inp = InputHelper.getStringInput("Enter next value:");

5 while (!inp.equals("done")){

String inputs[] = inp.split(" ");

try{

i f(inputs[0].toLowerCase().equals("i")){

pq.insert(Integer.parseInt(inputs[1]));

10 }else i f(inputs[0].toLowerCase().equals("t")){

System.out.println(pq.top());

}else i f(inputs[0].toLowerCase().equals("r")){

pq.remove();

System.out.println("element is removed");

15 }

btv.refresh();

}catch(EmptyQueueException ex)

{

System.err.println(ex);

20 }catch(ArrayIndexOutOfBoundsException ex)

{

System.err.println(ex);

}

inp = InputHelper.getStringInput("Enter next value:");

25 }

System.out.println("done.");

Test 3

In this test, we test the efficiency of your priority queue. We pick M smallest numbers from N random

numbers. N is huge and M is large. You can change N between 1,000,000-10,000,000 and change M between

1,000-100,000. For N=10,000,000 and M=100,000, the estimated execution time should be around one

second. If your program runs slow, your “insert” and “remove” may not be taking worst case O(logn) time.

If your program takes O(n) time, it is not correct.

// pick M smallest numbers from N random numbers;

Random r = new Random();

MaxPQTree<Integer> pq = new MaxPQTree();

f inal int N = 10000000;

5 f inal int M = 100000;

int i;

long tStart = System.currentTimeMillis();

for(i = 1; i < M; i++){

int t = r.nextInt(N);

10 pq.insert(t);

}

Page 4 of 6



Anwar Mamat CIS 2168 (Anwar 11:59pm): Assignment #9 Problem 1

for(i = M; i < N; i++){

int t = r.nextInt(N);

15 i f(pq.top() > t){

pq.insert(t);

pq.remove();

}

}

20 long tEnd = System.currentTimeMillis();

// display the selected numbers

/*
System.out.println(M +" smallest numbers");

25 while(!pq.empty()){

System.out.print(pq.top()+",");

pq.remove();

}

System.out.println("");

30 */

long tDelta = tEnd - tStart;

double elapsedSeconds = tDelta / 1000.0;

System.out.println("Elapsed time: " + elapsedSeconds + " seconds");

Grading

Homework is 100 points. 80 will reflect functionality and correctness. 20 points on your program will reflect

your programming style, documentation. If you code does not compile, you will not receive any

credit.

Commenting and Documenting Code

Code must be properly commented. The main idea is that the grader should be able to understand your

code easily, not have to tear his or her hair out wondering what some statement is doing. The first time you

have to deal with poorly commented code (if you haven’t already), you will understand how annoying it is.

In particular, the top of each code file should contain your name, the course and assignment numbers, and

a brief summary of what’s in the file. Line-by-line comments should be included as necessary to make the

code easy to read. A clear coding style, together with informative variable and function names, will reduce

the number of comments required. Obscure code or cryptic function names will cause loss of points (for bad

style) and also require more extensive comments.

What to submit

A single zip file called Assignment9 firstname lastname.zip, where firstname is your first name, and lastname

is your last name. In this zip file, put:

1. Java source

2. A README file with:

• Instructions to compile and run of your code (include a description of command line options).

• If your solution is not perfect, explain what parts you did and what part you did not do.

Page 5 of 6



Anwar Mamat CIS 2168 (Anwar 11:59pm): Assignment #9 Problem 1

• List of files submitted

• All your data and results (in plain text files).

• Anything else you want TA know

3. Submit this zip file to Blackboard

Page 6 of 6


